1
|
Su H, Mueller A, Goldstein H. Recent advances on anti-HIV chimeric antigen receptor-T-cell treatment to provide sustained HIV remission. Curr Opin HIV AIDS 2024; 19:169-178. [PMID: 38695148 PMCID: PMC11981014 DOI: 10.1097/coh.0000000000000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Successful sustained remission of HIV infection has been achieved after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation for treatment of leukemia in a small cohort of people living with HIV (PLWH). This breakthrough demonstrated that the goal of curing HIV was achievable. However, the high morbidity and mortality associated with bone marrow transplantation limits the routine application of this approach and provides a strong rationale for pursuing alternative strategies for sustained long-term antiretroviral therapy (ART)-free HIV remission. Notably, long-term immune-mediated control of HIV replication observed in elite controllers and posttreatment controllers suggests that potent HIV-specific immune responses could provide sustained ART-free remission in PLWH. The capacity of chimeric antigen receptor (CAR)-T cells engineered to target malignant cells to induce remission and cure in cancer patients made this an attractive approach to provide PLWH with a potent HIV-specific immune response. Here, we review the recent advances in the design and application of anti-HIV CAR-T-cell therapy to provide a functional HIV cure. RECENT FINDINGS HIV reservoirs are established days after infection and persist through clonal expansion of infected cells. The continuous interaction between latently infected cells and the immune system shapes the landscape of HIV latency and likely contributes to ART-free viral control in elite controllers. CAR-T cells can exhibit superior antiviral activity as compared with native HIV-specific T cells, particularly because they can be engineered to have multiple HIV specificities, resistance to HIV infection, dual costimulatory signaling, immune checkpoint inhibitors, stem cell derivation, CMV TCR coexpression, and tissue homing ligands. These modifications can significantly improve the capacities of anti-HIV CAR-T cells to prevent viral escape, resist HIV infection, and enhance cytotoxicity, persistence, and tissue penetration. Collectively, these novel modifications of anti-HIV CAR-T cell design have increased their capacity to control HIV infection. SUMMARY Anti-HIV CAR-T cells can be engineered to provide potent and sustained in-vitro and in-vivo antiviral function. The combination of anti-HIV CAR-T cells with other immunotherapeutics may contribute to long-term HIV remission in PLWH.
Collapse
Affiliation(s)
- Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, U.S.A
| | - April Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, U.S.A
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, U.S.A
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10461, U.S.A
| |
Collapse
|
2
|
Beck EJ, Laeyendecker O, Saraf S, Ashokkumar S, Onzia A, Melendez JH, Chan J, Kyambadde P, Gough E, Parkes-Ratanshi R, Manabe YC, Hamill MM. High level of HIV viral suppression in a cross-sectional study of Ugandan men with urethritis and bacterial STI. Int J STD AIDS 2023; 34:998-1003. [PMID: 37544771 PMCID: PMC11361376 DOI: 10.1177/09564624231193491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Urethritis associated with non-viral sexually transmitted infections (STI) increases the risk of HIV acquisition and transmission in those living with HIV (LWH) without viral load suppression (VLS). Compared to women, men typically have lower rates of HIV VLS. We assessed the prevalence of VLS and drug resistance mutations in men LWH and urethral discharge syndrome (UDS) in Kampala, Uganda. METHODS Men with UDS were recruited in Kampala October 2019-November 2020. Medical, demographic, and behavioural data were collected with biological samples. All reactive HIV results (rapid, sequential algorithm) underwent confirmatory HIV antibody- and HIV incidence-testing, and viral load (VL) measurement. The pol and gp41 regions were sequenced on samples with VLs >1000 cpm, phylogenetic trees were generated, and resistance mutations were investigated. RESULTS 50 of 250 participants (20%) had reactive HIV rapid tests and 48/50 (96%) were aware of their HIV status and using antiretroviral therapy (ART). The median age was 38 years (IQR 32-45), 27/50 (54%) had engaged in transactional sex, and 30/50 (60%) reported alcohol before sex. VLS was present in 46/50 (92%). There were no major resistance mutations present in any samples analyzed. CONCLUSIONS The prevalence of HIV and VLS was greater in these men than in the general Ugandan adult population. Most men LWH were on ART and thus less likely to transmit HIV despite demonstrating sexual behaviours associated with high-risk of STIs. These data emphasize that high levels of ART coverage and VLS are achievable among men with UDS in urban Kampala.
Collapse
Affiliation(s)
- Evan J Beck
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sharada Saraf
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Swetha Ashokkumar
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annet Onzia
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Johan H Melendez
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Chan
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter Kyambadde
- STD and AIDS Control Programme, Ministry of Health of Uganda, Kampala, Uganda
| | - Ethan Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Yukari C Manabe
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - Matthew M Hamill
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a heavy burden of disease and an important public health problem in the world. Although current antiretroviral therapy (ART) is effective at suppressing the virus in the blood, HIV still remains in two different types of reservoirs-the latently infected cells (represented by CD4+ T cells) and the tissues containing those cells, which may block access to ART, HIV-neutralizing antibodies and latency-reversing agents. The latter is the focus of our review, as blood viral load drops below detectable levels after ART, a deeper and more systematic understanding of the HIV tissue reservoirs is imperative. In this review, we take the lymphoid system (including lymph nodes, gut-associated lymphoid tissue, spleen and bone marrow), nervous system, respiratory system, reproductive system (divided into male and female), urinary system as the order, focusing on the particularity and importance of each tissue in HIV infection, the infection target cell types of each tissue, the specific infection situation of each tissue quantified by HIV DNA or HIV RNA and the evidence of compartmentalization and pharmacokinetics. In summary, we found that the present state of HIV in different tissues has both similarities and differences. In the future, the therapeutic principle we need to follow is to respect the discrepancy on the basis of grasping the commonality. The measures taken to completely eliminate the virus in the whole body cannot be generalized. It is necessary to formulate personalized treatment strategies according to the different characteristics of the HIV in the various tissues, so as to realize the prospect of curing AIDS as soon as possible.
Collapse
Affiliation(s)
- Kangpeng Li
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Ma
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Gao L, Jiao YM, Ma P, Sun L, Zhao H, Guo AL, Fan X, Zhang C, Song JW, Zhang JY, Lu F, Wang FS. Characterization and distribution of HIV-infected cells in semen. Emerg Microbes Infect 2022; 11:860-872. [PMID: 35253610 PMCID: PMC8942556 DOI: 10.1080/22221751.2022.2049982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Semen is a known vector for both human immunodeficiency virus (HIV) infection and transmission. However, the distribution and characteristics of HIV-infected cells in semen remain unclear. Investigating the possibility of transmission through the spermatozoon in semen is of great clinical significance to improve the strategies for exposure prevention and assisted reproduction for HIV-infected partners. Twenty-six HIV-infected patients, including twelve treatment-naïve (TN) patients and fourteen antiretroviral treated (ART) patients, were enrolled in this study. HIV p24 protein in spermatozoa was detected using imaging flow cytometry and immunohistochemistry, and HIV RNA was identified using next-generation RNAscope in situ hybridization. Additionally, we described the rates of HIV-positive spermatozoon and CD4+ T lymphocytes in semen, and found that p24+ spermatozoon were mainly CD4 negative regardless of whether the patients received ART. Of note, p24-positive cells in semen are predominantly spermatozoa, and we confirmed that motile spermatozoa carried HIV into peripheral blood mononuclear cells of healthy men in vitro. Our findings provide evidence regarding the risk of HIV-infected spermatozoa.
Collapse
Affiliation(s)
- Lin Gao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China.,Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China.,Peking University 302 Clinical Medical School, Beijing, People's Republic of China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Ping Ma
- Nankai University Second People's Hospital, School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Lijun Sun
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - An-Liang Guo
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China.,Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China
| | - Fu-Sheng Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China.,Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China.,Peking University 302 Clinical Medical School, Beijing, People's Republic of China.,Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
5
|
Lau CY, Adan MA, Earhart J, Seamon C, Nguyen T, Savramis A, Adams L, Zipparo ME, Madeen E, Huik K, Grossman Z, Chimukangara B, Wulan WN, Millo C, Nath A, Smith BR, Ortega-Villa AM, Proschan M, Wood BJ, Hammoud DA, Maldarelli F. Imaging and biopsy of HIV-infected individuals undergoing analytic treatment interruption. Front Med (Lausanne) 2022; 9:979756. [PMID: 36072945 PMCID: PMC9441850 DOI: 10.3389/fmed.2022.979756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background HIV persistence during antiretroviral therapy (ART) is the principal obstacle to cure. Lymphoid tissue is a compartment for HIV, but mechanisms of persistence during ART and viral rebound when ART is interrupted are inadequately understood. Metabolic activity in lymphoid tissue of patients on long-term ART is relatively low, and increases when ART is stopped. Increases in metabolic activity can be detected by 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and may represent sites of HIV replication or immune activation in response to HIV replication. Methods FDG-PET imaging will be used to identify areas of high and low metabolic uptake in lymphoid tissue of individuals undergoing long-term ART. Baseline tissue samples will be collected. Participants will then be randomized 1:1 to continue or interrupt ART via analytic treatment interruption (ATI). Image-guided biopsy will be repeated 10 days after ATI initiation. After ART restart criteria are met, image-guided biopsy will be repeated once viral suppression is re-achieved. Participants who continued ART will have a second FDG-PET and biopsies 12–16 weeks after the first. Genetic characteristics of HIV populations in areas of high and low FDG uptake will be assesed. Optional assessments of non-lymphoid anatomic compartments may be performed to evaluate HIV populations in distinct anatomic compartments. Anticipated results We anticipate that PET standardized uptake values (SUV) will correlate with HIV viral RNA in biopsies of those regions and that lymph nodes with high SUV will have more viral RNA than those with low SUV within a patient. Individuals who undergo ATI are expected to have diverse viral populations upon viral rebound in lymphoid tissue. HIV populations in tissues may initially be phylogenetically diverse after ATI, with emergence of dominant viral species (clone) over time in plasma. Dominant viral species may represent the same HIV population seen before ATI. Discussion This study will allow us to explore utility of PET for identification of HIV infected cells and determine whether high FDG uptake respresents areas of HIV replication, immune activation or both. We will also characterize HIV infected cell populations in different anatomic locations. The protocol will represent a platform to investigate persistence and agents that may target HIV populations. Study protocol registration Identifier: NCT05419024.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Chuen-Yen Lau
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jessica Earhart
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cassie Seamon
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Thuy Nguyen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Ariana Savramis
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lindsey Adams
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Mary-Elizabeth Zipparo
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Erin Madeen
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Kristi Huik
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Zehava Grossman
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Benjamin Chimukangara
- Critical Care Medicine Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Wahyu Nawang Wulan
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Corina Millo
- PET Department, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Avindra Nath
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bryan R. Smith
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ana M. Ortega-Villa
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michael Proschan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bradford J. Wood
- Interventional Radiology, Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dima A. Hammoud
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| |
Collapse
|
6
|
HIV drug resistance in various body compartments. Curr Opin HIV AIDS 2022; 17:205-212. [PMID: 35762375 DOI: 10.1097/coh.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW HIV drug resistance testing using blood plasma or dried blood spots forms part of international guidelines. However, as the clinical utility of assessing drug resistance in other body compartments is less well established, we review this for blood cells and samples from other body compartments. RECENT EVIDENCE Although clinical benefit is not clear, drug resistance testing in blood cells is often performed when patients with suppressed plasma viral loads require a treatment substitution. In patients with HIV neurocognitive disease, cerebral spinal fluid (CSF) drug resistance is rarely discordant with plasma but has nevertheless been used to guide antiretroviral drug substitutions. Cases with HIV drug resistance in genital fluids have been documented but this does not appear to indicate transmission risk when blood plasma viral loads are suppressed. SUMMARY Drug-resistant variants, which may be selected in tissues under conditions of variable adherence and drug penetration, appear to disseminate quickly, and become detectable in blood. This may explain why drug resistance discordance between plasma and these compartments is rarely found. Partial compartmentalization of HIV populations is well established for the CSF and the genital tract but other than blood plasma, evidence is lacking to support drug resistance testing in body compartments.
Collapse
|
7
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
8
|
NanoHIV: A Bioinformatics Pipeline for Producing Accurate, Near Full-Length HIV Proviral Genomes Sequenced Using the Oxford Nanopore Technology. Cells 2021; 10:cells10102577. [PMID: 34685559 PMCID: PMC8534097 DOI: 10.3390/cells10102577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
HIV-1 proviral single-genome sequencing by limiting-dilution polymerase chain reaction (PCR) amplification is important for differentiating the sequence-intact from defective proviruses that persist during antiretroviral therapy (ART). Intact proviruses may rebound if ART is interrupted and are the barrier to an HIV cure. Oxford Nanopore Technologies (ONT) sequencing offers a promising, cost-effective approach to the sequencing of long amplicons such as near full-length HIV-1 proviruses, but the high diversity of HIV-1 and the ONT sequencing error render analysis of the generated data difficult. NanoHIV is a new tool that uses an iterative consensus generation approach to construct accurate, near full-length HIV-1 proviral single-genome sequences from ONT data. To validate the approach, single-genome sequences generated using NanoHIV consensus building were compared to Illumina® consensus building of the same nine single-genome near full-length amplicons and an average agreement of 99.4% was found between the two sequencing approaches.
Collapse
|
9
|
Kariuki SM, Selhorst P, Abrahams MR, Rebe K, Williamson C, Dorfman JR. Neutralization sensitivity of genital tract HIV-1: shift in selective milieu shapes the population available to transmit. AIDS 2021; 35:1365-1373. [PMID: 33831907 DOI: 10.1097/qad.0000000000002912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Previous studies indicate that transmitted/founder HIV-1 isolates are sensitive to neutralization by the transmitting donor's antibodies. This is true in at least a subset of sexual transmissions. We investigated whether this selection for neutralization-sensitive variants begins in the genital tract of the donor, prior to transmission. DESIGN Laboratory study. METHODS HIV-1 viruses from semen and blood of two male donors living with HIV-1 were tested for neutralization sensitivity to contemporaneous autologous antibodies. RESULTS In one donor, semen-derived clones (n = 10, geometric mean ID50 = 176) were 1.75-fold [95% confidence interval (CI) 1.11-2.76, P = 0.018] more sensitive than blood-derived clones (n = 12, geometric mean ID50 = 111) to the individual's own contemporaneous neutralizing antibodies. Enhanced overall neutralization sensitivity of the semen-derived clones could not explain the difference because these semen-derived isolates showed a trend of being less sensitive to neutralization by a pool of heterologous clade-matched sera. This relative sensitivity of semen-derived clones was not observed in a second donor who did not exhibit obvious independent HIV-1 replication in the genital tract. A Bayesian analysis suggested that the set of semen sequences that we analysed originated from a blood sequence. CONCLUSION In some instances, selection for neutralization-sensitive variants during HIV-1 transmission begins in the genital tract of the donor and this may be driven by independent HIV-1 replication in this compartment. Thus, a shift in the selective milieu in the male genital tract allows outgrowth of neutralization-sensitive HIV-1 variants, shaping the population of isolates available for transmission to a new host.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, University of Cape Town
- International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, South Africa
- Department of Biological Sciences, School of Science, University of Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town
| | - Kevin Rebe
- ANOVA Health Institute, Cape Town
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town
| | - Carolyn Williamson
- Division of Medical Virology, Department of Pathology, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, University of Cape Town
- Division of Medical Virology, Department of Pathology, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
10
|
Gianella S, Chaillon A, Chun TW, Sneller MC, Ignacio C, Vargas-Meneses MV, Caballero G, Ellis RJ, Kovacs C, Benko E, Huibner S, Kaul R. HIV RNA Rebound in Seminal Plasma after Antiretroviral Treatment Interruption. J Virol 2020; 94:e00415-20. [PMID: 32434884 PMCID: PMC7375368 DOI: 10.1128/jvi.00415-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
If strategies currently in development succeed in eradicating HIV reservoirs in peripheral blood and lymphoid tissues, residual sources of virus may remain in anatomic compartments. Paired blood and semen samples were collected from 12 individuals enrolled in a randomized, double-blind, placebo-controlled therapeutic vaccine clinical trial in people with HIV (PWH) who began antiretroviral therapy (ART) during acute or early infection (ClinicalTrials registration no. NCT01859325). After the week 56 visit (postintervention), all participants interrupted ART. At the first available time points after viral rebound, we sequenced HIV-1 env (C2-V3), gag (p24), and pol (reverse transcriptase) regions amplified from cell-free HIV RNA in blood and seminal plasma using the MiSeq Illumina platform. Comprehensive sequence and phylogenetic analyses were performed to evaluate viral population structure, compartmentalization, and viral diversity in blood and seminal plasma. Compared to that in blood, HIV RNA rebound in semen occurred significantly later (median of 66 versus 42 days post-ART interruption, P < 0.01) and reached lower levels (median 164 versus 16,090 copies/ml, P < 0.01). Three of five participants with available sequencing data presented compartmentalized viral rebound between blood and semen in one HIV coding region. Despite early ART initiation, HIV RNA molecular diversity was higher in semen than in blood in all three coding regions for most participants. Higher HIV RNA molecular diversity in the genital tract (compared to that in blood plasma) and evidence of compartmentalization illustrate the distinct evolutionary dynamics between these two compartments after ART interruption. Future research should evaluate whether the genital compartment might contribute to viral rebound in some PWH interrupting ART.IMPORTANCE To cure HIV, we likely need to target the reservoirs in all anatomic compartments. Here, we used sophisticated statistical and phylogenetic methods to analyze blood and semen samples collected from 12 persons with HIV who began antiretroviral therapy (ART) during very early HIV infection and who interrupted their ART as part of a clinical trial. First, we found that HIV RNA rebound in semen occurred significantly later and reached lower levels than in blood. Second, we found that the virus in semen was genetically different in some participants compared to that in blood. Finally, we found increased HIV RNA molecular diversity in semen compared to that in blood in almost all study participants. These data suggest that the HIV RNA populations emerging from the genital compartment after ART interruption might not be the same as those emerging from blood plasma. Future research should evaluate whether the genital compartment might contribute to viral rebound in some people with HIV (PWH) interrupting ART.
Collapse
Affiliation(s)
- Sara Gianella
- University of California, San Diego, La Jolla, California, USA
| | | | - Tae-Wook Chun
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael C Sneller
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | - Gemma Caballero
- University of California, San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- University of California, San Diego, La Jolla, California, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|