1
|
Iwasaki M. Multifunctional noncoding regions in the mammarenavirus genome. Virology 2025; 605:110464. [PMID: 40022944 DOI: 10.1016/j.virol.2025.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Mammarenaviruses often cause long-term asymptomatic chronic infections in their natural hosts, primarily rodents, and include several human pathogens responsible for diseases ranging from mild febrile illnesses to life-threatening hemorrhagic fever. Mammarenaviruses encode two genes in each segment of their bisegmented RNA genome, with ambisense polarity. The multifunctionality of each gene product supports the optimal propagation of the virus. Moreover, the noncoding regions of the mammarenaviral genome have been shown to have multiple functions, beyond the control of viral transcription and replication. For instance, the noncoding intergenic region (IGR) is integral to the posttranscriptional regulation of viral protein expression. This mechanism underlies the efficient multiplication of the virus, which utilizes an ambisense coding strategy. Further clarification of the multifunctionality of the noncoding regions of the mammarenaviral genome will extend our understanding of the complex biology of these simple viruses and provide the basis for the development of novel medical countermeasures.
Collapse
Affiliation(s)
- Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Center for Advanced Modalities and Drug Delivery System, Osaka University, Suita, Osaka, Japan; RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Rodrigues Dutra JV, Santos IA, Grosche VR, Jardim ACG, de Aguiar RS, Junior NN, José DP. L protein characterization and in silico screening of putative broad range target molecules for pathogenic mammarenaviruses from South America. J Biomol Struct Dyn 2023; 42:12176-12194. [PMID: 37817533 DOI: 10.1080/07391102.2023.2268186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023]
Abstract
The genus Mammarenavirus belonging to the family Arenaviridae encompasses pathogenic viral species capable of triggering severe diseases in humans, causing concern for the health system due to the high fatality rate associated with them. Currently, there is a dearth of specific therapies against pathogens of the genus. Natural products isolated from plants have impacted the development of drugs against several diseases. The Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE) database offers several natural compounds with antimicrobial activities that can be used in the development of new antiviral drugs. In this context, here we modeled the arenavirus L protein, multifunctional machinery essential for the viral replicative cycle, making this enzyme a potential candidate for targeting the development of antivirals against genus pathogens. Using the modeled L protein, a virtual screening was performed, which suggested eleven molecules from the NuBBE database that binds to the active site of the L protein, which was promising in the in silico predictions of absorption and toxicity analysis. The NuBBE 1642 molecule proved to be the best candidate for four of the five species evaluated, acting as a possible broad-spectrum molecule. Additionally, our results showed that the L protein is highly conserved among species of the genus, as well as presenting close phylogenetic relationships between many of the species studied, strengthening its candidacy as a therapeutic target. The data presented here demonstrate that some NuBBE molecules are potential ligands for the L protein of arenaviruses, which may help to contain possible outbreaks.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- João Victor Rodrigues Dutra
- Federal University of Triângulo Mineiro, Iturama, Minas Gerais, Brazil
- Laboratory of Integrative Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Igor Andrade Santos
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
| | - Victória Riquena Grosche
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
- São Paulo State University, São José do Rio Preto, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, Brazil
- São Paulo State University, São José do Rio Preto, Brazil
| | - Renato Santana de Aguiar
- Laboratory of Integrative Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nilson Nicolau Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
3
|
Sierra AA, Loureiro ME, Esperante S, Borkosky SS, Gallo GL, de Prat Gay G, Lopez N. Nuclease Activity of the Junín Virus Nucleoprotein C-Terminal Domain. Viruses 2023; 15:1818. [PMID: 37766225 PMCID: PMC10535676 DOI: 10.3390/v15091818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The mammarenavirus Junín (JUNV) is the causative agent of Argentine hemorrhagic fever, a severe disease of public health concern. The most abundant viral protein is the nucleoprotein (NP), a multifunctional, two-domain protein with the primary role as structural component of the viral nucleocapsids, used as template for viral polymerase RNA synthesis activities. Here, we report that the C-terminal domain (CTD) of the attenuated Candid#1 strain of the JUNV NP can be purified as a stable soluble form with a secondary structure in line with known NP structures from other mammarenaviruses. We show that the JUNV NP CTD interacts with the viral matrix protein Z in vitro, and that the full-length NP and Z interact with each other in cellulo, suggesting that the NP CTD is responsible for this interaction. This domain comprises an arrangement of four acidic residues and a histidine residue conserved in the active site of exoribonucleases belonging to the DEDDh family. We show that the JUNV NP CTD displays metal-ion-dependent nuclease activity against DNA and single- and double-stranded RNA, and that this activity is impaired by the mutation of a catalytic residue within the DEDDh motif. These results further support this activity, not previously observed in the JUNV NP, which could impact the mechanism of the cellular immune response modulation of this important pathogen.
Collapse
Affiliation(s)
- Alicia Armella Sierra
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Abierta Interamericana, Buenos Aires C1287, Argentina; (A.A.S.); (M.E.L.); (G.L.G.)
| | - María Eugenia Loureiro
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Abierta Interamericana, Buenos Aires C1287, Argentina; (A.A.S.); (M.E.L.); (G.L.G.)
| | - Sebastián Esperante
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires C1405, Argentina; (S.E.); (S.S.B.); (G.d.P.G.)
| | - Silvia Susana Borkosky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires C1405, Argentina; (S.E.); (S.S.B.); (G.d.P.G.)
| | - Giovanna L. Gallo
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Abierta Interamericana, Buenos Aires C1287, Argentina; (A.A.S.); (M.E.L.); (G.L.G.)
| | - Gonzalo de Prat Gay
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires C1405, Argentina; (S.E.); (S.S.B.); (G.d.P.G.)
| | - Nora Lopez
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Abierta Interamericana, Buenos Aires C1287, Argentina; (A.A.S.); (M.E.L.); (G.L.G.)
| |
Collapse
|
4
|
Gallo GL, López N, Loureiro ME. The Virus–Host Interplay in Junín Mammarenavirus Infection. Viruses 2022; 14:v14061134. [PMID: 35746604 PMCID: PMC9228484 DOI: 10.3390/v14061134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Junín virus (JUNV) belongs to the Arenaviridae family and is the causative agent of Argentine hemorrhagic fever (AHF), a severe human disease endemic to agricultural areas in Argentina. At this moment, there are no effective antiviral therapeutics to battle pathogenic arenaviruses. Cumulative reports from recent years have widely provided information on cellular factors playing key roles during JUNV infection. In this review, we summarize research on host molecular determinants that intervene in the different stages of the viral life cycle: viral entry, replication, assembly and budding. Alongside, we describe JUNV tight interplay with the innate immune system. We also review the development of different reverse genetics systems and their use as tools to study JUNV biology and its close teamwork with the host. Elucidating relevant interactions of the virus with the host cell machinery is highly necessary to better understand the mechanistic basis beyond virus multiplication, disease pathogenesis and viral subversion of the immune response. Altogether, this knowledge becomes essential for identifying potential targets for the rational design of novel antiviral treatments to combat JUNV as well as other pathogenic arenaviruses.
Collapse
|
5
|
Fearns R. Negative‐strand RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Klitting R, Mehta SB, Oguzie JU, Oluniyi PE, Pauthner MG, Siddle KJ, Andersen KG, Happi CT, Sabeti PC. Lassa Virus Genetics. Curr Top Microbiol Immunol 2020. [PMID: 32418034 DOI: 10.1007/82_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | - Samar B Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Judith U Oguzie
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA.
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
8
|
Loureiro ME, Zorzetto-Fernandes AL, Radoshitzky S, Chi X, Dallari S, Marooki N, Lèger P, Foscaldi S, Harjono V, Sharma S, Zid BM, López N, de la Torre JC, Bavari S, Zúñiga E. DDX3 suppresses type I interferons and favors viral replication during Arenavirus infection. PLoS Pathog 2018; 14:e1007125. [PMID: 30001425 PMCID: PMC6042795 DOI: 10.1371/journal.ppat.1007125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/27/2018] [Indexed: 11/19/2022] Open
Abstract
Several arenaviruses cause hemorrhagic fever (HF) diseases that are associated with high morbidity and mortality in humans. Accordingly, HF arenaviruses have been listed as top-priority emerging diseases for which countermeasures are urgently needed. Because arenavirus nucleoprotein (NP) plays critical roles in both virus multiplication and immune-evasion, we used an unbiased proteomic approach to identify NP-interacting proteins in human cells. DDX3, a DEAD-box ATP-dependent-RNA-helicase, interacted with NP in both NP-transfected and virus-infected cells. Importantly, DDX3 deficiency compromised the propagation of both Old and New World arenaviruses, including the HF arenaviruses Lassa and Junin viruses. The DDX3 role in promoting arenavirus multiplication associated with both a previously un-recognized DDX3 inhibitory role in type I interferon production in arenavirus infected cells and a positive DDX3 effect on arenavirus RNA synthesis that was dependent on its ATPase and Helicase activities. Our results uncover novel mechanisms used by arenaviruses to exploit the host machinery and subvert immunity, singling out DDX3 as a potential host target for developing new therapies against highly pathogenic arenaviruses.
Collapse
Affiliation(s)
- María Eugenia Loureiro
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | | | - Sheli Radoshitzky
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Xiaoli Chi
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Simone Dallari
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Nuha Marooki
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Psylvia Lèger
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Sabrina Foscaldi
- Centro de Virología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Vince Harjono
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Sonia Sharma
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Nora López
- Centro de Virología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan Carlos de la Torre
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Elina Zúñiga
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
9
|
Role of the ERK1/2 Signaling Pathway in the Replication of Junín and Tacaribe Viruses. Viruses 2018; 10:v10040199. [PMID: 29673133 PMCID: PMC5923493 DOI: 10.3390/v10040199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023] Open
Abstract
We have previously shown that the infection of cell cultures with the arenaviruses Junín (JUNV), Tacaribe (TCRV), and Pichindé promotes the phosphorylation of mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases 1 and 2 (ERK1/2) and that this activation is required for the achievement of a productive infection. Here we examined the contribution of ERK1/2 in early steps of JUNV and TCRV multiplication. JUNV adsorption, internalization, and uncoating were not affected by treatment of cultured cells with U0126, an inhibitor of the ERK1/2 signaling pathway. In contrast, U0126 caused a marked reduction in viral protein expression and RNA synthesis, while JUNV RNA synthesis was significantly augmented in the presence of an activator of the ERK1/2 pathway. Moreover, U0126 impaired the expression of a reporter gene in a TCRV-based replicon system, confirming the ability of the compound to hinder arenavirus macromolecular synthesis. By using a cell-based assay, we determined that the inhibitor did not affect the translation of a synthetic TCRV-like mRNA. No changes in the phosphorylation pattern of the translation factor eIF2α were found in U0126-treated cells. Our results indicate that U0126 impairs viral RNA synthesis, thereby leading to a subsequent reduction in viral protein expression. Thus, we conclude that ERK1/2 signaling activation is required for an efficient arenavirus RNA synthesis.
Collapse
|
10
|
Lotufo CM, Wilda M, Giraldez AN, Grigera PR, Mattion NM. Relevance of the N-terminal and major hydrophobic domains of non-structural protein 3A in the replicative process of a DNA-launched foot-and-mouth disease virus replicon. Arch Virol 2018. [PMID: 29536193 DOI: 10.1007/s00705-018-3795-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A foot-and-mouth disease virus (FMDV) DNA-launched reporter replicon containing a luciferase gene was used to assess the impact of non-structural (NS) protein 3A on viral replication. Independent deletions within the N-terminal region (amino acid [aa] residues 6 to 24) and the central hydrophobic region (HR, aa 59 to 76) of FMDV NS protein 3A were engineered, and luciferase activity in lysates of control and mutated replicon-transfected cells was measured. Triple alanine replacements of the N-terminal triplet Arg 18- His 19 -Glu 20 and a single alanine substitution of the highly charged Glu 20 residue both resulted in a 70-80% reduction in luciferase activity when compared with wild-type controls. Alanine substitution of the 17 aa present in the central HR, on the other hand, resulted in complete inhibition of luciferase activity and in the accumulation of the mutated 3A within the cell nucleus according to immunofluorescence analysis. Our results suggest that both the aa sequence around the putatively exposed hydrophilic E20 residue at the N-terminus of the protein and the hydrophobic tract located between aa 59 and 76 are of major relevance for maintaining the functionality of the 3A protein and preventing its mislocalization into the cell nucleus.
Collapse
Affiliation(s)
- Cecilia M Lotufo
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Maximiliano Wilda
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina.
| | - Adrian N Giraldez
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Pablo R Grigera
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina
| | - Nora M Mattion
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
11
|
Highly Pathogenic New World Arenavirus Infection Activates the Pattern Recognition Receptor Protein Kinase R without Attenuating Virus Replication in Human Cells. J Virol 2017; 91:JVI.01090-17. [PMID: 28794024 DOI: 10.1128/jvi.01090-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
The arenavirus family consists of several highly pathogenic viruses, including the Old World (OW) arenavirus Lassa fever virus (LASV) and the New World (NW) Junin virus (JUNV) and Machupo virus (MACV). Host response to infection by these pathogenic arenaviruses is distinct in many aspects. JUNV and MACV infections readily induce an interferon (IFN) response in human cells, while LASV infection usually triggers an undetectable or weak IFN response. JUNV induces an IFN response through RIG-I, suggesting that the host non-self RNA sensor readily detects JUNV viral RNAs (vRNAs) during infection and activates IFN response. Double-stranded-RNA (dsRNA)-activated protein kinase R (PKR) is another host non-self RNA sensor classically known for its vRNA recognition activity. Here we report that infection with NW arenaviruses JUNV and MACV, but not OW LASV, activated PKR, concomitant with elevated phosphorylation of the translation initiation factor α subunit of eukaryotic initiation factor 2 (eIF2α). Host protein synthesis was substantially suppressed in MACV- and JUNV-infected cells but was only marginally reduced in LASV-infected cells. Despite the antiviral activity known for PKR against many other viruses, the replication of JUNV and MACV was not impaired but was slightly augmented in wild-type (wt) cells compared to that in PKR-deficient cells, suggesting that PKR or PKR activation did not negatively affect JUNV and MACV infection. Additionally, we found an enhanced IFN response in JUNV- or MACV-infected PKR-deficient cells, which was inversely correlated with virus replication.IMPORTANCE The detection of viral RNA by host non-self RNA sensors, including RIG-I and MDA5, is critical to the initiation of the innate immune response to RNA virus infection. Among pathogenic arenaviruses, the OW LASV usually does not elicit an interferon response. However, the NW arenaviruses JUNV and MACV readily trigger an IFN response in a RIG-I-dependent manner. Here, we demonstrate for the first time that pathogenic NW arenaviruses JUNV and MACV, but not the OW arenavirus LASV, activated the dsRNA-dependent PKR, another host non-self RNA sensor, during infection. Interestingly, the replication of JUNV and MACV was not restricted but was rather slightly augmented in the presence of PKR. Our data provide new evidence for a distinct interplay between host non-self RNA sensors and pathogenic arenaviruses, which also provides insights into the pathogenesis of arenaviruses and may facilitate the design of vaccines and treatments against arenavirus-caused diseases.
Collapse
|