1
|
Motiwala T, Nyide B, Khoza T. Molecular dynamic simulations to assess the structural variability of ClpV from Enterobacter cloacae. FRONTIERS IN BIOINFORMATICS 2025; 5:1498916. [PMID: 40201065 PMCID: PMC11975955 DOI: 10.3389/fbinf.2025.1498916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
The Enterobacter cloacae complex (ECC) consists of six Enterobacter species (E. cloacae, hormaechei, kobei, ludwigii, nimipressuralis and asburiae) that have emerged as nosocomial pathogens of interest, with E. cloacae and Enterobacter hormachei being the most frequently isolated ECC species in human clinical specimens and intensive care unit (ICU) patients. Many nosocomial outbreaks of E. cloacae have been related to transmission through contaminated surgical equipment and operative cleaning solutions. As this pathogen evades the action of antibiotics, it is important to find alternative targets to limit the devastating effects of these pathogens. ClpV is a Clp ATPase which dissociates and recycles the contracted sheath of the bacterial type VI secretion system (T6SS), thereby regulating bacterial populations and facilitating environmental colonization. Seventy-one Enterobacter strains were mined for Clp ATPase proteins. All the investigated strains contained ClpA, ClpB, ClpX and ClpV while only 20% contained ClpK. All the investigated strains contained more than one ClpV protein, and the ClpV proteins showed significant variations. Three ClpV proteins from E. cloacae strain E3442 were then investigated to determine the structural difference between each protein. Homology modelling showed the proteins to be structurally similar to each other, however the physicochemical characteristics of the proteins vary. Additionally, physicochemical analysis and molecular dynamic simulations showed that the proteins were highly dynamic and not significantly different from each other. Further investigation of the proteins in silico and in vitro in the presence and absence of various ligands and proteins could be performed to determine whether the proteins all interact with their surroundings in the same manner. This would allow one to determine why multiple homologs of the same protein are expressed by pathogens.
Collapse
Affiliation(s)
| | | | - Thandeka Khoza
- Department of Biochemistry, School of Life Sciences, Pietermaritzburg Campus, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
2
|
Perault AI, John AS, DuMont AL, Shopsin B, Pironti A, Torres VJ. Enterobacter hormaechei replaces virulence with carbapenem resistance via porin loss. Proc Natl Acad Sci U S A 2025; 122:e2414315122. [PMID: 39977318 PMCID: PMC11874173 DOI: 10.1073/pnas.2414315122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Pathogenic Enterobacter species are of increasing clinical concern due to the multidrug-resistant nature of these bacteria, including resistance to carbapenem antibiotics. Our understanding of Enterobacter virulence is limited, hindering the development of new prophylactics and therapeutics targeting infections caused by Enterobacter species. In this study, we assessed the virulence of contemporary clinical Enterobacter hormaechei isolates in a mouse model of intraperitoneal infection and used comparative genomics to identify genes promoting virulence. Through mutagenesis and complementation studies, we found two porin-encoding genes, ompC and ompD, to be required for E. hormaechei virulence. These porins imported clinically relevant carbapenems into the bacteria, and thus loss of OmpC and OmpD desensitized E. hormaechei to the antibiotics. Our genomic analyses suggest porin-related genes are frequently mutated in E. hormaechei, perhaps due to the selective pressure of antibiotic therapy during infection. Despite the importance of OmpC and OmpD during infection of immunocompetent hosts, we found the two porins to be dispensable for virulence in a neutropenic mouse model. Moreover, porin loss provided a fitness advantage during carbapenem treatment in an ex vivo human whole blood model of bacteremia. Our data provide experimental evidence of pathogenic Enterobacter species gaining antibiotic resistance via loss of porins and argue antibiotic therapy during infection of immunocompromised patients is a conducive environment for the selection of porin mutations enhancing the multidrug-resistant profile of these pathogens.
Collapse
Affiliation(s)
- Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN38105
| |
Collapse
|
3
|
Rodríguez-Pallares S, Blanco-Martín T, Lence E, Aja-Macaya P, Sánchez-Peña L, González-Pinto L, Rodríguez-Mayo M, Fernández-González A, Galán-Sánchez F, Beceiro A, González-Bello C, Bou G, Arca-Suárez J. In vivo emergence of resistance to ceftazidime/avibactam through modification of chromosomal AmpC β-lactamase in Klebsiella aerogenes. Antimicrob Agents Chemother 2024; 68:e0130724. [PMID: 39503481 PMCID: PMC11619368 DOI: 10.1128/aac.01307-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 12/06/2024] Open
Abstract
We describe the in vivo emergence of resistance to ceftazidime/avibactam via modification of AmpC in a clinical Klebsiella aerogenes isolate during therapy with this combination. Paired ceftazidime/avibactam-susceptible/resistant isolates were obtained before and during ceftazidime/avibactam treatment. Whole genome sequencing revealed a differential mutation in AmpC (R148W) in the ceftazidime/avibactam-resistant isolate. Molecular cloning and structural studies confirmed the impact of this substitution, which affects the architecture of the H10 helix, on the evolved resistant phenotype.
Collapse
Affiliation(s)
- Salud Rodríguez-Pallares
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Tania Blanco-Martín
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Emilio Lence
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Aja-Macaya
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Lucía Sánchez-Peña
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Lucía González-Pinto
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - María Rodríguez-Mayo
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Ana Fernández-González
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - Fátima Galán-Sánchez
- Servicio de Microbiología and Instituto de Innovación e Investigación Biomédica de Cádiz (INIBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción González-Bello
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Germán Bou
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Arca-Suárez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Tebano G, Zaghi I, Cricca M, Cristini F. Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales. PHARMACY 2024; 12:142. [PMID: 39311133 PMCID: PMC11417830 DOI: 10.3390/pharmacy12050142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
AmpC enzymes are a class of beta-lactamases produced by Gram-negative bacteria, including several Enterobacterales. When produced in sufficient amounts, AmpCs can hydrolyze third-generation cephalosporins (3GCs) and piperacillin/tazobactam, causing resistance. In Enterobacterales, the AmpC gene can be chromosomal- or plasmid-encoded. Some species, particularly Enterobacter cloacae complex, Klebsiella aerogenes, and Citrobacter freundii, harbor an inducible chromosomal AmpC gene. The expression of this gene can be derepressed during treatment with a beta-lactam, leading to AmpC overproduction and the consequent emergence of resistance to 3GCs and piperacillin/tazobactam during treatment. Because of this phenomenon, the use of carbapenems or cefepime is considered a safer option when treating these pathogens. However, many areas of uncertainty persist, including the risk of derepression related to each beta-lactam; the role of piperacillin/tazobactam compared to cefepime; the best option for severe or difficult-to-treat cases, such as high-inoculum infections (e.g., ventilator-associated pneumonia and undrainable abscesses); the role of de-escalation once clinical stability is obtained; and the best treatment for species with a lower risk of derepression during treatment (e.g., Serratia marcescens and Morganella morganii). The aim of this review is to collate the most relevant information about the microbiological properties of and therapeutic approach to AmpC-producing Enterobacterales in order to inform daily clinical practice.
Collapse
Affiliation(s)
- Gianpiero Tebano
- Infectious Diseases Unit, Ravenna Hospital, AUSL Romagna, 48100 Ravenna, Italy
| | - Irene Zaghi
- Department of Infectious Diseases, University Hospital of Galway, H91 Galway, Ireland;
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Francesco Cristini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
- Infectious Diseases Unit, Forlì and Cesena Hospitals, AUSL Romagna, 47121 Forlì and Cesena, Italy
| |
Collapse
|
5
|
Watanabe A, Harimoto N, Araki K, Igarashi T, Tsukagoshi M, Ishii N, Hagiwara K, Tsunekawa K, Murakami M, Shirabe K. Perioperative pancreaticoduodenectomy management strategy focusing on postoperative early drain colonization. Surg Today 2024; 54:1067-1074. [PMID: 38502211 DOI: 10.1007/s00595-024-02810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/21/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Pancreatoduodenectomy (PD) is a highly invasive procedure. Intra-abdominal infections and pancreatic fistulas are strongly correlated complications. In the present study, we identified the risk factors for postoperative early drain colonization (POEDC) and established a perioperative management strategy. METHODS A total of 205 patients who underwent pancreatoduodenectomy were included in the study. POEDC was defined as a positive drain fluid culture before postoperative day (POD) 4. We retrospectively investigated the correlation between POEDC, postoperative outcomes, and clinical factors. RESULTS POEDC was observed in 26 patients (12.6%) with poor postoperative outcomes, including pancreatic fistulas (P < 0.001). A multivariate analysis demonstrated a correlation between these postoperative outcomes and the age (P = 0.002), body mass index (BMI) (P = 0.002), procalcitonin (PCT) level (P < 0.001), and drain amylase level on POD 1 (P = 0.032). Enterococcus was detected most frequently, being found in 15 patients. CONCLUSION We observed a strong correlation between POEDC and poor postoperative outcomes. The BMI, age, and PCT and drain amylase level on POD 1 should be considered POEDC risk factors, with the need to propose an antibiotic perioperative strategy. POEDC control may represent the key to improving postoperative outcomes after PD.
Collapse
Affiliation(s)
- Akira Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Norifumi Harimoto
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan.
| | - Kenichiro Araki
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Takamichi Igarashi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Mariko Tsukagoshi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Norihiro Ishii
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Kei Hagiwara
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
6
|
Gross R, Yelin I, Lázár V, Datta MS, Kishony R. Beta-lactamase dependent and independent evolutionary paths to high-level ampicillin resistance. Nat Commun 2024; 15:5383. [PMID: 38918379 PMCID: PMC11199616 DOI: 10.1038/s41467-024-49621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The incidence of beta-lactam resistance among clinical isolates is a major health concern. A key method to study the emergence of antibiotic resistance is adaptive laboratory evolution. However, in the case of the beta-lactam ampicillin, bacteria evolved in laboratory settings do not recapitulate clinical-like resistance levels, hindering efforts to identify major evolutionary paths and their dependency on genetic background. Here, we used the Microbial Evolution and Growth Arena (MEGA) plate to select ampicillin-resistant Escherichia coli mutants with varying degrees of resistance. Whole-genome sequencing of resistant isolates revealed that ampicillin resistance was acquired via a combination of single-point mutations and amplification of the gene encoding beta-lactamase AmpC. However, blocking AmpC-mediated resistance revealed latent adaptive pathways: strains deleted for ampC were able to adapt through combinations of changes in genes involved in multidrug resistance encoding efflux pumps, transcriptional regulators, and porins. Our results reveal that combinations of distinct genetic mutations, accessible at large population sizes, can drive high-level resistance to ampicillin even independently of beta-lactamases.
Collapse
Affiliation(s)
- Rotem Gross
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Idan Yelin
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Viktória Lázár
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Manoshi Sen Datta
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- The California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Roy Kishony
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
Barceló IM, Escobar-Salom M, Jordana-Lluch E, Torrens G, Oliver A, Juan C. Filling knowledge gaps related to AmpC-dependent β-lactam resistance in Enterobacter cloacae. Sci Rep 2024; 14:189. [PMID: 38167986 PMCID: PMC10762043 DOI: 10.1038/s41598-023-50685-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Enterobacter cloacae starred different pioneer studies that enabled the development of a widely accepted model for the peptidoglycan metabolism-linked regulation of intrinsic class C cephalosporinases, highly conserved in different Gram-negatives. However, some mechanistic and fitness/virulence-related aspects of E. cloacae choromosomal AmpC-dependent resistance are not completely understood. The present study including knockout mutants, β-lactamase cloning, gene expression analysis, characterization of resistance phenotypes, and the Galleria mellonella infection model fills these gaps demonstrating that: (i) AmpC enzyme does not show any collateral activity impacting fitness/virulence; (ii) AmpC hyperproduction mediated by ampD inactivation does not entail any biological cost; (iii) alteration of peptidoglycan recycling alone or combined with AmpC hyperproduction causes no attenuation of E. cloacae virulence in contrast to other species; (iv) derepression of E. cloacae AmpC does not follow a stepwise dynamics linked to the sequential inactivation of AmpD amidase homologues as happens in Pseudomonas aeruginosa; (v) the enigmatic additional putative AmpC-type β-lactamase generally present in E. cloacae does not contribute to the classical cephalosporinase hyperproduction-based resistance, having a negligible impact on phenotypes even when hyperproduced from multicopy vector. This study reveals interesting particularities in the chromosomal AmpC-related behavior of E. cloacae that complete the knowledge on this top resistance mechanism.
Collapse
Affiliation(s)
- Isabel M Barceló
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Escobar-Salom
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gabriel Torrens
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
| | - Antonio Oliver
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carlos Juan
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain.
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain.
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Tariq FN, Shafiq M, Khawar N, Habib G, Gul H, Hayat A, Rehman MU, Moussa IM, Mahmoud EA, Elansary HO. The functional repertoire of AmpR in the AmpC β-lactamase high expression and decreasing β-lactam and aminoglycosides resistance in ESBL Citrobacter freundii. Heliyon 2023; 9:e19486. [PMID: 37662790 PMCID: PMC10472055 DOI: 10.1016/j.heliyon.2023.e19486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Citrobacter freundii is characterized by AmpC β-lactamases that develop resistance to β-lactam antibiotics. The production of extended-spectrum β-lactamase (ESBL) is substantially high in Escherichia coli, C. freundii, Enterobacter cloacae, and Serratia marcescens, but infrequently explored in C. freundii. The present investigation characterized the ESBL C. freundii and delineated the genes involved in decrease in antibiotics resistance. We used the VITEK-2 system and Analytical Profile Index (API) kit to characterize and identify the Citrobacter isolates. The mRNA level of AmpC and AmpR was determined by RT-qPCR, and gel-shift assay was performed to evaluate protein-DNA binding. Here, a total of 26 Citrobacter strains were isolated from COVID-19 patients that showed varying degrees of antibiotic resistance. We examined and characterized the multidrug resistant C. freundii that showed ESBL production. The RT-qPCR analysis revealed that the AmpC mRNA expression is significantly high followed by a high level of AmpR. We sequenced the AmpC and AmpR genes that revealed the AmpR has four novel mutations in comparison to the reference genome namely; Thr64Ile, Arg86Ser, Asp135Val, and Ile183Leu while AmpC remained intact. The ΔAmpR mutant analysis revealed that the AmpR positively regulates oxidative stress response and decreases β-lactam and aminoglycosides resistance. The AmpC and AmpR high expression was associated with resistance to tazobactam, ampicillin, gentamicin, nitrofurantoin, and cephalosporins whereas AmpR deletion reduced β-lactam and aminoglycosides resistance. We conclude that AmpR is a positive regulator of AmpC that stimulates β-lactamases which inactivate multiple antibiotics.
Collapse
Affiliation(s)
- Falak Naz Tariq
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Mehreen Shafiq
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Nadeem Khawar
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, 25000, Pakistan
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Haji Gul
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Azam Hayat
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
Xie L, Xu R, Zhu D, Sun J. Emerging resistance to ceftriaxone treatment owing to different ampD mutations in Enterobacter roggenkampii. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105301. [PMID: 35568334 DOI: 10.1016/j.meegid.2022.105301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The Enterobacter cloacae complex is responsible for a variety of infections in hospitalized patients and is resistant to β-lactam antibiotics owing to the expression of AmpC β-lactamase. We report emerging resistance in Enterobacter roggenkampii exposed to ceftriaxone and explore the mechanism underlying mutations responsible for this resistance. METHODS Three strains were derived from different samples from one patient (blood and liver abscess fluid). Antimicrobial susceptibility was evaluated by standard broth microdilution, while ampC expression was determined via RT-PCR. Genetic relatedness was evaluated via pulsed-field gel electrophoresis (PFGE). Species identification and comparative genome analysis were performed via genome sequencing. Mutation rate testing and selection of AmpC-derepressed mutants were conducted to explore the mutation mechanism. RESULTS E. roggenkampii F1247 was susceptible to third-generation cephalosporins (3GCs); F95 and F1057, found in blood sample on day 11 and liver abscess drainage fluid on day 25, were resistant. ampC expression was 341- and 642-fold higher in F95 and F1057, respectively, than in F1247. Three isolates were the same PFGE and sequence types (ST1778) and were highly homologous (2 and 4 core genome single nucleotide polymorphism differences). Compared to F1247, F95 possessed a 575 bp deletion, including 537 bp of ampD, whereas F1057 harbored only one amino acid mutation (Leu140Pro in ampD). The mutation rates from F1247 exposure to cefotaxime, ceftazidime, ceftriaxone, piperacillin-tazobactam, and cefepime were (1.90 ± 0.21) × 10-8, (3.18 ± 0.43) × 10-8, (2.00 ± 0.20) × 10-8, (2.92 ± 0.29) × 10-9, and zero, respectively. In vitro-selected mutations responsible for resistance were identified in ampD, ampR, and dacB. CONCLUSIONS E. roggenkampii may develop resistance in vivo and in vitro upon exposure to 3GCs and to a lesser extent to piperacillin-tazobactam. 3GCs should not be used as a monotherapy for E. roggenkampii infections. Therapy using cefepime or carbapenems may be preferred to piperacillin-tazobactam in the treatment of E. roggenkampii, especially if source control is difficult.
Collapse
Affiliation(s)
- Lianyan Xie
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Xu
- Department of Clinical Microbiology, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Dongan Zhu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Jingyong Sun
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
11
|
Nakano R, Yamada Y, Nakano A, Suzuki Y, Saito K, Sakata R, Ogawa M, Narita K, Kuga A, Suwabe A, Yano H. The Role of nmcR, ampR, and ampD in the Regulation of the Class A Carbapenemase NmcA in Enterobacter ludwigii. Front Microbiol 2022; 12:794134. [PMID: 35095805 PMCID: PMC8790168 DOI: 10.3389/fmicb.2021.794134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Various carbapenemases have been identified in the Enterobacteriaceae. However, the induction and corresponding regulator genes of carbapenemase NmcA has rarely been detected in the Enterobacter cloacae complex (ECC). The NmcA-positive isolate ECC NR1491 was first detected in Japan in 2013. It was characterized and its induction system elucidated by evaluating its associated regulator genes nmcR, ampD, and ampR. The isolate was highly resistant to all β-lactams except for third generation cephalosporins (3GC). Whole-genome analysis revealed that blaNmcA was located on a novel 29-kb putatively mobile element called EludIMEX-1 inserted into the chromosome. The inducibility of β-lactamase activity by various agents was evaluated. Cefoxitin was confirmed as a strong concentration-independent β-lactamase inducer. In contrast, carbapenems induced β-lactamase in a concentration-dependent manner. All selected 3GC-mutants harboring substitutions on ampD (as ampR and nmcR were unchanged) were highly resistant to 3GC. The ampD mutant strain NR3901 presented with a 700 × increase in β-lactamase activity with or without induction. Similar upregulation was also observed for ampC and nmcA. NR1491 (pKU412) was obtained by transforming the ampR mutant (135Asn) clone plasmid whose expression increased by ∼100×. Like NR3901, it was highly resistant to 3GC. Overexpression of ampC, rather than nmcA, may have accounted for the higher MIC in NR1491. The ampR mutant repressed nmcA despite induction and it remains unclear how it stimulates nmcA transcription via induction. Future experiments should analyze the roles of nmcR mutant strains.
Collapse
Affiliation(s)
- Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Yuki Yamada
- Division of Central Clinical Laboratory, Iwate Medical University Hospital, Yahaba, Japan
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Kai Saito
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Ryuji Sakata
- Department of Bacteriology, BML Inc., Kawagoe, Japan
| | - Miho Ogawa
- Department of Bacteriology, BML Inc., Kawagoe, Japan
| | - Kazuya Narita
- Division of Central Clinical Laboratory, Iwate Medical University Hospital, Yahaba, Japan
| | - Akio Kuga
- Hamamatsu Pharmaceutical Association, Hamamatsu, Japan
| | - Akira Suwabe
- Department of Laboratory Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| |
Collapse
|
12
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
13
|
Strong Environment-Genotype Interactions Determine the Fitness Costs of Antibiotic Resistance In Vitro and in an Insect Model of Infection. Antimicrob Agents Chemother 2020; 64:AAC.01033-20. [PMID: 32661001 DOI: 10.1128/aac.01033-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
The acquisition of antibiotic resistance commonly imposes fitness costs, a reduction in the fitness of bacteria in the absence of drugs. These costs have been quantified primarily using in vitro experiments and a small number of in vivo studies in mice, and it is commonly assumed that these diverse methods are consistent. Here, we used an insect model of infection to compare the fitness costs of antibiotic resistance in vivo to those in vitro Experiments explored diverse mechanisms of resistance in a Gram-positive pathogen, Bacillus thuringiensis, and a Gram-negative intestinal symbiont, Enterobacter cloacae Rifampin resistance in B. thuringiensis showed fitness costs that were typically elevated in vivo, although these were modulated by genotype-environment interactions. In contrast, resistance to cefotaxime via derepression of AmpC β-lactamase in E. cloacae resulted in no detectable costs in vivo or in vitro, while spontaneous resistance to nalidixic acid, and carriage of the IncP plasmid RP4, imposed costs that increased in vivo Overall, fitness costs in vitro were a poor predictor of fitness costs in vivo because of strong genotype-environment interactions throughout this study. Insect infections provide a cheap and accessible means of assessing the fitness consequences of resistance mutations, data that are important for understanding the evolution and spread of resistance. This study emphasizes that the fitness costs imposed by particular mutations or different modes of resistance are extremely variable and that only a subset of these mutations is likely to be prevalent outside the laboratory.
Collapse
|
14
|
Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World. Clin Infect Dis 2020; 69:1446-1455. [PMID: 30838380 DOI: 10.1093/cid/ciz173] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Understanding the nuances of AmpC β-lactamase-mediated resistance can be challenging, even for the infectious diseases specialist. AmpC resistance can be classified into 3 categories: (1) inducible chromosomal resistance that emerges in the setting of a β-lactam compound, (2) stable derepression due to mutations in ampC regulatory genes, or (3) the presence of plasmid-mediated ampC genes. This review will mainly focus on inducible AmpC resistance in Enterobacteriaceae. Although several observational studies have explored optimal treatment for AmpC producers, few provide reliable insights into effective management approaches. Heterogeneity within the data and inherent selection bias make inferences on effective β-lactam choices problematic. Most experts agree it is prudent to avoid expanded-spectrum (ie, third-generation) cephalosporins for the treatment of organisms posing the greatest risk of ampC induction, which has best been described in the context of Enterobacter cloacae infections. The role of other broad-spectrum β-lactams and the likelihood of ampC induction by other Enterobacteriaceae are less clear. We will review the mechanisms of resistance and triggers resulting in AmpC expression, the species-specific epidemiology of AmpC production, approaches to the detection of AmpC production, and treatment options for AmpC-producing infections.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yohei Doi
- Department of Medicine, University of Pittsburgh, School of Medicine, Pennsylvania
| | - Robert A Bonomo
- Department of Medicine, The Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Case Western Reserve University, Ohio
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
15
|
Complex Response of the CpxAR Two-Component System to β-Lactams on Antibiotic Resistance and Envelope Homeostasis in Enterobacteriaceae. Antimicrob Agents Chemother 2020; 64:AAC.00291-20. [PMID: 32229490 DOI: 10.1128/aac.00291-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 01/17/2023] Open
Abstract
The Cpx stress response is widespread among Enterobacteriaceae We previously reported a mutation in cpxA in a multidrug-resistant strain of Klebsiella aerogenes isolated from a patient treated with imipenem. This mutation yields a single-amino-acid substitution (Y144N) located in the periplasmic sensor domain of CpxA. In this work, we sought to characterize this mutation in Escherichia coli by using genetic and biochemical approaches. Here, we show that cpxAY144N is an activated allele that confers resistance to β-lactams and aminoglycosides in a CpxR-dependent manner, by regulating the expression of the OmpF porin and the AcrD efflux pump, respectively. We also demonstrate the effect of the intimate interconnection between the Cpx system and peptidoglycan integrity on the expression of an exogenous AmpC β-lactamase by using imipenem as a cell wall-active antibiotic or by inactivating penicillin-binding proteins. Moreover, our data indicate that the Y144N substitution abrogates the interaction between CpxA and CpxP and increases phosphotransfer activity on CpxR. Because the addition of a strong AmpC inducer such as imipenem is known to cause abnormal accumulation of muropeptides (disaccharide-pentapeptide and N-acetylglucosamyl-1,6-anhydro-N-acetylmuramyl-l-alanyl-d-glutamy-meso-diaminopimelic-acid-d-alanyl-d-alanine) in the periplasmic space, we propose these molecules activate the Cpx system by displacing CpxP from the sensor domain of CpxA. Altogether, these data could explain why large perturbations to peptidoglycans caused by imipenem lead to mutational activation of the Cpx system and bacterial adaptation through multidrug resistance. These results also validate the Cpx system, in particular, the interaction between CpxA and CpxP, as a promising therapeutic target.
Collapse
|
16
|
Saralegui C, Ponce-Alonso M, Pérez-Viso B, Moles Alegre L, Escribano E, Lázaro-Perona F, Lanza VF, de Pipaón MS, Rodríguez JM, Baquero F, Del Campo R. Genomics of Serratia marcescens Isolates Causing Outbreaks in the Same Pediatric Unit 47 Years Apart: Position in an Updated Phylogeny of the Species. Front Microbiol 2020; 11:451. [PMID: 32296400 PMCID: PMC7136904 DOI: 10.3389/fmicb.2020.00451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
The first documented nosocomial outbreak caused by Serratia marcescens in Spain occurred in 1969 at the neonatal intensive care unit (NICU) of the tertiary La Paz Children's Hospital in Madrid, Spain, and based on the available phenotyping techniques at this time, it was considered as a monoclonal outbreak. Only 47 years later, another S. marcescens outbreak of an equivalent dimension occurred at the same NICU. The aim of the present study was to study isolates from these historical and contemporary outbreaks by phenotypic analysis and whole-genome sequencing techniques and to position these strains along with 444 publicly available S. marcescens genomes, separately comparing core genome and accessory genome contents. Clades inferred by both approaches showed high correlation, indicating that core and accessory genomes seem to evolve in the same manner for S. marcescens. Nine S. marcescens clusters were identified, and isolates were grouped in two of them according to sampling year. One exception was isolate 13F-69, the most genetically distant strain, located in a different cluster. Categorical functions in the annotated accessory genes of both collections were preserved among all isolates. No significant differences in frequency of insertion sequences in historical (0.18-0.20)-excluding the outlier strain-versus contemporary isolates (0.11-0.19) were found despite the expected resting effect. The most dissimilar isolate, 13F-69, contains a highly preserved plasmid previously described in Bordetella bronchiseptica. This strain exhibited a few antibiotic resistance genes not resulting in a resistant phenotype, suggesting the value of gene down expression in adaptation to long-term starvation.
Collapse
Affiliation(s)
- Claudia Saralegui
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Red Española de Investigación en Patología Infecciosa, Madrid, Spain
| | - Manuel Ponce-Alonso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Red Española de Investigación en Patología Infecciosa, Madrid, Spain
| | - Blanca Pérez-Viso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Laura Moles Alegre
- Unidad de Esclerosis Múltiple, Instituto de Investigación Sanitaria Biodonostia, Donostia-San Sebastián, Spain
| | - Esperanza Escribano
- Servicio de Neonatología, Hospital Universitario La Paz, and Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Val F Lanza
- Unidad de Bioinformática del IRYCIS, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Miguel Sáenz de Pipaón
- Servicio de Neonatología, Hospital Universitario La Paz, and Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Miguel Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Red Española de Investigación en Patología Infecciosa, Madrid, Spain
| |
Collapse
|
17
|
Adelowo OO, Ikhimiukor OO, Knecht C, Vollmers J, Bhatia M, Kaster AK, Müller JA. A survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step towards generating prevalence maps of antimicrobial resistance. PLoS One 2020; 15:e0229451. [PMID: 32130234 PMCID: PMC7055906 DOI: 10.1371/journal.pone.0229451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/06/2020] [Indexed: 01/30/2023] Open
Abstract
In many countries, emission of insufficiently treated wastewater into water bodies appears to be an important factor in spreading clinically relevant antimicrobial resistant bacteria. In this study, we looked for the presence of Enterobacteriaceae strains with resistance to 3rd generation cephalosporin antibiotics in four urban wetlands in southwestern Nigeria by isolation, whole genome sequencing and qPCR enumeration of marker genes. Genome analysis of multi-drug resistant and potentially pathogenic Escherichia coli isolates (members of the widely distributed ST10 complex) revealed the presence of the extended spectrum beta-lactamase gene blaCTX-M-15 on self-transmissible IncF plasmids. The gene was also present together with a blaTEM-1B gene on self-transmissible IncH plasmids in multi-drug resistant Enterobacter cloacae isolates. A Citrobacter freundii isolate carried blaTEM-1B on an IncR-type plasmid without discernable conjugation apparatus. All strains were isolated from a wetland for which previous qPCR enumeration of marker genes, in particular the ratio of intI1 to 16S rRNA gene copy numbers, had indicated a strong anthropogenic impact. Consistent with the isolation origin, qPCR analysis in this study showed that the blaCTX-M gene was present at an abundance of 1x10-4 relative to bacterial 16S rRNA gene copy numbers. The results indicate that contamination of these urban aquatic ecosystems with clinically relevant antibiotic resistant bacteria is substantial in some areas. Measures should therefore be put in place to mitigate the propagation of clinically relevant antimicrobial resistance within the Nigerian aquatic ecosystems.
Collapse
Affiliation(s)
- Olawale Olufemi Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- * E-mail: , (OOA); (JAM)
| | - Odion Osebhahiemen Ikhimiukor
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Camila Knecht
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Otto-von-Guericke-Universität Magdeburg—Institute of Apparatus and Environmental Technology, Magdeburg, Germany
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mudit Bhatia
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Anne-Kirstin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- * E-mail: , (OOA); (JAM)
| |
Collapse
|
18
|
Mizrahi A, Delerue T, Morel H, Le Monnier A, Carbonnelle E, Pilmis B, Zahar J. Infections caused by naturally AmpC-producing Enterobacteriaceae: Can we use third-generation cephalosporins? A narrative review. Int J Antimicrob Agents 2020; 55:105834. [DOI: 10.1016/j.ijantimicag.2019.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 10/07/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022]
|
19
|
Kohlmann R, Bähr T, Gatermann SG. Species-specific mutation rates for ampC derepression in Enterobacterales with chromosomally encoded inducible AmpC β-lactamase. J Antimicrob Chemother 2019; 73:1530-1536. [PMID: 29566147 DOI: 10.1093/jac/dky084] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
Background AmpC β-lactamases are encoded on the chromosomes of certain Enterobacterales and lead to clinical resistance to various β-lactams in case of high-level expression. In WT bacteria with inducible AmpC, the expression is low, but selection of stably ampC-derepressed mutants may occur during β-lactam therapy. Thus, for Enterobacter spp., Citrobacter freundii complex, Serratia spp. and Morganella morganii that test susceptible in vitro to oxyimino-cephalosporins, the EUCAST expert rules recommend suppressing susceptibility testing results for these agents or noting that their use in monotherapy should be discouraged, owing to the risk of selecting resistance. However, clinical observations suggest that emergence of resistance is not equally common in all species with inducible AmpC. Objectives To determine species-specific mutation rates, which are more accurate and reproducible than previously described mutant frequencies, for ampC derepression in Enterobacterales with inducible AmpC. Methods Mutation rates were determined using a protocol based on Luria-Delbrück fluctuation analyses. Overall, 237 isolates were analysed. Results Mutation rates were high in Enterobacter cloacae complex, Enterobacter aerogenes, C. freundii complex and Hafnia alvei isolates, with a mean mutation rate of 3 × 10-8. In contrast, mean mutation rates were considerably lower in Providencia spp., Serratia spp. and especially M. morganii isolates. Furthermore, we observed species-specific variations in the resistance patterns of ampC-derepressed mutants. Conclusions Our data might help to predict the risk of treatment failure with oxyimino-cephalosporins in infections by different Enterobacterales with inducible AmpC. Moreover, we make a proposal for optimization of the current EUCAST expert rule.
Collapse
Affiliation(s)
- Rebekka Kohlmann
- Department of Medical Microbiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Tobias Bähr
- Department of Medical Microbiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Sören G Gatermann
- Department of Medical Microbiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
20
|
Ellington MJ, Heinz E, Wailan AM, Dorman MJ, de Goffau M, Cain AK, Henson SP, Gleadall N, Boinett CJ, Dougan G, Brown NM, Woodford N, Parkhill J, Török ME, Peacock SJ, Thomson NR. Contrasting patterns of longitudinal population dynamics and antimicrobial resistance mechanisms in two priority bacterial pathogens over 7 years in a single center. Genome Biol 2019; 20:184. [PMID: 31477167 PMCID: PMC6717969 DOI: 10.1186/s13059-019-1785-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/05/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Two of the most important pathogens contributing to the global rise in antimicrobial resistance (AMR) are Klebsiella pneumoniae and Enterobacter cloacae. Despite this, most of our knowledge about the changing patterns of disease caused by these two pathogens is based on studies with limited timeframes that provide few insights into their population dynamics or the dynamics in AMR elements that they can carry. RESULTS We investigate the population dynamics of two priority AMR pathogens over 7 years between 2007 and 2012 in a major UK hospital, spanning changes made to UK national antimicrobial prescribing policy in 2007. Between 2006 and 2012, K. pneumoniae showed epidemiological cycles of multi-drug-resistant (MDR) lineages being replaced approximately every 2 years. This contrasted E. cloacae where there was no temporally changing pattern, but a continuous presence of the mixed population. CONCLUSIONS The differing patterns of clonal replacement and acquisition of mobile elements shows that the flux in the K. pneumoniae population was linked to the introduction of globally recognized MDR clones carrying drug resistance markers on mobile elements. However, E. cloacae carries a chromosomally encoded ampC conferring resistance to front-line treatments and shows that MDR plasmid acquisition in E. cloacae was not indicative of success in the hospital. This led to markedly different dynamics in the AMR populations of these two pathogens and shows that the mechanism of the resistance and its location in the genome or mobile elements is crucial to predict population dynamics of opportunistic pathogens in clinical settings.
Collapse
Affiliation(s)
- Matthew J Ellington
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK.
- Present address: National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK.
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Alexander M Wailan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Marcus de Goffau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Amy K Cain
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
| | - Sonal P Henson
- KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya
| | - Nicholas Gleadall
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
| | - Christine J Boinett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
| | - Nicholas M Brown
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - M Estée Török
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sharon J Peacock
- Public Health England, National Infection Service, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QW, UK
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
21
|
Next-Generation-Sequencing-Based Hospital Outbreak Investigation Yields Insight into Klebsiella aerogenes Population Structure and Determinants of Carbapenem Resistance and Pathogenicity. Antimicrob Agents Chemother 2019; 63:AAC.02577-18. [PMID: 30910904 DOI: 10.1128/aac.02577-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/21/2019] [Indexed: 02/08/2023] Open
Abstract
Klebsiella aerogenes is a nosocomial pathogen associated with drug resistance and outbreaks in intensive care units. In a 5-month period in 2017, we experienced an increased incidence of cultures for carbapenem-resistant K. aerogenes (CR-KA) from an adult cardiothoracic intensive care unit (CICU) involving 15 patients. Phylogenomic analysis following whole-genome sequencing (WGS) identified the outbreak CR-KA isolates to group together as a tight monoclonal cluster (with no more than six single nucleotide polymorphisms [SNPs]), suggestive of a protracted intraward transmission event. No clonal relationships were identified between the CICU CR-KA strains and additional hospital CR-KA patient isolates from different wards and/or previous years. Carbapenemase-encoding genes and drug-resistant plasmids were absent in the outbreak strains, and carbapenem resistance was attributed to mutations impacting AmpD activity and membrane permeability. The CICU outbreak strains harbored an integrative conjugative element (ICE) which has been associated with pathogenic Klebsiella pneumoniae lineages (ICEKp10). Comparative genomics with global K. aerogenes genomes showed our outbreak strains to group closely with global sequence type 4 (ST4) strains, which, along with ST93, likely represent dominant K. aerogenes lineages associated with human infections. For poorly characterized pathogens, scaling analyses to include sequenced genomes from public databases offer the opportunity to identify emerging trends and dominant clones associated with specific attributes, syndromes, and geographical locations.
Collapse
|
22
|
Singhal N, Pandey D, Singh NS, Kumar M, Virdi JS. ampD homologs in biotypes of Yersinia enterocolitica: Implications in regulation of chromosomal AmpC-type cephalosporinases. INFECTION GENETICS AND EVOLUTION 2019; 69:211-215. [PMID: 30710654 DOI: 10.1016/j.meegid.2019.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 11/28/2022]
Abstract
Inducible 'AmpC-type' chromosomal cephalosporinases have been reported to be differentially expressed in different biotypes of Yersinia entercolocolitica. AmpD amidases are key regulators of the expression of ampC genes in Y. entercolocolitica as their inactivation results in hyper production of AmpC. To understand the differences in regulation of ampC expression in different biotypes of Y. enterocolitica, characteristics of ampD homologs were studied in strains of Y. enterocolitica belonging to five biotypes namely 1A, 1B, 2, 3 and 4. Our results indicated that the mechanisms which regulate expression of ampC might differ in different biotypes. While a three-step regulation mechanism seemed to be functional in biotypes 2, 3 and 4, a two-step regulation mechanism using other AmiD like proteins might be functional in biotypes 1A and 1B. The existence of ampD homolog(s)-mediated expression of ampC in other members of the family Enterobacteriaceae may provide further credence to our findings.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Deeksha Pandey
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| | - Jugsharan Singh Virdi
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
23
|
Annavajhala MK, Gomez-Simmonds A, Uhlemann AC. Multidrug-Resistant Enterobacter cloacae Complex Emerging as a Global, Diversifying Threat. Front Microbiol 2019; 10:44. [PMID: 30766518 PMCID: PMC6365427 DOI: 10.3389/fmicb.2019.00044] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 12/03/2022] Open
Abstract
The Enterobacter cloacae complex (ECC) includes common nosocomial pathogens capable of producing a wide variety of infections. Broad-spectrum antibiotic resistance, including the recent emergence of resistance to last-resort carbapenems, has led to increased interest in this group of organisms and carbapenem-resistant E. cloacae complex (CREC) in particular. Molecular typing methods based on heat-shock protein sequence, pulsed-field gel electrophoresis, comparative genomic hybridization, and, most recently, multilocus sequence typing have led to the identification of over 1069 ECC sequence types in 18 phylogenetic clusters across the globe. Whole-genome sequencing and comparative genomics, moreover, have facilitated global analyses of clonal composition of ECC and specifically of CREC. Epidemiological and genomic studies have revealed diverse multidrug-resistant ECC clones including several potential epidemic lineages. Together with intrinsic β-lactam resistance, members of the ECC exhibit a unique ability to acquire genes encoding resistance to multiple classes of antibiotics, including a variety of carbapenemase genes. In this review, we address recent advances in the molecular epidemiology of multidrug-resistant E. cloacae complex, focusing on the global expansion of CREC.
Collapse
Affiliation(s)
- Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY, United States
| | - Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
24
|
Gaougaou G, Ben-Fadhel Y, Déziel E, Lacroix M. Effect of β-lactam antibiotic resistance gene expression on the radio-resistance profile of E. coli O157:H7. Heliyon 2018; 4:e00999. [PMID: 30534620 PMCID: PMC6278725 DOI: 10.1016/j.heliyon.2018.e00999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Some pathogens might develop favorable global adaptation in response to certain stress treatments resulting in enhanced virulence and/or resistance to a different stress. β-lactam resistance, as well as ampC and ampG genes involved in this resistance, were studied to evaluate their possible role in Escherichia coli O157:H7 (E. coli) radioresistance. E. coli adapted to 25, 15 or 7 μg/mL of kanamycin or carbenicillin, were produced and treated with sensitization (0.4 kGy) or lethal (1.5 kGy) irradiation doses. In E. coli O157:H7, irradiation treatment at 0.4 kGy dose increased ampC and ampG expression respectively by 1.6 and 2-fold in the wild type strain (Wt) but up to by 2.4 and 3.4-fold when the strain was beforehand adapted to 25 μg/mL of carbenicillin (Carb25). Accordingly, ΔampC and ΔampG mutants and E. coli adapted to 25 μg/mL of kanamycin were more sensitive to 0.4 kGy treatment than Wt. While, E. coli Carb25 or overexpression of ampC and ampG provided complete resistance to 0.4 kGy and were even able to survive and grow after exposure to a normally lethal 1.5 kGy irradiation dose. We further noticed that these strains can tolerate other stresses like oxidative, cold and heat shocks. This demonstrates that carbenicillin adaptation promotes resistance to γ-irradiation and to other stresses, likely at least through increased AmpC and AmpG expression. These results are important for the food industry and particularly when considering the use of irradiation for food preservation of meat obtained directly from animals fed β-lactam antibiotics.
Collapse
Affiliation(s)
- Ghizlane Gaougaou
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Institut Armand-Frappier, Institute of Nutraceutical and Functional Foods, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Yosra Ben-Fadhel
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Institut Armand-Frappier, Institute of Nutraceutical and Functional Foods, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Institut Armand-Frappier, Institute of Nutraceutical and Functional Foods, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
25
|
Takesue Y, Kusachi S, Mikamo H, Sato J, Watanabe A, Kiyota H, Iwata S, Kaku M, Hanaki H, Sumiyama Y, Kitagawa Y, Nakajima K, Ueda T, Uchino M, Mizuguchi T, Ambo Y, Konosu M, Ishibashi K, Matsuda A, Hase K, Harihara Y, Okabayashi K, Seki S, Hara T, Matsui K, Matsuo Y, Kobayashi M, Kubo S, Uchiyama K, Shimizu J, Kawabata R, Ohge H, Akagi S, Oka M, Wakatsuki T, Suzuki K, Okamoto K, Yanagihara K. Antimicrobial susceptibility of common pathogens isolated from postoperative intra-abdominal infections in Japan. J Infect Chemother 2018; 24:330-340. [PMID: 29555391 DOI: 10.1016/j.jiac.2018.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/13/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022]
Abstract
The principle of empirical therapy for patients with intra-abdominal infections (IAI) should include antibiotics with activity against Enterobacteriaceae and Bacteroides fragilis group species. Coverage of Pseudomonas aeruginosa, Enterobacter cloacae, and Enterococcus faecalis is also recommended for hospital-associated IAI. A nationwide survey was conducted to investigate the antimicrobial susceptibility of pathogens isolated from postoperative IAI. All 504 isolates were collected at 26 institutions and referred to a central laboratory for susceptibility testing. Lower susceptibility rates to ciprofloxacin and cefepime were demonstrated in Escherichia coli. Among E. coli, 24.1% of strains produced extended-spectrum β-lactamase (ESBL). Carbapenems, piperacillin/tazobactam, cephamycins/oxacephem, aminoglycosides, and tigecycline had high activity against E. coli, including ESBL-producing isolates. Among E. cloacae, low susceptibility rates to ceftazidime were demonstrated, whereas cefepime retained its activity. P. aeruginosa revealed high susceptibility rates to all antimicrobials tested except for imipenem. Among B. fragilis group species, low levels of susceptibility were observed for cefoxitin, moxifloxacin, and clindamycin, and high susceptibility rates were observed for piperacillin/tazobactam, meropenem, and metronidazole. Ampicillin, piperacillin, and glycopeptides had good activity against E. faecalis. Imipenem had the highest activity against E. faecalis among carbapenems. In conclusion, we suggested the empirical use of antimicrobials with the specific intent of covering the main organisms isolated from postoperative IAI. Piperacillin/tazobactam, meropenem, or doripenem, are appropriate in critically ill patients. Combination therapy of cefepime (aztreonam in patients with β-lactam allergy) plus metronidazole plus glycopeptides, imipenem/cilastatin or cephamycins/oxacephem plus ciprofloxacin plus metronidazole are potential therapeutic options.
Collapse
Affiliation(s)
- Yoshio Takesue
- The Surveillance Committee of Japanese Society of Chemotherapy (JSC), The Japanese Association for Infectious Disease (JAID) and the Japanese Society for Clinical Microbiology (JSCM), Tokyo, Japan; Department of Infection Prevention and Control, Hyogo College of Medicine, Hyogo, Japan.
| | - Shinya Kusachi
- The Surveillance Committee of Japanese Society of Chemotherapy (JSC), The Japanese Association for Infectious Disease (JAID) and the Japanese Society for Clinical Microbiology (JSCM), Tokyo, Japan; Department of Surgery, Toho University Medical Center Ohashi, Tokyo, Japan
| | - Hiroshige Mikamo
- The Surveillance Committee of Japanese Society of Chemotherapy (JSC), The Japanese Association for Infectious Disease (JAID) and the Japanese Society for Clinical Microbiology (JSCM), Tokyo, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Japan
| | - Junko Sato
- The Surveillance Committee of Japanese Society of Chemotherapy (JSC), The Japanese Association for Infectious Disease (JAID) and the Japanese Society for Clinical Microbiology (JSCM), Tokyo, Japan
| | - Akira Watanabe
- The Surveillance Committee of Japanese Society of Chemotherapy (JSC), The Japanese Association for Infectious Disease (JAID) and the Japanese Society for Clinical Microbiology (JSCM), Tokyo, Japan
| | - Hiroshi Kiyota
- The Surveillance Committee of Japanese Society of Chemotherapy (JSC), The Japanese Association for Infectious Disease (JAID) and the Japanese Society for Clinical Microbiology (JSCM), Tokyo, Japan
| | - Satoshi Iwata
- The Surveillance Committee of Japanese Society of Chemotherapy (JSC), The Japanese Association for Infectious Disease (JAID) and the Japanese Society for Clinical Microbiology (JSCM), Tokyo, Japan
| | - Mitsuo Kaku
- The Surveillance Committee of Japanese Society of Chemotherapy (JSC), The Japanese Association for Infectious Disease (JAID) and the Japanese Society for Clinical Microbiology (JSCM), Tokyo, Japan
| | | | - Yoshinobu Sumiyama
- Japan Society for Surgical Infection, Tokyo, Japan; Department of Surgery, Toho University Medical Center Ohashi, Tokyo, Japan
| | - Yuko Kitagawa
- Japan Society for Surgical Infection, Tokyo, Japan; Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiko Nakajima
- Department of Infection Prevention and Control, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Ueda
- Department of Infection Prevention and Control, Hyogo College of Medicine, Hyogo, Japan
| | - Motoi Uchino
- Department of Inflammatory Bowel Disease, Division of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University, Hokkaido, Japan
| | - Yoshiyasu Ambo
- Department of Surgery, Teine Keijinkai Hospital, Hokkaido, Japan
| | - Masafumi Konosu
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan
| | - Keiichiro Ishibashi
- Department of Digestive Tract and General Surgery Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Akihisa Matsuda
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Kazuo Hase
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | | | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shiko Seki
- Department of Surgery, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takuo Hara
- Department of Surgery, Kouseiren Takaoka Hospital, Toyama, Japan
| | - Koshi Matsui
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Minako Kobayashi
- Departments of Innovative Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazuhisa Uchiyama
- Osaka Medical College, Department of General and Gastroenterological Surgery, Osaka, Japan
| | - Junzo Shimizu
- Department of Surgery, Osaka Rosai Hospital, Osaka, Japan
| | - Ryohei Kawabata
- Department of Surgery, Sakai City Medical Center, Osaka, Japan
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinji Akagi
- Department of Surgery, Mazda Hospital, Hiroshima, Japan
| | | | - Toshiro Wakatsuki
- Division of Surgical Oncology, Tottori University Faculty of Medicine, Tottori, Japan
| | - Katsunori Suzuki
- Division of Infection Control and Prevention, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Kohji Okamoto
- Department of Surgery, Gastroenterology and Hepatology Center, Kitakyushu City Yahata Hospital, Fukuoka, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
26
|
Lee AWT, Lam JKS, Lam RKW, Ng WH, Lee ENL, Lee VTY, Sze PP, Rajwani R, Fung KSC, To WK, Lee RA, Tsang DNC, Siu GKH. Comprehensive Evaluation of the MBT STAR-BL Module for Simultaneous Bacterial Identification and β-Lactamase-Mediated Resistance Detection in Gram-Negative Rods from Cultured Isolates and Positive Blood Cultures. Front Microbiol 2018. [PMID: 29527202 PMCID: PMC5829630 DOI: 10.3389/fmicb.2018.00334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: This study evaluated the capability of a MALDI Biotyper system equipped with the newly introduced MBT STAR-BL module to simultaneously perform species identification and β-lactamase-mediated resistance detection in bacteremia -causing bacteria isolated from cultured isolates and patient-derived blood cultures (BCs). Methods: Two hundred retrospective cultured isolates and 153 prospective BCs containing Gram-negative rods (GNR) were collected and subjected to direct bacterial identification, followed by the measurement of β-lactamase activities against ampicillin, piperacillin, cefotaxime, ceftazidime, and meropenem using the MBT STAR-BL module. The results and turnaround times were compared with those of routine microbiological processing. All strains were also characterized by beta-lactamase PCR and sequencing. Results: Using the saponin-based extraction method, MALDI-TOF MS correctly identified bacteria in 116/134 (86.6%) monomicrobial BCs. The detection sensitivities for β-lactamase activities against ampicillin, piperacillin, third-generation cephalosporin and meropenem were 91.3, 100, 97.9, and 100% for cultured isolates, and 80.4, 100, 68.8, and 40% for monomicrobial BCs (n = 134) respectively. The overall specificities ranged from 91.5 to 100%. Furthermore, the MBT STAR-BL and conventional drug susceptibility test results were concordant in 14/19 (73.7%) polymicrobial cultures. Reducing the logRQ cut-off value from 0.4 to 0.2 increased the direct detection sensitivities for β-lactamase activities against ampicillin, cefotaxime and meropenem in BCs to 85.7, 87.5, and 100% respectively. The MBT STAR-BL test enabled the reporting of β-lactamase-producing GNR at 14.16 and 47.64 h before the interim and final reports of routine BCs processing, respectively, were available. Conclusion: The MALDI Biotyper system equipped with the MBT STAR-BL module enables the simultaneous rapid identification of bacterial species and β-lactamase-mediated resistance from BCs and cultured isolates. Adjustment of the logRQ cut-off value to 0.2 significantly increased the detection sensitivities for clinically important drug-resistant pathogens.
Collapse
Affiliation(s)
- Annie W T Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Johnson K S Lam
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Ricky K W Lam
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Wan H Ng
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Ella N L Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Vicky T Y Lee
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong
| | - Po P Sze
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Rahim Rajwani
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Kitty S C Fung
- Department of Pathology, United Christian Hospital, Kowloon, Hong Kong
| | - Wing K To
- Department of Pathology, Princess Margaret Hospital, Kowloon, Hong Kong
| | - Rodney A Lee
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong
| | - Dominic N C Tsang
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Gilman K H Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
27
|
Dhar S, Kumari H, Balasubramanian D, Mathee K. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa – their role in the development of resistance. J Med Microbiol 2018; 67:1-21. [DOI: 10.1099/jmm.0.000636] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Supurna Dhar
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Kalai Mathee
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
28
|
Piperacillin-Tazobactam versus Other Antibacterial Agents for Treatment of Bloodstream Infections Due to AmpC β-Lactamase-Producing Enterobacteriaceae. Antimicrob Agents Chemother 2017; 61:AAC.00276-17. [PMID: 28320724 DOI: 10.1128/aac.00276-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/15/2017] [Indexed: 01/19/2023] Open
Abstract
In vivo induction of AmpC beta-lactamases produces high-level resistance to many beta-lactam antibiotics in Enterobacteriaceae, often resulting in the need to use carbapenems or cefepime (FEP). The clinical effectiveness of piperacillin-tazobactam (TZP), a weak inducer of AmpC beta-lactamases, is poorly understood. Here, we conducted a case-control study of adult inpatients with bloodstream infections (BSIs) due to Enterobacter, Serratia, or Citrobacter species from 2009 to 2015 to assess outcomes following treatment with TZP compared to FEP or meropenem (MEM). We collected clinical data and screened all isolates for the presence of ampC alleles by PCR. Primary study outcomes were 30-day mortality and persistent bacteremia at ≥72 h from the time of treatment initiation. Of 493 patients with bacteremia, 165 patients met the inclusion criteria, of which 88 were treated with TZP and 77 with FEP or MEM. To minimize differences between covariates, we carried out propensity score matching, which yielded 41 matched pairs. Groups only differed by age, with patients in the TZP group significantly older (P = 0.012). There were no significant differences in 30-day mortality, persistent bacteremia, 7-day mortality, or treatment escalation between the two treatment groups, including in the propensity score-matched cohort. PCR amplification and sequencing of ampC genes revealed the presence of ampC in isolates with cefoxitin MICs below 16 μg/ml, in particular in Serratia spp., and demonstrated that these alleles were highly genetically diverse. Taken together, TZP may be a valuable treatment option for BSIs due to AmpC beta-lactamase-producing Enterobacteriaceae, diminishing the need for broader-spectrum agents. Future studies are needed to validate these findings.
Collapse
|
29
|
Peymani A, Naserpour-Farivar T, Yeylagh-Beygi M, Bolori S. Emergence of CMY-2- and DHA-1-type AmpC β-lactamases in Enterobacter cloacae isolated from several hospitals of Qazvin and Tehran, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2016; 8:168-174. [PMID: 27928483 PMCID: PMC5139919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVES The emergence of plasmid-mediated AmpC (pAmpC) β-lactamases conferring resistance to third-generation cephalosporins has become a major clinical concern worldwide. The aims of this study were to determine the prevalence of pAmpC-producing E. cloacae isolates and typing of them in Qazvin and Tehran provinces, Iran. MATERIALS AND METHODS A total of 120 cefoxitin non-susceptible isolates of E. cloacae were obtained from educational hospitals of Qazvin and Tehran, Iran. Bacterial identification was performed by standard laboratory methods and API 20E strips. Susceptibility to cefoxitin was determined by Kirby-Bauer disk diffusion method. PCR and sequencing were employed to detect pAmpC families' genes (ACC, FOX, MOX, DHA, CIT and EBC) and the clonal relatedness of pAmpC-positive isolates was evaluated by enterobacterial repetitive intergenic consensus (ERIC)-PCR method. RESULTS In total, 20 (16.7%) isolates of E. cloacae were positive for presence of pAmpC genes among those blaDHA-1 (14.2%) was the most common gene followed by blaCMY-2 (2.5%). Results of ERIC-PCR showed that that the prevalence of DHA-1 and CMY-2-producing E. cloacae isolates was not due to clonal outbreaks. CONCLUSION In present study, we showed the first emergence of DHA-1 and CMY-2 types of pAmpC-producing E. cloacae isolates in Iran. The appearance of pAmpC should be considered as a warning for the implementation of appropriate infection control and therapeutic policies in order to prevent the dissemination of these resistant organisms in our hospital settings.
Collapse
Affiliation(s)
| | - Taghi Naserpour-Farivar
- Corresponding author: Taghi Naserpour-Farivar Ph.D, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran., E-mail:
| | | | | |
Collapse
|
30
|
Carbapenem- and Colistin-Resistant Enterobacter cloacae from Delta, Colorado, in 2015. Antimicrob Agents Chemother 2016; 60:3141-4. [PMID: 26883705 DOI: 10.1128/aac.03055-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/09/2016] [Indexed: 11/20/2022] Open
Abstract
Resistance to carbapenems in Enterobacteriaceae is a clinical problem of growing significance. Difficulty in treating multidrug-resistant Gram-negative organisms with conventional antibiotics has led to a renewed and increasing use of polymyxin compounds, such as colistin. Here, we report the isolation of carbapenem- and colistin-resistant Enterobacter cloacae from a polymicrobial lower extremity wound in an ambulatory patient. Whole-genome sequencing demonstrated the presence of chromosomal blaIMI-1 and blaAmpC, as well as numerous efflux pump genes.
Collapse
|
31
|
Association of Novel Nonsynonymous Single Nucleotide Polymorphisms in ampD with Cephalosporin Resistance and Phylogenetic Variations in ampC, ampR, ompF, and ompC in Enterobacter cloacae Isolates That Are Highly Resistant to Carbapenems. Antimicrob Agents Chemother 2016; 60:2383-90. [PMID: 26856839 DOI: 10.1128/aac.02835-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/31/2016] [Indexed: 11/20/2022] Open
Abstract
InEnterobacter cloacae, the genetic lesions associated with derepression of the AmpC β-lactamase include diverse single nucleotide polymorphisms (SNPs) and/or indels in theampDandampRgenes and SNPs inampC, while diverse SNPs in the promoter region or SNPs/indels within the coding sequence of outer membrane proteins have been described to alter porin production leading to carbapenem resistance. We sought to define the underlying mechanisms conferring cephalosporin and carbapenem resistance in a collection ofE. cloacaeisolates with unusually high carbapenem resistance and no known carbapenemase and, in contrast to many previous studies, considered the SNPs we detected in relation to the multilocus sequence type (MLST)-based phylogeny of our collection. Whole-genome sequencing was applied on the most resistant isolates to seek novel carbapenemases, expression ofampCwas measured by reverse transcriptase PCR, and porin translation was detected by SDS-PAGE. SNPs occurring inampC,ampR,ompF, andompCgenes (and their promoter regions) were mostly phylogenetic variations, relating to the isolates' sequence types, whereas nonsynonymous SNPs inampDwere associated with derepression of AmpC and cephalosporin resistance. The additional loss of porins resulted in high-level carbapenem resistance, underlining the clinical importance of chromosomal mutations among carbapenem-resistantE. cloacae.
Collapse
|
32
|
Ruppé E, Baud D, Schicklin S, Guigon G, Schrenzel J. Clinical metagenomics for the management of hospital- and healthcare-acquired pneumonia. Future Microbiol 2016; 11:427-39. [PMID: 26934540 DOI: 10.2217/fmb.15.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The increasing burden of multidrug-resistant bacteria affects the management of several infections. In order to prescribe adequate antibiotics, clinicians facing severe infections such as hospital-acquired pneumonia (HAP) need to promptly identify the pathogens and know their antibiotic susceptibility profiles (AST), which with conventional microbiology currently requires 24 and 48 h, respectively. Clinical metagenomics, based on whole genome sequencing of clinical samples, could improve the diagnosis of HAP, however, many obstacles remain to be overcome, namely the turn-around time, the quantification of pathogens, the choice of antibiotic resistance determinants (ARDs), the inference of the AST from metagenomic data and the linkage between ARDs and their host. Here, we propose to tackle those issues in a bottom-up, clinically driven approach.
Collapse
Affiliation(s)
- Etienne Ruppé
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Damien Baud
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Stéphane Schicklin
- Bioinformatics Research Department, bioMérieux, 69280 Marcy l'Etoile, France
| | - Ghislaine Guigon
- Bioinformatics Research Department, bioMérieux, 69280 Marcy l'Etoile, France
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.,Bacteriology Lab, Service of Laboratory Medicine, Department of Genetics & Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| |
Collapse
|
33
|
Woods RJ, Read AF. Clinical management of resistance evolution in a bacterial infection: A case study. EVOLUTION MEDICINE AND PUBLIC HEALTH 2015; 2015:281-8. [PMID: 26454762 PMCID: PMC4629395 DOI: 10.1093/emph/eov025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/17/2015] [Indexed: 11/24/2022]
Abstract
This chronic bacterial infection evolved extensive resistance, killing the patient. Evolutionary science is insufficiently developed to better manage such life-threatening evolution. We report the case of a patient with a chronic bacterial infection that could not be cured. Drug treatment became progressively less effective due to antibiotic resistance, and the patient died, in effect from overwhelming evolution. Even though the evolution of drug resistance was recognized as a major threat, and the fundamentals of drug resistance evolution are well understood, it was impossible to make evidence-based decisions about the evolutionary risks associated with the various treatment options. We present this case to illustrate the urgent need for translational research in the evolutionary medicine of antibiotic resistance.
Collapse
Affiliation(s)
- Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew F Read
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park PA 16802, USA Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park PA 16802, USA
| |
Collapse
|
34
|
Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex. Antimicrob Agents Chemother 2015; 59:7753-61. [PMID: 26438498 DOI: 10.1128/aac.01729-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/30/2015] [Indexed: 01/10/2023] Open
Abstract
Enterobacter cloacae complex (ECC), an opportunistic pathogen causing numerous infections in hospitalized patients worldwide, is able to resist β-lactams mainly by producing the AmpC β-lactamase enzyme. AmpC expression is highly inducible in the presence of some β-lactams, but the underlying genetic regulation, which is intricately linked to peptidoglycan recycling, is still poorly understood. In this study, we constructed different mutant strains that were affected in genes encoding enzymes suspected to be involved in this pathway. As expected, the inactivation of ampC, ampR (which encodes the regulator protein of ampC), and ampG (encoding a permease) abolished β-lactam resistance. Reverse transcription-quantitative PCR (qRT-PCR) experiments combined with phenotypic studies showed that cefotaxime (at high concentrations) and cefoxitin induced the expression of ampC in different ways: one involving NagZ (a N-acetyl-β-D-glucosaminidase) and another independent of NagZ. Unlike the model established for Pseudomonas aeruginosa, inactivation of DacB (also known as PBP4) was not responsible for a constitutive ampC overexpression in ECC, whereas it caused AmpC-mediated high-level β-lactam resistance, suggesting a post-transcriptional regulation mechanism. Global transcriptomic analysis by transcriptome sequencing (RNA-seq) of a dacB deletion mutant confirmed these results. Lastly, analysis of 37 ECC clinical isolates showed that amino acid changes in the AmpD sequence were likely the most crucial event involved in the development of high-level β-lactam resistance in vivo as opposed to P. aeruginosa where dacB mutations have been commonly found. These findings bring new elements for a better understanding of β-lactam resistance in ECC, which is essential for the identification of novel potential drug targets.
Collapse
|
35
|
Guérin F. Infections à Enterobacter cloacae complex : résistance aux antibiotiques et traitement. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.antinf.2015.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Genomically Informed Surveillance for Carbapenem-Resistant Enterobacteriaceae in a Health Care System. mBio 2015. [PMID: 26220969 PMCID: PMC4551976 DOI: 10.1128/mbio.01030-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Carbapenem-resistant Enterobacteriaceae (CRE) are an urgent public health concern. Rapid identification of the resistance genes, their mobilization capacity, and strains carrying them is essential to direct hospital resources to prevent spread and improve patient outcomes. Whole-genome sequencing allows refined tracking of both chromosomal traits and associated mobile genetic elements that harbor resistance genes. To enhance surveillance of CREs, clinical isolates with phenotypic resistance to carbapenem antibiotics underwent whole-genome sequencing. Analysis of 41 isolates of Klebsiella pneumoniae and Enterobacter cloacae, collected over a 3-year period, identified K. pneumoniae carbapenemase (KPC) genes encoding KPC-2, -3, and -4 and OXA-48 carbapenemases. All occurred within transposons, including multiple Tn4401 transposon isoforms, embedded within more than 10 distinct plasmids representing incompatibility (Inc) groups IncR, -N, -A/C, -H, and -X. Using short-read sequencing, draft maps were generated of new KPC-carrying vectors, several of which were derivatives of the IncN plasmid pBK31551. Two strains also had Tn4401 chromosomal insertions. Integrated analyses of plasmid profiles and chromosomal single-nucleotide polymorphism (SNP) profiles refined the strain patterns and provided a baseline hospital mobilome to facilitate analysis of new isolates. When incorporated with patient epidemiological data, the findings identified limited outbreaks against a broader 3-year period of sporadic external entry of many different strains and resistance vectors into the hospital. These findings highlight the utility of genomic analyses in internal and external surveillance efforts to stem the transmission of drug-resistant strains within and across health care institutions. IMPORTANCE We demonstrate how detection of resistance genes within mobile elements and resistance-carrying strains furthers active surveillance efforts for drug resistance. Whole-genome sequencing is increasingly available in hospital laboratories and provides a powerful and nuanced means to define the local landscape of drug resistance. In this study, isolates of Klebsiella pneumoniae and Enterobacter cloacae with resistance to carbapenem antibiotics were sequenced. Multiple carbapenemase genes were identified that resided in distinct transposons and plasmids. This mobilome, or population of mobile elements capable of mobilizing drug resistance, further highlighted the degree of strain heterogeneity while providing a detailed timeline of carbapenemase entry into the hospital over a 3-year period. These surveillance efforts support effective targeting of infection control resources and the development of institution-specific repositories of resistance genes and the mobile elements that carry them.
Collapse
|
37
|
Hsieh WS, Wang NY, Feng JA, Weng LC, Wu HH. Identification of DHA-23, a novel plasmid-mediated and inducible AmpC beta-lactamase from Enterobacteriaceae in Northern Taiwan. Front Microbiol 2015; 6:436. [PMID: 25999942 PMCID: PMC4422083 DOI: 10.3389/fmicb.2015.00436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/22/2015] [Indexed: 12/04/2022] Open
Abstract
Objectives: AmpC β-lactamases are classified as Amber Class C and Bush Group 1. AmpC β-lactamases can hydrolyze broad and extended-spectrum cephalosporins, and are not inhibited by β-lactamase inhibitors such as clavulanic acid. This study was conducted to identify DHA-23, a novel plasmid-mediated and inducible AmpC β-lactamase obtained from Enterobacteriaceae. Methods: A total of 210 carbapenem-resistant Enterobacteriaceae isolates were collected from a medical center (comprising two branches) in Northern Taiwan during 2009–2012. AmpC β-lactamase genes were analyzed through a polymerase chain reaction using plasmid DNA templates and gene sequencing. The genetic relationships of the isolates were typed using pulsed-field gel electrophoresis following the digestion of intact genomic DNA by using XbaI. Results: Three enterobacterial isolates (one Escherichia coli and two Klebsiella pneumoniae) were obtained from three hospitalized patients. All three isolates were resistant or intermediately susceptible to all β-lactams, and exhibited reduced susceptibility to carbapenems. These three isolates expressed a novel AmpC β-lactamase, designated DHA-23, approved by the curators of the Lahey website. DHA-23 differs from DHA-1 and DHA-6 by one amino acid substitution (Ser245Ala), exhibiting three amino acid changes compared with DHA-7 and DHA-Morganella morganii; three amino acid changes compared with DHA-3; four amino acid changes compared with DHA-5; and eight amino acid changes compared with DHA-2 (>97% identity). This AmpC β-lactamase is inducible using a system involving ampR. Conclusion: This is the first report to address DHA-23, a novel AmpC β-lactamase. DHA-type β-lactamases are continuous threat in Taiwan.
Collapse
Affiliation(s)
- Wen-Shyang Hsieh
- Department of Laboratory Medicine, Taipei Medical University - Shuang Ho Hospital, New Taipei City Taiwan ; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei Taiwan ; Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei Taiwan
| | - Nai-Yu Wang
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City Taiwan
| | - Jou-An Feng
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City Taiwan
| | - Li-Chuan Weng
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City Taiwan
| | - Hsueh-Hsia Wu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei Taiwan ; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei Taiwan
| |
Collapse
|
38
|
Vadlamani G, Thomas MD, Patel TR, Donald LJ, Reeve TM, Stetefeld J, Standing KG, Vocadlo DJ, Mark BL. The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. J Biol Chem 2014; 290:2630-43. [PMID: 25480792 DOI: 10.1074/jbc.m114.618199] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inducible expression of chromosomal AmpC β-lactamase is a major cause of β-lactam antibiotic resistance in the Gram-negative bacteria Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is induced by the LysR-type transcriptional regulator (LTTR) AmpR, which activates ampC expression in response to changes in peptidoglycan (PG) metabolite levels that occur during exposure to β-lactams. Under normal conditions, AmpR represses ampC transcription by binding the PG precursor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. When exposed to β-lactams, however, PG catabolites (1,6-anhydroMurNAc-peptides) accumulate in the cytosol, which have been proposed to competitively displace UDP-MurNAc-pentapeptide from AmpR and convert it into an activator of ampC transcription. Here we describe the molecular interactions between AmpR (from Citrobacter freundii), its DNA operator, and repressor UDP-MurNAc-pentapeptide. Non-denaturing mass spectrometry revealed AmpR to be a homotetramer that is stabilized by DNA containing the T-N11-A LTTR binding motif and revealed that it can bind four repressor molecules in an apparently stepwise manner. A crystal structure of the AmpR effector-binding domain bound to UDP-MurNAc-pentapeptide revealed that the terminal D-Ala-D-Ala motif of the repressor forms the primary contacts with the protein. This observation suggests that 1,6-anhydroMurNAc-pentapeptide may convert AmpR into an activator of ampC transcription more effectively than 1,6-anhydroMurNAc-tripeptide (which lacks the D-Ala-D-Ala motif). Finally, small angle x-ray scattering demonstrates that the AmpR·DNA complex adopts a flat conformation similar to the LTTR protein AphB and undergoes only a slight conformational change when binding UDP-MurNAc-pentapeptide. Modeling the AmpR·DNA tetramer bound to UDP-MurNAc-pentapeptide predicts that the UDP-MurNAc moiety of the repressor participates in modulating AmpR function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kenneth G Standing
- Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and
| | - David J Vocadlo
- the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
39
|
Hilty M, Sendi P, Seiffert SN, Droz S, Perreten V, Hujer AM, Bonomo RA, Mühlemann K, Endimiani A. Characterisation and clinical features of Enterobacter cloacae bloodstream infections occurring at a tertiary care university hospital in Switzerland: is cefepime adequate therapy? Int J Antimicrob Agents 2013; 41:236-49. [PMID: 23313399 PMCID: PMC4018813 DOI: 10.1016/j.ijantimicag.2012.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/11/2012] [Accepted: 10/31/2012] [Indexed: 11/21/2022]
Abstract
Despite many years of clinical experience with cefepime, data regarding the outcome of patients suffering from bloodstream infections (BSIs) due to Enterobacter cloacae (Ecl) are scarce. To address the gap in our knowledge, 57 Ecl responsible for 51 BSIs were analysed implementing phenotypic and molecular methods (microarrays, PCRs for bla and other genes, rep-PCR to analyse clonality). Only two E. cloacae (3.5%) were ESBL-producers, whereas 34 (59.6%) and 18 (31.6%) possessed inducible (Ind-Ecl) or derepressed (Der-Ecl) AmpC enzymes, respectively. All isolates were susceptible to imipenem, meropenem, gentamicin and ciprofloxacin. Der-Ecl were highly resistant to ceftazidime and piperacillin/tazobactam (both MIC₉₀≥256 μg/mL), whereas cefepime retained its activity (MIC₉₀ of 3 μg/mL). rep-PCR indicated that the isolates were sporadic, but Ecl collected from the same patients were indistinguishable. In particular, three BSIs initially due to Ind-Ecl evolved (under ceftriaxone or piperacillin/tazobactam treatment) into Der-Ecl because of mutations or a deletion in ampD or insertion of IS4321 in the promoter. These last two mechanisms have never been described in Ecl. Mortality was higher for BSIs due to Der-Ecl than Ind-Ecl (3.8% vs. 29.4%; P=0.028) and was associated with the Charlson co-morbidity index (P=0.046). Using the following directed treatments, patients with BSI showed a favourable treatment outcome: cefepime (16/18; 88.9%); carbapenems (12/13; 92.3%); ceftriaxone (4/7; 57.1%); piperacillin/tazobactam (5/7; 71.4%); and ciprofloxacin (6/6; 100%). Cefepime represents a safe therapeutic option and an alternative to carbapenems to treat BSIs due to Ecl when the prevalence of ESBL-producers is low.
Collapse
Affiliation(s)
- Markus Hilty
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Get rid of Postfach 61, CH-3010 Bern, Switzerland
- University Clinic for Infectious Diseases, University Hospital of Bern, Bern, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Get rid of Postfach 61, CH-3010 Bern, Switzerland
- University Clinic for Infectious Diseases, University Hospital of Bern, Bern, Switzerland
| | - Salome N. Seiffert
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Get rid of Postfach 61, CH-3010 Bern, Switzerland
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sara Droz
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Get rid of Postfach 61, CH-3010 Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrea M. Hujer
- Department of Medicine, Case Western Reserve University School of Medicine and Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine and Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Kathrin Mühlemann
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Get rid of Postfach 61, CH-3010 Bern, Switzerland
- University Clinic for Infectious Diseases, University Hospital of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Get rid of Postfach 61, CH-3010 Bern, Switzerland
| |
Collapse
|
40
|
Mark BL, Vocadlo DJ, Oliver A. Providing β-lactams a helping hand: targeting the AmpC β-lactamase induction pathway. Future Microbiol 2012; 6:1415-27. [PMID: 22122439 DOI: 10.2217/fmb.11.128] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A major cause of the clinical failure of broad-spectrum β-lactam antibiotics against Pseudomonas aeruginosa and many Enterobacteriaceae species are chromosomal mutations that lead to the hyperproduction of AmpC β-lactamase. These mutations typically affect proteins within the peptidoglycan (PG) recycling pathway, as well as proteins that are modulated by metabolic intermediates of this pathway. Blocking PG recycling and associated sensing mechanisms with small-molecule inhibitors holds promise as a strategy for overcoming AmpC-mediated resistance that results from the selection of mutations during β-lactam therapy, or from the direct acquisition of infections by AmpC-producing mutants. Here we report on the structural and functional biology of potential drug targets within the Gram-negative PG recycling pathway and the utility of blocking PG recycling as a means of attenuating AmpC-mediated resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | |
Collapse
|
41
|
He GX, Thorpe C, Walsh D, Crow R, Chen H, Kumar S, Varela MF. EmmdR, a new member of the MATE family of multidrug transporters, extrudes quinolones from Enterobacter cloacae. Arch Microbiol 2011; 193:759-65. [PMID: 21822795 DOI: 10.1007/s00203-011-0738-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/05/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
We cloned a gene, ECL_03329, from the chromosome of Enterobacter cloacae ATCC13047, using a drug-hypersensitive Escherichia coli KAM32 cell as the host. We show here that this gene, designated as emmdR, is responsible for multidrug resistance in E. cloacae. E. coli KAM32 host cells containing the cloned emmdR gene (KAM32/pEMMDR28) showed decreased susceptibilities to benzalkonium chloride, norfloxacin, ciprofloxacin, levofloxacin, ethidium bromide, acriflavine, rhodamine6G, and trimethoprim. emmdR-deficient E. cloacae cells (EcΔemmdR) showed increased susceptibilities to several of the antimicrobial agents tested. EmmdR has twelve predicted transmembrane segments and some shared identity with members of the multidrug and toxic compound extrusion (MATE) family of transporters. Study of the antimicrobial agent efflux activities revealed that EmmdR is an H+-drug antiporter but not a Na+ driven efflux pump. These results indicate that EmmdR is responsible for multidrug resistance and pumps out quinolones from E. cloacae.
Collapse
Affiliation(s)
- Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
SugE, a new member of the SMR family of transporters, contributes to antimicrobial resistance in Enterobacter cloacae. Antimicrob Agents Chemother 2011; 55:3954-7. [PMID: 21576447 DOI: 10.1128/aac.00094-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned a gene, sugE, from the chromosome of Enterobacter cloacae ATCC 13047. Analysis of the susceptibilities of the sugE-containing strain (Escherichia coli KAM32/pSUGE28) and sugE-deficient E. cloacae (EcΔsugE) showed that SugE confers resistance to cetyltrimethylammonium bromide, cetylpyridinium chloride, tetraphenylphosphonium, benzalkonium chloride, ethidium bromide, and sodium dodecyl sulfate. We also investigated expression of sugE. We confirm here that SugE from E. cloacae is an SMR family transporter as determined by observing its energy-dependent drug efflux activity.
Collapse
|
44
|
Balcewich MD, Reeve TM, Orlikow EA, Donald LJ, Vocadlo DJ, Mark BL. Crystal structure of the AmpR effector binding domain provides insight into the molecular regulation of inducible ampc beta-lactamase. J Mol Biol 2010; 400:998-1010. [PMID: 20594961 DOI: 10.1016/j.jmb.2010.05.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
Hyperproduction of AmpC beta-lactamase (AmpC) is a formidable mechanism of resistance to penicillins and cephalosporins in Gram-negative bacteria such as Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is regulated by the LysR-type transcriptional regulator AmpR. ampR and ampC genes form a divergent operon with overlapping promoters to which AmpR binds and regulates the transcription of both genes. AmpR induces ampC by binding to one member of the family of 1,6-anhydro-N-acetylmuramyl peptides, which are cytosolic catabolites of peptidoglycan that accumulate during beta-lactam challenge. To gain structural insights into AmpR regulation, we determined the crystal structure of the effector binding domain (EBD) of AmpR from Citrobacter freundii up to 1.83 A resolution. The AmpR EBD is dimeric and each monomer comprises two subdomains that adopt alpha/beta Rossmann-like folds. Located between the monomer subdomains is a pocket that was found to bind the crystallization buffer molecule 2-(N-morpholino)ethanesulfonic acid. The pocket, together with a groove along the surface of subdomain I, forms a putative effector binding site into which a molecule of 1,6-anhydro-N-acetylmuramyl pentapeptide could be modeled. Amino acid substitutions at the base of the interdomain pocket either were found to render AmpR incapable of inducing ampC (Thr103Val, Ser221Ala and Tyr264Phe) or resulted in constitutive ampC expression (Gly102Glu). While the substitutions that prevented ampC induction did not alter the overall AmpR EBD structure, circular dichroism spectroscopy revealed that the nonconservative Gly102Glu mutation affected EBD secondary structure, confirming previous work suggesting that Gly102Glu induces a conformational change to result in constitutive AmpC production.
Collapse
Affiliation(s)
- Misty D Balcewich
- Department of Microbiology, University of Manitoba, 418 Buller Building, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | | | | | | | |
Collapse
|
45
|
Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53:2274-82. [PMID: 19273679 DOI: 10.1128/aac.01617-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The overproduction of chromosomal AmpC beta-lactamase poses a serious challenge to the successful treatment of Pseudomonas aeruginosa infections with beta-lactam antibiotics. The induction of ampC expression by beta-lactams is mediated by the disruption of peptidoglycan (PG) recycling and the accumulation of cytosolic 1,6-anhydro-N-acetylmuramyl peptides, catabolites of PG recycling that are generated by an N-acetyl-beta-D-glucosaminidase encoded by nagZ (PA3005). In the absence of beta-lactams, ampC expression is repressed by three AmpD amidases encoded by ampD, ampDh2, and ampDh3, which act to degrade these 1,6-anhydro-N-acetylmuramyl peptide inducer molecules. The inactivation of ampD genes results in the stepwise upregulation of ampC expression and clinical resistance to antipseudomonal beta-lactams due to the accumulation of the ampC inducer anhydromuropeptides. To examine the role of NagZ on AmpC-mediated beta-lactam resistance in P. aeruginosa, we inactivated nagZ in P. aeruginosa PAO1 and in an isogenic triple ampD null mutant. We show that the inactivation of nagZ represses both the intrinsic beta-lactam resistance (up to 4-fold) and the high antipseudomonal beta-lactam resistance (up to 16-fold) that is associated with the loss of AmpD activity. We also demonstrate that AmpC-mediated resistance to antipseudomonal beta-lactams can be attenuated in PAO1 and in a series of ampD null mutants using a selective small-molecule inhibitor of NagZ. Our results suggest that the blockage of NagZ activity could provide a strategy to enhance the efficacies of beta-lactams against P. aeruginosa and other gram-negative organisms that encode inducible chromosomal ampC and to counteract the hyperinduction of ampC that occurs from the selection of ampD null mutations during beta-lactam therapy.
Collapse
|
46
|
Abstract
SUMMARY AmpC beta-lactamases are clinically important cephalosporinases encoded on the chromosomes of many of the Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and beta-lactamase inhibitor-beta-lactam combinations. In many bacteria, AmpC enzymes are inducible and can be expressed at high levels by mutation. Overexpression confers resistance to broad-spectrum cephalosporins including cefotaxime, ceftazidime, and ceftriaxone and is a problem especially in infections due to Enterobacter aerogenes and Enterobacter cloacae, where an isolate initially susceptible to these agents may become resistant upon therapy. Transmissible plasmids have acquired genes for AmpC enzymes, which consequently can now appear in bacteria lacking or poorly expressing a chromosomal bla(AmpC) gene, such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Resistance due to plasmid-mediated AmpC enzymes is less common than extended-spectrum beta-lactamase production in most parts of the world but may be both harder to detect and broader in spectrum. AmpC enzymes encoded by both chromosomal and plasmid genes are also evolving to hydrolyze broad-spectrum cephalosporins more efficiently. Techniques to identify AmpC beta-lactamase-producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. Carbapenems can usually be used to treat infections due to AmpC-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation).
Collapse
|
47
|
Manzur A, Tubau F, Pujol M, Calatayud L, Dominguez MA, Peña C, Sora M, Gudiol F, Ariza J. Nosocomial outbreak due to extended-spectrum-beta-lactamase- producing Enterobacter cloacae in a cardiothoracic intensive care unit. J Clin Microbiol 2007; 45:2365-9. [PMID: 17581932 PMCID: PMC1951272 DOI: 10.1128/jcm.02546-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterobacter cloacae has been associated with several outbreaks, usually involving strains that overproduce chromosomal beta-lactamase or, uncommonly, strains expressing extended-spectrum beta-lactamases (ESBL). Only sporadic cases of ESBL-producing E. cloacae have been identified in our hospital in recent years. We describe the epidemiology and clinical and microbiological characteristics of an outbreak caused by ESBL-producing E. cloacae in a cardiothoracic intensive care unit (CT-ICU). Prospective surveillance of patients with infection or colonization by ESBL-producing E. cloacae among patients admitted to the CT-ICU was performed during the outbreak. Production of ESBL was determined by decreased susceptibility to expanded-spectrum cephalosporins and a positive double-disk test result. Clone relatedness was determined by pulsed-field gel electrophoresis (PFGE). From July to September 2005, seven patients in the CT-ICU with ESBL-producing E. cloacae were identified (four males; median age, 73 years; range, 45 to 76 years); six patients had cardiac surgery. Four patients developed infections; three had primary bacteremia, one had ventilator-associated pneumonia, and one had tracheobronchitis. ESBL-producing E. cloacae showed resistance to quinolones and aminoglycosides. PFGE revealed two patterns. Five isolates belonged to clone A; two carried a single ESBL (pI 8.2 and a positive PCR result for the SHV type), and three carried two ESBLs (pIs 8.1 and 8.2 and positive PCR results for the SHV and CTX-M-9 types). Isolates belonging to clone B carried a single ESBL (pI 5.4 and a positive PCR result for the TEM type). Review of antibiotic consumption showed increased use of cefepime and quinolones during June and July 2005. The outbreak was stopped by the implementation of barrier measures and cephalosporin restriction. ESBL production could be increasingly common in nosocomial pathogens other than Escherichia coli or Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Adriana Manzur
- Infectious Diseases Service, Hospital Universitari de Bellvitge, Feixa Llarga, sn., L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakano R, Okamoto R, Nagano N, Inoue M. Resistance to gram-negative organisms due to high-level expression of plasmid-encoded ampC β-lactamase blaCMY-4 promoted by insertion sequence ISEcp1. J Infect Chemother 2007; 13:18-23. [PMID: 17334724 DOI: 10.1007/s10156-006-0483-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
A Klebsiella pneumoniae strain, KU6500, which showed resistance to extended-spectrum beta-lactams and produced the plasmid-encoded AmpC beta-lactamase CMY-4, was identified from clinical isolates in Japan. The aim of this study was to identify the mechanism of the high-level expression of blaCMY-4. Sequence analysis indicated that the promoter element of Citrobacter freundii was conserved, but the insertion sequence ISEcp1 coding with the putative promoter element, was inserted into the AmpR binding site. We determined the influence of the promoter on blaCMY-4 expression and beta-lactam resistance. Two recombinant plasmids containing the entire blaCMY-4 gene, with or without the ISEcp1-mediated promoter sequences, were constructed and named pMWampC and pMWISEcp1, respectively. Escherichia coli DH5alpha (pMWISEcp1) was resistant to almost all beta-lactams tested and E. coli DH5alpha (pMWampC) was susceptible to all, except for cephalothin. In addition, the activity of each promoter was measured by subcloning the element into a promoterless luciferase plasmid pGL3-Basic vector. The expression of the putative promoter of ISEcp1 was 18.9-fold higher than that of C. freundii. These results suggest that the putative promoter element of ISEcp1 is necessary for the high-level expression of blaCMY-4 to confer resistance to extended-spectrum cephalosporins.
Collapse
Affiliation(s)
- Ryuichi Nakano
- School of Medicine and Environmental Infectious Diseases, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | |
Collapse
|
49
|
González-López JJ, Sabaté M, Lavilla S, Larrosa MN, Bartolomé RM, Prats G. In vivo reversion to the wild-type beta-lactam resistance phenotype mediated by a plasmid carrying ampR and qnrA1 in Enterobacter cloacae. Antimicrob Agents Chemother 2006; 50:3175-8. [PMID: 16940123 PMCID: PMC1563562 DOI: 10.1128/aac.00273-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to beta-lactams and quinolones in two isogenic Enterobacter cloacae isolates was studied. One was susceptible to cefoxitin and amoxicillin-clavulanate. The other one showed its natural beta-lactam resistance pattern. Both isolates had a nonfunctional AmpR regulator. However, within the second one, the presence of a plasmid carrying ampR and qnrA1 allowed reversion to the wild-type beta-lactam resistance phenotype and decreased susceptibility to fluoroquinolones.
Collapse
Affiliation(s)
- J J González-López
- Servicio de Microbiología, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Schmidtke AJ, Hanson ND. Model system to evaluate the effect of ampD mutations on AmpC-mediated beta-lactam resistance. Antimicrob Agents Chemother 2006; 50:2030-7. [PMID: 16723562 PMCID: PMC1479098 DOI: 10.1128/aac.01458-05] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations within the structural gene of ampD can lead to AmpC overproduction and increases in beta-lactam MICs in organisms with an inducible ampC. However, identification of mutations alone cannot predict the impact that those mutations have on AmpD function. Therefore, a model system was designed to determine the effect of ampD mutations on ceftazidime MICs using an AmpD(-) mutant Escherichia coli strain which produced an inducible plasmid-encoded AmpC. ampD genes were amplified by PCR from strains of E. coli, Citrobacter freundii, and Pseudomonas aeruginosa. Also, carboxy-terminal truncations of C. freundii ampD genes were constructed representing deletions of 10, 21, or 25 codons. Amplified ampD products were cloned into pACYC184 containing inducible bla(ACT-1)-ampR. Plasmids were transformed into E. coli strains JRG582 (AmpD(-)) and K-12 259 (AmpD(+)). The strains were evaluated for a derepressed phenotype using ceftazidime MICs. Some mutated ampD genes, including the ampD gene of a derepressed C. freundii isolate, resulted in substantial decreases in ceftazidime MICs (from >256 microg/ml to 12 to 24 microg/ml) for the AmpD(-) strain, indicating no role for these mutations in derepressed phenotypes. However, ampD truncation products and ampD from a partially derepressed P. aeruginosa strain resulted in ceftazidime MICs of >256 microg/ml, indicating a role for these gene modifications in derepressed phenotypes. The use of this model system indicated that alternative mechanisms were involved in the derepressed phenotype observed in strains of C. freundii and P. aeruginosa. The alternative mechanism involved in the derepressed phenotype of the C. freundii isolate was downregulation of ampD transcription.
Collapse
Affiliation(s)
- Amber J Schmidtke
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | | |
Collapse
|