1
|
Early AM, Lievens M, MacInnis BL, Ockenhouse CF, Volkman SK, Adjei S, Agbenyega T, Ansong D, Gondi S, Greenwood B, Hamel M, Odero C, Otieno K, Otieno W, Owusu-Agyei S, Asante KP, Sorgho H, Tina L, Tinto H, Valea I, Wirth DF, Neafsey DE. Host-mediated selection impacts the diversity of Plasmodium falciparum antigens within infections. Nat Commun 2018; 9:1381. [PMID: 29643376 PMCID: PMC5895824 DOI: 10.1038/s41467-018-03807-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
Host immunity exerts strong selective pressure on pathogens. Population-level genetic analysis can identify signatures of this selection, but these signatures reflect the net selective effect of all hosts and vectors in a population. In contrast, analysis of pathogen diversity within hosts provides information on individual, host-specific selection pressures. Here, we combine these complementary approaches in an analysis of the malaria parasite Plasmodium falciparum using haplotype sequences from thousands of natural infections in sub-Saharan Africa. We find that parasite genotypes show preferential clustering within multi-strain infections in young children, and identify individual amino acid positions that may contribute to strain-specific immunity. Our results demonstrate that natural host defenses to P. falciparum act in an allele-specific manner to block specific parasite haplotypes from establishing blood-stage infections. This selection partially explains the extreme amino acid diversity of many parasite antigens and suggests that vaccines targeting such proteins should account for allele-specific immunity. Host immune responses exert selective pressure on Plasmodium falciparum. Here, the authors show that allele-specific immunity impacts the antigenic diversity of individual malaria infections. This process partially explains the extreme amino acid diversity of many parasite antigens and suggests that vaccines should account for allele-specific immunity.
Collapse
Affiliation(s)
- Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | | | - Bronwyn L MacInnis
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Sarah K Volkman
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Simmons College, School of Nursing and Health Sciences, Boston, MA, 02115, USA
| | - Samuel Adjei
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, KNUST - Kumasi, Ghana
| | - Tsiri Agbenyega
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, KNUST - Kumasi, Ghana
| | - Daniel Ansong
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, KNUST - Kumasi, Ghana
| | - Stacey Gondi
- KEMRI-Walter Reed Project, Kombewa, 40102, Kenya
| | - Brian Greenwood
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Mary Hamel
- KEMRI/CDC Research and Public Health Collaboration, Kisumu, 40100, Kenya
| | - Chris Odero
- KEMRI/CDC Research and Public Health Collaboration, Kisumu, 40100, Kenya
| | - Kephas Otieno
- KEMRI/CDC Research and Public Health Collaboration, Kisumu, 40100, Kenya
| | | | - Seth Owusu-Agyei
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Kintampo Health Research Centre, Kintampo, 200, Ghana.,University of Health and Allied Science, PMB 31, Ho, Volta Region, Ghana
| | | | - Hermann Sorgho
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso/Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Lucas Tina
- KEMRI-Walter Reed Project, Kombewa, 40102, Kenya
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso/Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Innocent Valea
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso/Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Dyann F Wirth
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Fong MY, Ahmed MA, Wong SS, Lau YL, Sitam F. Genetic Diversity and Natural Selection of the Plasmodium knowlesi Circumsporozoite Protein Nonrepeat Regions. PLoS One 2015; 10:e0137734. [PMID: 26379157 PMCID: PMC4575020 DOI: 10.1371/journal.pone.0137734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/21/2015] [Indexed: 11/18/2022] Open
Abstract
Background Plasmodium knowlesi is a simian malaria parasite that has been identified to cause malaria in humans. To date, several thousand cases of human knowlesi malaria have been reported around Southeast Asia. Thus far, there is no detailed study on genetic diversity and natural selection of P. knowlesi circumsporozoite protein (CSP), a prominent surface antigen on the sporozoite of the parasite. In the present study, the genetic diversity and natural selection acting on the nonrepeat regions of the gene encoding P. knowlesi CSP were investigated, focusing on the T-cell epitope regions at the C-terminal of the protein. Methods Blood samples from 32 knowlesi malaria patients and 2 wild monkeys (Macaca fascicularis) were used. The CSP of the P. knowlesi isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The nonrepeat regions of the CSP gene were analysed for genetic diversity, natural selection and haplotypic grouping using MEGA5 and DnaSP version 5.10.00 programmes. A haplotype network was constructed based on the C-terminal (Th2R/Th3R) T-cell epitope regions using the Median-Joining method in the NETWORK version 4.6.1.2 programme. Previously published sequences from other regions (Malaysia Borneo, Singapore) were also included in the analysis. Results A total of 123 P. knowlesi CSP sequences were analysed. Multiple sequence alignment revealed 58 amino acid changes, and 42 novel amino acid haplotypes were identified. Polymorphism was higher in the C-terminal Th2R/Th3R epitope (π = 0.0293, n = 123) region compared to the overall combined nonrepeat regions (π = 0.0120, n = 123). Negative natural selection was observed within the nonrepeat regions of the CSP gene. Within the C-terminal Th2R/Th3R epitope regions, there was evidence of slight positive selection. Based on haplotype network analysis of the Th2R/Th3R regions, five abundant haplotypes were identified. Sharing of haplotypes between humans and macaques were observed. Conclusion This study contributes to the understanding of the type and distribution of naturally occurring polymorphism in the P. knowlesi CSP gene. This study also provides a measurement of the genetic diversity of P. knowlesi and identifies the predominant haplotypes within Malaysia based on the C-terminal Th2R/Th3R regions.
Collapse
Affiliation(s)
- Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Md Atique Ahmed
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shen Siang Wong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Frankie Sitam
- Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Kariuki SK, Njunge J, Muia A, Muluvi G, Gatei W, Ter Kuile F, Terlouw DJ, Hawley WA, Phillips-Howard PA, Nahlen BL, Lindblade KA, Hamel MJ, Slutsker L, Shi YP. Effect of malaria transmission reduction by insecticide-treated bed nets (ITNs) on the genetic diversity of Plasmodium falciparum merozoite surface protein (MSP-1) and circumsporozoite (CSP) in western Kenya. Malar J 2013; 12:295. [PMID: 23978002 PMCID: PMC3765832 DOI: 10.1186/1475-2875-12-295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Abstract
Background Although several studies have investigated the impact of reduced malaria transmission due to insecticide-treated bed nets (ITNs) on the patterns of morbidity and mortality, there is limited information on their effect on parasite diversity. Methods Sequencing was used to investigate the effect of ITNs on polymorphisms in two genes encoding leading Plasmodium falciparum vaccine candidate antigens, the 19 kilodalton blood stage merozoite surface protein-1 (MSP-119kDa) and the Th2R and Th3R T-cell epitopes of the pre-erythrocytic stage circumsporozoite protein (CSP) in a large community-based ITN trial site in western Kenya. The number and frequency of haplotypes as well as nucleotide and haplotype diversity were compared among parasites obtained from children <5 years old prior to the introduction of ITNs (1996) and after 5 years of high coverage ITN use (2001). Results A total of 12 MSP-119kDa haplotypes were detected in 1996 and 2001. The Q-KSNG-L and E-KSNG-L haplotypes corresponding to the FVO and FUP strains of P. falciparum were the most prevalent (range 32–37%), with an overall haplotype diversity of > 0.7. No MSP-119kDa 3D7 sequence-types were detected in 1996 and the frequency was less than 4% in 2001. The CSP Th2R and Th3R domains were highly polymorphic with a total of 26 and 14 haplotypes, respectively detected in 1996 and 34 and 13 haplotypes in 2001, with an overall haplotype diversity of > 0.9 and 0.75 respectively. The frequency of the most predominant Th2R and Th3R haplotypes was 14 and 36%, respectively. The frequency of Th2R and Th3R haplotypes corresponding to the 3D7 parasite strain was less than 4% at both time points. There was no significant difference in nucleotide and haplotype diversity in parasite isolates collected at both time points. Conclusion High diversity in these two genes has been maintained overtime despite marked reductions in malaria transmission due to ITNs use. The frequency of 3D7 sequence-types was very low in this area. These findings provide information that could be useful in the design of future malaria vaccines for deployment in endemic areas with high ITN coverage and in interpretation of efficacy data for malaria vaccines based on 3D7 parasite strains.
Collapse
Affiliation(s)
- Simon K Kariuki
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zeeshan M, Alam MT, Vinayak S, Bora H, Tyagi RK, Alam MS, Choudhary V, Mittra P, Lumb V, Bharti PK, Udhayakumar V, Singh N, Jain V, Singh PP, Sharma YD. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS One 2012; 7:e43430. [PMID: 22912873 PMCID: PMC3422267 DOI: 10.1371/journal.pone.0043430] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022] Open
Abstract
RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (∼61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (∼59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Tauqeer Alam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Sumiti Vinayak
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Hema Bora
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rupesh Kumar Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Shoeb Alam
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Pooja Mittra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Vanshika Lumb
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Neeru Singh
- Regional Medical Research Centre for Tribals, Jabalpur, Madhya Pradesh, India
| | - Vidhan Jain
- Regional Medical Research Centre for Tribals, Jabalpur, Madhya Pradesh, India
| | | | - Yagya Dutta Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
5
|
Bailey JA, Mvalo T, Aragam N, Weiser M, Congdon S, Kamwendo D, Martinson F, Hoffman I, Meshnick SR, Juliano JJ. Use of massively parallel pyrosequencing to evaluate the diversity of and selection on Plasmodium falciparum csp T-cell epitopes in Lilongwe, Malawi. J Infect Dis 2012; 206:580-7. [PMID: 22551816 DOI: 10.1093/infdis/jis329] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The development of an effective malaria vaccine has been hampered by the genetic diversity of commonly used target antigens. This diversity has led to concerns about allele-specific immunity limiting the effectiveness of vaccines. Despite extensive genetic diversity of circumsporozoite protein (CS), the most successful malaria vaccine is RTS/S, a monovalent CS vaccine. By use of massively parallel pyrosequencing, we evaluated the diversity of CS haplotypes across the T-cell epitopes in parasites from Lilongwe, Malawi. We identified 57 unique parasite haplotypes from 100 participants. By use of ecological and molecular indexes of diversity, we saw no difference in the diversity of CS haplotypes between adults and children. We saw evidence of weak variant-specific selection within this region of CS, suggesting naturally acquired immunity does induce variant-specific selection on CS. Therefore, the impact of CS vaccines on variant frequencies with widespread implementation of vaccination requires further study.
Collapse
Affiliation(s)
- Jeffrey A Bailey
- Division of Transfusion Medicine and Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, Worcester, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dumonteil E. Vaccine development against Trypanosoma cruzi and Leishmania species in the post-genomic era. INFECTION GENETICS AND EVOLUTION 2010; 9:1075-82. [PMID: 19805015 DOI: 10.1016/j.meegid.2009.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Trypanosoma cruzi and the genus Leishmania are protozoan parasites causing diseases of major public health importance, and the recent completion of the sequencing of their genomes has opened new opportunities to further our understanding of the mechanisms required for protection and the development of vaccines. For example, trans-sialidases, one of the largest protein families from T. cruzi, contain dominant CD8+ T cell epitopes, and their use as preventive or therapeutic vaccines in different animal models has provided encouraging results. A much wider range of antigens and vaccine formulations have been tested against Leishmania, and new correlates for protection are being defined, such as the induction of multifunctional Th1 effector cells capable of producing a complex set of cytokines. Also, while a large number of these vaccine candidates have been rather successful in mouse models, their usefulness in more relevant animal models is still poor, in spite of significant immunogenicity. Novel proteomics and genomics approaches are being used for antigen discovery and the identification of new vaccine candidates, some of which have shown promise for the control of infection. These studies cast little doubt that T. cruzi and Leishmania genomes represent major resources for understanding key aspects of the mechanisms of immune protection against these parasites, and the increasing use of these tools will greatly impact vaccine development.
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Merida, Yucatan, Mexico
| |
Collapse
|
7
|
Barry AE, Schultz L, Buckee CO, Reeder JC. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum. PLoS One 2009; 4:e8497. [PMID: 20041125 PMCID: PMC2795866 DOI: 10.1371/journal.pone.0008497] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/07/2009] [Indexed: 11/21/2022] Open
Abstract
The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next-generation malaria vaccines.
Collapse
Affiliation(s)
- Alyssa E Barry
- Centre for Population Health, Burnet Institute, Melbourne, Australia.
| | | | | | | |
Collapse
|
8
|
Takala SL, Plowe CV. Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming 'vaccine resistant malaria'. Parasite Immunol 2009; 31:560-73. [PMID: 19691559 DOI: 10.1111/j.1365-3024.2009.01138.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of effective malaria vaccines may be hindered by extensive genetic diversity in the surface proteins being employed as vaccine antigens. Understanding of the extent and dynamics of genetic diversity in vaccine antigens is needed to guide rational vaccine design and to interpret the results of vaccine efficacy trials conducted in malaria endemic areas. Molecular epidemiological, population genetic, and structural approaches are being employed to try to identify immunologically relevant polymorphism in vaccine antigens. The results of these studies will inform choices of which alleles to include in multivalent or chimeric vaccines; however, additional molecular and immuno-epidemiological studies in a variety of geographic locations will be necessary for these approaches to succeed. Alternative means of overcoming antigenic diversity are also being explored, including boosting responses to critical conserved regions of current vaccine antigens, identifying new, more conserved and less immunodominant antigens, and developing whole-organism vaccines. Continued creative application and integration of tools from multiple disciplines, including epidemiology, immunology, molecular biology, and evolutionary genetics and genomics, will likely be required to develop broadly protective vaccines against Plasmodium and other antigenically complex pathogens.
Collapse
Affiliation(s)
- S L Takala
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
9
|
Singh JPN, Verma S, Bhattacharya PR, Srivastava N, Dash AP, Biswas S. Plasmodium falciparum circumsporozoite protein: epidemiological variations among field isolates prevalent in India. Trop Med Int Health 2009; 14:957-66. [PMID: 19702596 DOI: 10.1111/j.1365-3156.2009.02314.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the extent of genetic variations in T-helper-cell epitopic regions of circumsporozoite (CS) protein in Plasmodium falciparum field isolates collected from different regions of India at different phases of malaria transmission. METHODS Genomic DNA was isolated from 507 P. falciparum wild-parasite isolates obtained from six geographical locations of India at three time points coinciding with malaria transmissions. The T-helper-cell epitopic regions were polymerase chain reaction (PCR)-amplified and the products were purified and then sequenced. RESULTS Based on sequences, nine variants were found among isolates and they were categorized into nine groups (V-1 to V-9), where V-1 and V-2 were observed in all three time points (TP). The variants V-1 to V-4 in TP-1; V-1, V-2, V-5 to V-8 in TP-2; and V-1, V-2, V-5 and V-9 in TP-3 were present and they showed restricted heterogeneity. During peak transmission (TP-2), parasite populations were more diverse and heterogeneous and the variants regionally unbiased and restricted. However, the alleles of V-6 and V-9 in both Th2R and Th3R showed identical sequence variation with those observed in other geographical regions of the world. The remaining seven groups did not show such similarity. CONCLUSION The Th2R and Th3R epitopes are implicated in host immune response to P. falciparum. The polymorphism in these epitopic regions indicates antigenic diversity, which may cause adverse outcome of a subunit vaccine including the CS prototype variant. Therefore, the formulation of a vaccine considering the restricted local repertoire parasite populations may be helpful.
Collapse
Affiliation(s)
- J P N Singh
- National Institute of Malaria Research, Delhi, India
| | | | | | | | | | | |
Collapse
|
10
|
Population dynamics of genetically diverse Plasmodium falciparum lineages: community-based prospective study in rural Amazonia. Parasitology 2009; 136:1097-105. [PMID: 19631016 DOI: 10.1017/s0031182009990539] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Temporal changes in the prevalence of antigenic variants in Plasmodium falciparum populations have been interpreted as evidence of immune-mediated frequency-dependent selection, but evolutively neutral processes may generate similar patterns of serotype replacement. Over 4 years, we investigated the population dynamics of P. falciparum polymorphisms at the community level by using 11 putatively neutral microsatellite markers. Plasmodium falciparum populations were less diverse than sympatric P. vivax isolates, with less multiple-clone infections, lower number of alleles per locus and lower virtual heterozygosity, but both species showed significant multilocus linkage disequilibrium. Evolutively neutral P. falciparum polymorphisms showed a high turnover rate, with few lineages persisting for several months in the population. Similar results had previously been obtained, in the same community, for sympatric P. vivax isolates. In contrast, the prevalence of the 2 dimorphic types of a major antigen, MSP-2, remained remarkably stable throughout the study period. We suggest that the relatively fast turnover of parasite lineages represents the typical population dynamics of neutral polymorphisms in small populations, with clear implications for the detection of frequency-dependent selection of polymorphisms.
Collapse
|
11
|
Jalloh A, Jalloh M, Matsuoka H. T-cell epitope polymorphisms of the Plasmodium falciparum circumsporozoite protein among field isolates from Sierra Leone: age-dependent haplotype distribution? Malar J 2009; 8:120. [PMID: 19500348 PMCID: PMC2698914 DOI: 10.1186/1475-2875-8-120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 06/05/2009] [Indexed: 11/23/2022] Open
Abstract
Background In the context of the development of a successful malaria vaccine, understanding the polymorphisms exhibited by malaria antigens in natural parasite populations is crucial for proper vaccine design. Recent observations have indicated that sequence polymorphisms in the C-terminal T-cell epitopes of the Plasmodium falciparum circumsporozoite protein (Pfcsp) are rather low and apparently stable in low endemic areas. This study sought to assess the pattern in a malaria endemic setting in Africa, using samples from Freetown, Sierra Leone. Methods Filter-paper blood samples were collected from subjects at a teaching hospital in Freetown during September–October 2006 and in April–May 2007. The C-terminal portion of the Pfcsp gene spanning the Th2R and Th3R epitopes was amplified and directly sequenced; sequences were analysed with subject parameters and polymorphism patterns in Freetown were compared to that in other malaria endemic areas. Results and Discussion Overall, the genetic diversity in Freetown was high. From a total of 99 sequences, 42 haplotypes were identified with at least three accounting for 44.4% (44/99): the 3D7-type (19.2%), a novel type, P-01 (17.2%), and E12 (8.1%). Interestingly, all were unique to the African sub-region and there appeared to be predilection for certain haplotypes to distribute in certain age-groups: the 3D7 type was detected mainly in hospitalized children under 15 years of age, while the P-01 type was common in adult antenatal females (Pearson Chi-square = 48.750, degrees of freedom = 34, P = 0.049). In contrast, the single-haplotype predominance (proportion > 50%) pattern previously identified in Asia was not detected in Freetown. Conclusion Haplotype distribution of the T-cell epitopes of Pfcsp in Freetown appeared to vary with age in the study population, and the polymorphism patterns were similar to that observed in neighbouring Gambia, but differed significantly at the sequence level from that observed in Asia. The findings further emphasize the role of local factors in generating polymorphisms in the T-cell epitopes of the P. falciparum circumsporozoite protein.
Collapse
Affiliation(s)
- Amadu Jalloh
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | | | | |
Collapse
|
12
|
Quang ND, Hoa PTP, Tuan MS, Viet NX, Jalloh A, Matsuoka H. Polymorphism at the apical membrane antigen 1 gene (AMA1) of the malaria parasite Plasmodium falciparum in a Vietnamese population. Biochem Genet 2009; 47:370-83. [PMID: 19357945 DOI: 10.1007/s10528-009-9236-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 01/05/2009] [Indexed: 11/30/2022]
Abstract
The patterns of molecular evolution of the most diverse region of the apical membrane antigen 1 (AMA1) gene in Plasmodium falciparum from a Vietnamese subpopulation (Bao Loc) were investigated. Within the Bao Loc population, the sequenced gene region showed relatively high allelic and nucleotide diversity (0.985 and 0.02694, respectively). Further, the level of population recombination was substantial, resulting in a significant decay of linkage disequilibrium along the gene region. The results suggest that AMA1 is a useful genetic marker for studying the relationships between adaptation of parasite populations (to the human host immune system) and malaria epidemiology.
Collapse
Affiliation(s)
- Nguyen Duc Quang
- Laboratory of Molecular Population Genetics, Ehime University, Matsuyama, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Chenet SM, Branch OH, Escalante AA, Lucas CM, Bacon DJ. Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru. Malar J 2008; 7:93. [PMID: 18505558 PMCID: PMC2432069 DOI: 10.1186/1475-2875-7-93] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 05/27/2008] [Indexed: 11/30/2022] Open
Abstract
Background Several of the intended Plasmodium falciparum vaccine candidate antigens are highly polymorphic and could render a vaccine ineffective if their antigenic sites were not represented in the vaccine. In this study, characterization of genetic variability was performed in major B and T-cell epitopes within vaccine candidate antigens in isolates of P. falciparum from Peru. Methods DNA sequencing analysis was completed on 139 isolates of P. falciparum collected from endemic areas of the Amazon basin in Loreto, Peru from years 1998 to 2006. Genetic diversity was determined in immunological important regions in circumsporozoite protein (CSP), merozoite surface protein-1 (MSP-1), apical membrane antigen-1 (AMA-1), liver stage antigen-1 (LSA-1) and thrombospondin-related anonymous protein (TRAP). Alleles identified by DNA sequencing were aligned with the vaccine strain 3D7 and DNA polymorphism analysis and FST study-year pairwise comparisons were done using the DnaSP software. Multilocus analysis (MLA) was performed and average of expected heterozygosity was calculated for each loci and haplotype over time. Results Three different alleles for CSP, seven for MSP-1 Block 2, one for MSP-1 Block 17, three for AMA-1 and for LSA-1 each and one for TRAP were identified. There were 24 different haplotypes in 125 infections with complete locus typing for each gene. Conclusion Characterization of the genetic diversity in Plasmodium isolates from the Amazon Region of Peru showed that P. falciparum T and B cell epitopes in these antigens have polymorphisms more similar to India than to Africa. These findings are helpful in the formulation of a vaccine considering restricted repertoire populations.
Collapse
|
14
|
Anthony TG, Polley SD, Vogler AP, Conway DJ. Evidence of non-neutral polymorphism in Plasmodium falciparum gamete surface protein genes Pfs47 and Pfs48/45. Mol Biochem Parasitol 2007; 156:117-23. [PMID: 17826852 DOI: 10.1016/j.molbiopara.2007.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/28/2022]
Abstract
Targeted disruption of particular members of the Plasmodium 6-cys protein gene family, including Ps47, Ps48/45 and Ps230, is known to dramatically affect parasite fertility. Because loci critical to fertility in many eukaryote species have been shown to be under strong positive selection, we examined sequence variation in four members of the 6-cys protein gene family in Plasmodium falciparum (Pfs36, Pfs38, Pfs47 and Pfs48/45) to determine whether genetic variation in these loci may be of functional significance. Sequence polymorphism among 11 laboratory isolates of P. falciparum was compared with divergence from the respective orthologues in the closely related species P. reichenowi, showing an almost significant skew towards within-species non-synonymous polymorphism in Pfs47 and Pfs48/45 (by the McDonald-Kreitman test) but clearly non-significant results for Pfs36 and Pfs38. A preliminary analysis of Pfs47 sequence polymorphism in field isolates of P. falciparum showed exceptionally high fixation indices (F(ST)) among geographically distinct populations, similar to results seen previously for Pfs48/45. Therefore, both Pfs47 and Pfs48/45 were further analysed by sequencing polymorphic parts of the genes from a Tanzanian population sample of oocysts (a means of analysing diploid genotypes). Both genes displayed higher inbreeding coefficients (F(IS)) compared with the average of 11 unlinked microsatellite loci. These results suggest that allelic variation in these two genes may be functionally significant in influencing mating interactions, a hypothesis that could be tested by fertilization experiments with targeted allelic replacement.
Collapse
Affiliation(s)
- Thomas G Anthony
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St., London WC1E 7HT, UK.
| | | | | | | |
Collapse
|