1
|
Machado RS, Tavares FN, Sousa IP. Global landscape of coxsackieviruses in human health. Virus Res 2024; 344:199367. [PMID: 38561065 PMCID: PMC11002681 DOI: 10.1016/j.virusres.2024.199367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Coxsackieviruses-induced infections, particularly in infants and young children, are one of the most important public health issues in low- and middle-income countries, where the surveillance system varies substantially, and these manifestations have been disregarded. They are widespread throughout the world and are responsible for a broad spectrum of human diseases, from mildly symptomatic conditions to severe acute and chronic disorders. Coxsackieviruses (CV) have been found to have 27 identified genotypes, with overlaps in clinical phenotypes between genotypes. In this review, we present a concise overview of the most recent studies and findings of coxsackieviruses-associated disorders, along with epidemiological data that provides comprehensive details on the distribution, variability, and clinical manifestations of different CV types. We also highlight the significant roles that CV infections play in the emergence of neurodegenerative illnesses and their effects on neurocognition. The current role of CVs in oncolytic virotherapy is also mentioned. This review provides readers with a better understanding of coxsackieviruses-associated disorders and pointing the impact that CV infections can have on different organs with variable pathogenicity. A deeper knowledge of these infections could have implications in designing current surveillance and prevention strategies related to severe CVs-caused infections, as well as encourage studies to identify the emergence of more pathogenic types and the etiology of the most common and most severe disorders associated with coxsackievirus infection.
Collapse
Affiliation(s)
- Raiana S Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil; Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brasil; Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Fernando N Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Ivanildo P Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil.
| |
Collapse
|
2
|
Polio and Its Epidemiology. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
3
|
Razafindratsimandresy R, Joffret ML, Andriamandimby SF, Andriamamonjy S, Rabemanantsoa S, Richard V, Delpeyroux F, Heraud JM, Bessaud M. Enterovirus detection in different regions of Madagascar reveals a higher abundance of enteroviruses of species C in areas where several outbreaks of vaccine-derived polioviruses occurred. BMC Infect Dis 2022; 22:821. [PMID: 36348312 PMCID: PMC9641760 DOI: 10.1186/s12879-022-07826-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Background Poliomyelitis outbreaks due to pathogenic vaccine-derived polioviruses (VDPVs) are threatening and complicating the global polio eradication initiative. Most of these VDPVs are genetic recombinants with non-polio enteroviruses (NPEVs) of species C. Little is known about factors favoring this genetic macroevolution process. Since 2001, Madagascar has experienced several outbreaks of poliomyelitis due to VDPVs, and most of VDPVs were isolated in the south of the island. The current study explored some of the viral factors that can promote and explain the emergence of recombinant VDPVs in Madagascar. Methods Between May to August 2011, we collected stools from healthy children living in two southern and two northern regions of Madagascar. Virus isolation was done in RD, HEp-2c, and L20B cell lines, and enteroviruses were detected using a wide-spectrum 5ʹ-untranslated region RT-PCR assay. NPEVs were then sequenced for the VP1 gene used for viral genotyping. Results Overall, we collected 1309 stools, of which 351 NPEVs (26.8%) were identified. Sequencing revealed 33 types of viruses belonging to three different species: Enterovirus A (8.5%), Enterovirus B (EV-B, 40.2%), and Enterovirus C (EV-C, 51.3%). EV-C species included coxsackievirus A13, A17, and A20 previously described as putative recombination partners for poliovirus vaccine strains. Interestingly, the isolation rate was higher among stools originating from the South (30.3% vs. 23.6%, p-value = 0.009). EV-C were predominant in southern sites (65.7%) while EV-B predominated in northern sites (54.9%). The factors that explain the relative abundance of EV-C in the South are still unknown. Conclusions Whatever its causes, the relative abundance of EV-C in the South of Madagascar may have promoted the infections of children by EV-C, including the PV vaccine strains, and have favored the recombination events between PVs and NPEVs in co-infected children, thus leading to the recurrent emergence of recombinant VDPVs in this region of Madagascar. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07826-0.
Collapse
|
4
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
5
|
Sadeuh-Mba SA, Kavunga-Membo H, Joffret ML, Yogolelo R, Endegue-Zanga MC, Bessaud M, Njouom R, Muyembe-Tamfu JJ, Delpeyroux F. Genetic landscape and macro-evolution of co-circulating Coxsackieviruses A and Vaccine-derived Polioviruses in the Democratic Republic of Congo, 2008-2013. PLoS Negl Trop Dis 2019; 13:e0007335. [PMID: 31002713 PMCID: PMC6505894 DOI: 10.1371/journal.pntd.0007335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/06/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses (EVs) are among the most common viruses infecting humans worldwide
but only a few Non-Polio Enterovirus (NPEV) isolates have been characterized in
the Democratic Republic of Congo (DR Congo). Moreover, circulating
vaccine-derived polioviruses (PVs) [cVDPVs] isolated during multiple outbreaks
in DR Congo from 2004 to 2018 have been characterized so far only by the
sequences of their VP1 capsid coding gene. This study was carried to i)
investigate the circulation and genetic diversity of NPEV and polio vaccine
isolates recovered from healthy children and Acute Flaccid Paralysis (AFP)
patients, ii) evaluate the occurrence of genetic recombination among EVs
belonging to the Enterovirus C species (including PVs) and iii)
identify the virological factors favoring multiple emergences of cVDPVs in DR
Congo. The biological material considered in this study included i) a collection
of 91 Sabin-like PVs, 54 cVDPVs and 150 NPEVs isolated from AFP patients between
2008 and 2012 in DR Congo and iii) a collection of 330 stool specimens collected
from healthy children in 2013 in the Kasai Oriental and Maniema provinces of DR
Congo. Studied virus isolates were sequenced in four distinct sub-genomic
regions 5’-UTR, VP1, 2CATPase and 3Dpol. Resulting
sequences were compared through comparative phylogenetic analyses. Virus
isolation showed that 19.1% (63/330) healthy children were infected by EVs
including 17.9% (59/330) of NPEVs and 1.2% (4/330) of type 3 Sabin-like PVs.
Only one EV-C type, EV-C99 was identified among the NPEV collection from AFP
patients whereas 27.5% of the 69 NPEV isolates typed in healthy children
belonged to the EV-C species: CV-A13 (13/69), A20 (5/69) and A17 (1/69).
Interestingly, 50 of the 54 cVDPVs featured recombinant genomes containing
exogenous sequences in at least one of the targeted non-structural regions of
their genomes: 5’UTR, 2CATPase and 3Dpol. Some of these
non-vaccine sequences of the recombinant cVDPVs were strikingly related to
homologous sequences from co-circulating CV-A17 and A20 in the
2CATPase region as well as to those from co-circulating CV-A13,
A17 and A20 in the 3Dpol region. This study provided the first
evidence uncovering CV-A20 strains as major recombination partners of PVs. High
quality AFP surveillance, sensitive environmental surveillance and efficient
vaccination activities remain essential to ensure timely detection and efficient
response to recombinant cVDPVs outbreaks in DR Congo. Such needs are valid for
any epidemiological setting where high frequency and genetic diversity of
Coxsackieviruses A13, A17 and A20 provide a conducive viral ecosystem for the
emergence of virulent recombinant cVDPVs. The strategy of the Global Polio Eradication Initiative is based on the
surveillance of patients suffering from Acute Flaccid Paralysis (AFP) and mass
vaccination with live-attenuated vaccine strains of polioviruses (PVs) in
endemic areas. However, vaccine strains of PVs can circulate and replicate for a
long time when the vaccine coverage of the population is low. Such prolonged
circulation and replication of vaccine strains of PVs can result to the
emergence of circulating vaccine-derived polioviruses [cVDPVs] that are as
virulent as wild PVs. In this study, we performed the molecular characterization
of a large collection of 377 virus isolates recovered from paralyzed patients
between 2008 and 2012 in DR Congo and healthy children in 2013 in the Kasai
Oriental and Maniema provinces of DR Congo. We found that the genetic diversity
of enteroviruses of the species Enterovirus C is more important
than previously reported. Interestingly, 50 of the 54 cVDPVs featured
recombinant genomes containing exogenous sequences of the 2C ATPase and/or 3D
polymerase coding genes acquired from co-circulating Coxsackieviruses A13, A17
and A20. Coxsackieviruses A20 strains were identified for the first time as
major partners of genetic recombination with co-circulating live-attenuated
polio vaccine strains. Our findings highlight the need to reinforce and maintain high quality
surveillance of PVs and efficient immunization activities in order to ensure
early detection and control of emerging cVDPVs in all settings where high
frequency and diversity of Coxsackieviruses A13, A17 and A20 have been
documented.
Collapse
Affiliation(s)
- Serge Alain Sadeuh-Mba
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
- * E-mail: ,
| | - Hugo Kavunga-Membo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | - Marie-Line Joffret
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Riziki Yogolelo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | | | - Maël Bessaud
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Richard Njouom
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
| | | | - Francis Delpeyroux
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| |
Collapse
|
6
|
Holubar M, Sahoo MK, Huang C, Mohamed-Hadley A, Liu Y, Waggoner JJ, Troy SB, García-García L, Ferreyra-Reyes L, Maldonado Y, Pinsky BA. Deep sequencing prompts the modification of a real-time RT-PCR for the serotype-specific detection of polioviruses. J Virol Methods 2018; 264:38-43. [PMID: 30447245 PMCID: PMC6320388 DOI: 10.1016/j.jviromet.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/03/2022]
Abstract
Deep sequencing distinguished poliovirus from non-polio enterovirus C (NPEV-C). Low rRT-PCR specificity resulted in false-positive Sabin 2 in stool with NPEV-C. Modification of a multiplex rRT-PCR restored poliovirus serotype specificity.
Polioviruses are members of the Enterovirus C species and asymptomatic fecal shedding allows for their transmission and persistence in a community, as well as the emergence of vaccine-derived polioviruses. Using three serotype-specific real-time RT-PCR (rRT-PCR) assays, the shedding and circulation of oral poliovirus vaccine (OPV) strains was previously investigated in a prospective cohort of Mexican children, their contacts, and nearby sewage. Subsequently, a deep sequencing approach targeting the P1 genomic region was applied to characterize OPV strains previously detected by rRT-PCR. Amplifiable RNA was obtained for sequencing from 40.3% (58/144) of stool samples and 71.4% (15/21) of sewage using nucleic acids extracted directly from primary rRT-PCR-positive specimens. Sequencing detected one or more OPV serotypes in 62.1% (36/58) of stool and 53.3% (8/15) of sewage samples. All stool and sewage samples in which poliovirus was not detected by deep sequencing contained at least one non-polio enterovirus C (NPEV-C) strain. To improve screening specificity, a modified, two-step, OPV serotype-specific multiplex rRT-PCR was evaluated. In stool specimens, the overall agreement between the original assays and the multiplex was 70.3%. By serotype, the overall agreement was 95.7% for OPV serotype-1 (S1), 65.6% for S2, and 96.1% for S3. Furthermore, most original rRT-PCR positive/multiplex rRT-PCR negative results were collected in the summer and fall months, consistent with NPEV-C circulation patterns. In conclusion, this deep sequencing approach allowed for the characterization of OPV sequences directly from clinical samples and facilitated the implementation of a more specific multiplex rRT-PCR for OPV detection and serotyping.
Collapse
Affiliation(s)
- Marisa Holubar
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - ChunHong Huang
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States
| | - Alisha Mohamed-Hadley
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Yuanyuan Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jesse J Waggoner
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | | | | | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, United States
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States; Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
7
|
Joffret ML, Polston PM, Razafindratsimandresy R, Bessaud M, Heraud JM, Delpeyroux F. Whole Genome Sequencing of Enteroviruses Species A to D by High-Throughput Sequencing: Application for Viral Mixtures. Front Microbiol 2018; 9:2339. [PMID: 30323802 PMCID: PMC6172331 DOI: 10.3389/fmicb.2018.02339] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Human enteroviruses (EV) consist of more than 100 serotypes classified within four species for enteroviruses (EV-A to -D) and three species for rhinoviruses, which have been implicated in a variety of human illnesses. Being able to simultaneously amplify the whole genome and identify enteroviruses in samples is important for studying the viral diversity in different geographical regions and populations. It also provides knowledge about the evolution of these viruses. Therefore, we developed a rapid, sensitive method to detect and genetically classify all human enteroviruses in mixtures. Strains of EV-A (15), EV-B (40), EV-C (20), and EV-D (2) viruses were used in addition to 20 supernatants from RD cells infected with stool extracts or sewage concentrates. Two overlapping fragments were produced using a newly designed degenerated primer targeting the conserved CRE region for enteroviruses A-D and one degenerated primer set designed to specifically target the conserved region for each enterovirus species (EV-A to -D). This method was capable of sequencing the full genome for all viruses except two, for which nearly 90% of the genome was sequenced. This method also demonstrated the ability to discriminate, in both spiked and unspiked mixtures, the different enterovirus types present.
Collapse
Affiliation(s)
- Marie-Line Joffret
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut Pasteur, Paris, France
| | - Patsy M. Polston
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | - Maël Bessaud
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut Pasteur, Paris, France
| | - Jean-Michel Heraud
- Unité de Virologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Francis Delpeyroux
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
- WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut Pasteur, Paris, France
| |
Collapse
|
8
|
Detection of Emerging Vaccine-Related Polioviruses by Deep Sequencing. J Clin Microbiol 2017; 55:2162-2171. [PMID: 28468861 PMCID: PMC5483918 DOI: 10.1128/jcm.00144-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5′ untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of <1%, depending on read depth. Sequencing of viral nucleic acids from the stool of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (<5%) distributed across the 5′ UTR and P1 genomic region in all three Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication.
Collapse
|
9
|
|
10
|
Bessaud M, Joffret ML, Blondel B, Delpeyroux F. Exchanges of genomic domains between poliovirus and other cocirculating species C enteroviruses reveal a high degree of plasticity. Sci Rep 2016; 6:38831. [PMID: 27958320 PMCID: PMC5153852 DOI: 10.1038/srep38831] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
The attenuated Sabin strains contained in the oral poliomyelitis vaccine are genetically unstable, and their circulation in poorly immunized populations can lead to the emergence of pathogenic circulating vaccine-derived polioviruses (cVDPVs). The recombinant nature of most cVDPV genomes and the preferential presence of genomic sequences from certain cocirculating non-polio enteroviruses of species C (EV-Cs) raise questions about the permissiveness of genetic exchanges between EV-Cs and the phenotypic impact of such exchanges. We investigated whether functional constraints limited genetic exchanges between Sabin strains and other EV-Cs. We bypassed the natural recombination events by constructing 29 genomes containing a Sabin 2 capsid-encoding sequence and other sequences from Sabin 2 or from non-polio EV-Cs. Most genomes were functional. All recombinant viruses replicated similarly in vitro, but recombination modulated plaque size and temperature sensitivity. All viruses with a 5′UTR from Sabin 2 were attenuated in mice, whereas almost all viruses with a non-polio 5′UTR caused disease. These data highlight the striking conservation of functional compatibility between different genetic domains of cocirculating EV-Cs. This aspect is only one of the requirements for the generation of recombinant cVDPVs in natural conditions, but it may facilitate the generation of viable intertypic recombinants with diverse phenotypic features, including pathogenicity.
Collapse
Affiliation(s)
- Maël Bessaud
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France.,INSERM, U994, Paris, France
| |
Collapse
|
11
|
Lin CH, Wang YB, Chen SH, Hsiung CA, Lin CY. Precise genotyping and recombination detection of Enterovirus. BMC Genomics 2015; 16 Suppl 12:S8. [PMID: 26678286 PMCID: PMC4682392 DOI: 10.1186/1471-2164-16-s12-s8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution.
Collapse
|
12
|
Muslin C, Joffret ML, Pelletier I, Blondel B, Delpeyroux F. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region. PLoS Pathog 2015; 11:e1005266. [PMID: 26562151 PMCID: PMC4643034 DOI: 10.1371/journal.ppat.1005266] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species’ C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5’ untranslated region (5’ UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5’ UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5’ UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5’ UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5’ UTR. By contrast to the recombination of the cVDPV with the 5’ UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5’ UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages. Recombination shapes viral genomes, including those of the pathogenic circulating vaccine-derived polioviruses (cVDPVs), responsible for poliomyelitis outbreaks. The genomes of cVDPVs consist of sequences from vaccine poliovirus (PV) and other enteroviruses (EVs). We investigated the plasticity of cVDPV genomes and the effects of recombination in the 5’ untranslated region (5’ UTR), which is involved in replication, translation and virulence. We rescued a 5’ UTR-defective recombinant cVDPV genome by cotransfecting cells with 5’ UTR RNAs from human EV species EV-A to -D. Hundreds of recombinants were isolated, revealing striking plasticity in this region, with homologous and nonhomologous recombination sites mostly clustered in three hotspots. Recombination with EV-A and -B affected replication and virulence, whereas recombination with EV-C and -D was either neutral or improved viral fitness. This study illustrates how RNA viruses can acquire mosaic genomes through intra- or inter-species recombination, favoring the emergence of new recombinant strains.
Collapse
Affiliation(s)
- Claire Muslin
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Isabelle Pelletier
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Biologie des Virus Entériques, Paris, France
- INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Recombination among human non-polio enteroviruses: implications for epidemiology and evolution. Virus Genes 2014; 50:177-88. [PMID: 25537948 DOI: 10.1007/s11262-014-1152-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Human enteroviruses (EV) belong to the Picornaviridae family and are among the most common viruses infecting humans. They consist of up to 100 immunologically and genetically distinct types: polioviruses, coxsackieviruses A and B, echoviruses, and the more recently characterized 43 EV types. Frequent recombinations and mutations in enteroviruses have been recognized as the main mechanisms for the observed high rate of evolution, thus enabling them to rapidly respond and adapt to new environmental challenges. The first signs of genetic exchanges between enteroviruses came from polioviruses many years ago, and since then recombination has been recognized, along with mutations, as the main cause for reversion of vaccine strains to neurovirulence. More recently, non-polio enteroviruses became the focus of many studies, where recombination was recognized as a frequent event and was correlated with the appearance of new enterovirus lineages and types. The accumulation of multiple inter- and intra-typic recombination events could also explain the series of successive emergences and disappearances of specific enterovirus types that could in turn explain the epidemic profile of circulation of several types. This review focuses on recombination among human non-polio enteroviruses from all four species (EV-A, EV-B, EV-C, and EV-D) and discusses the recombination effects on enterovirus epidemiology and evolution.
Collapse
|
14
|
Junttila N, Lévêque N, Magnius L, Kabue J, Muyembe-Tamfum JJ, Maslin J, Lina B, Norder H. Complete coding regions of the prototypes enterovirus B93 and C95: Phylogenetic analyses of the P1 and P3 regions of EV-B and EV-C strains. J Med Virol 2014; 87:485-97. [DOI: 10.1002/jmv.24062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2014] [Indexed: 01/30/2023]
Affiliation(s)
- N. Junttila
- MTC; Karolinska Institutet; Stockholm Sweden
| | - N. Lévêque
- Clinical and Molecular Virology Unit; University Hospital Faculty of Medicine; Reims France
- Laboratory of Virology, National Enterovirus Laboratory; Hospices Civils de Lyon; France
| | | | - J.P. Kabue
- National Institute of Biomedical Research; Kinshasa, Democratic Republic of the Congo
| | - J. J. Muyembe-Tamfum
- National Institute of Biomedical Research; Kinshasa, Democratic Republic of the Congo
| | - J. Maslin
- Department of Biology; Saint-Anne Military Hospital; Toulon France
| | - B. Lina
- Laboratory of Virology, National Enterovirus Laboratory; Hospices Civils de Lyon; France
| | - H. Norder
- MTC; Karolinska Institutet; Stockholm Sweden
- Department of Infectious Diseases/Section of Clinical Virology; Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
15
|
Nonhomologous recombination between defective poliovirus and coxsackievirus genomes suggests a new model of genetic plasticity for picornaviruses. mBio 2014; 5:e01119-14. [PMID: 25096874 PMCID: PMC4128350 DOI: 10.1128/mbio.01119-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3' end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. Importance: The multiplication of circulating vaccine-derived polioviruses (cVDPVs) in poorly immunized human populations can render these viruses pathogenic, causing poliomyelitis outbreaks. Most cVDPVs are intertypic recombinants between a poliovirus (PV) strain and another human enterovirus, such as type 17 coxsackie A viruses (CA17). For further studies of the genetic exchanges between PV and CA17, we have developed a model of recombination, making it possible to rescue defective PV RNA genomes with a short deletion by cotransfecting cells with the defective PV genome and CA17 genomic RNA. Numerous recombinants were found, including homologous PV/CA17 recombinants, but mostly nonhomologous recombinants presenting duplications of parental sequences preferentially located in particular regions. Long duplications were excised by passages in cultured cells or in mice, generating diverse homologous recombinants. Recombination leading to nonhomologous recombinants, which evolve into homologous recombinants, may therefore be seen as a model of genetic plasticity in enteroviruses and, possibly, in other RNA viruses.
Collapse
|
16
|
Delpeyroux F, Colbère-Garapin F, Razafindratsimandresy R, Sadeuh-Mba S, Joffret ML, Rousset D, Blondel B. Éradication de la poliomyélite et émergence de poliovirus pathogènes dérivés du vaccin. Med Sci (Paris) 2013; 29:1034-41. [DOI: 10.1051/medsci/20132911021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
17
|
Téoulé F, Brisac C, Pelletier I, Vidalain PO, Jégouic S, Mirabelli C, Bessaud M, Combelas N, Autret A, Tangy F, Delpeyroux F, Blondel B. The Golgi protein ACBD3, an interactor for poliovirus protein 3A, modulates poliovirus replication. J Virol 2013; 87:11031-46. [PMID: 23926333 PMCID: PMC3807280 DOI: 10.1128/jvi.00304-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
We have shown that the circulating vaccine-derived polioviruses responsible for poliomyelitis outbreaks in Madagascar have recombinant genomes composed of sequences encoding capsid proteins derived from poliovaccine Sabin, mostly type 2 (PVS2), and sequences encoding nonstructural proteins derived from other human enteroviruses. Interestingly, almost all of these recombinant genomes encode a nonstructural 3A protein related to that of field coxsackievirus A17 (CV-A17) strains. Here, we investigated the repercussions of this exchange, by assessing the role of the 3A proteins of PVS2 and CV-A17 and their putative cellular partners in viral replication. We found that the Golgi protein acyl-coenzyme A binding domain-containing 3 (ACBD3), recently identified as an interactor for the 3A proteins of several picornaviruses, interacts with the 3A proteins of PVS2 and CV-A17 at viral RNA replication sites, in human neuroblastoma cells infected with either PVS2 or a PVS2 recombinant encoding a 3A protein from CV-A17 [PVS2-3A(CV-A17)]. The small interfering RNA-mediated downregulation of ACBD3 significantly increased the growth of both viruses, suggesting that ACBD3 slowed viral replication. This was confirmed with replicons. Furthermore, PVS2-3A(CV-A17) was more resistant to the replication-inhibiting effect of ACBD3 than the PVS2 strain, and the amino acid in position 12 of 3A was involved in modulating the sensitivity of viral replication to ACBD3. Overall, our results indicate that exchanges of nonstructural proteins can modify the relationships between enterovirus recombinants and cellular interactors and may thus be one of the factors favoring their emergence.
Collapse
Affiliation(s)
- François Téoulé
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
- Université Versailles Saint-Quentin, Versailles, France
| | - Cynthia Brisac
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
- Université Versailles Saint-Quentin, Versailles, France
| | - Isabelle Pelletier
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS URA 3015, Paris, France
| | - Sophie Jégouic
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Carmen Mirabelli
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
| | - Maël Bessaud
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Nicolas Combelas
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Arnaud Autret
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS URA 3015, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| |
Collapse
|
18
|
|
19
|
Pliaka V, Kyriakopoulou Z, Markoulatos P. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev Vaccines 2012; 11:609-28. [PMID: 22827246 DOI: 10.1586/erv.12.28] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Global Polio Eradication Initiative was launched in 1988 with the aim to eliminate paralytic poliomyelitis. Two effective vaccines are available: inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Since 1964, OPV has been used instead of IPV in most countries due to several economic and biological advantages. However, in rare cases, the live-attenuated Sabin strains of OPV revert to neurovirulence and cause vaccine-associated paralytic poliomyelitis in vaccinees or lead to emergence of vaccine-derived poliovirus strains. Attenuating mutations and recombination events have been associated with the reversion of vaccine strains to neurovirulence. The substitution of OPV with an improved new-generation IPV and the availability of new specific drugs against polioviruses are considered as future strategies for outbreak control and the eradication of paralytic poliomyelitis worldwide.
Collapse
Affiliation(s)
- Vaia Pliaka
- University of Thessaly, School of Health Sciences, Department of Biochemistry and Biotechnology, Microbiology-Virology Laboratory, Larissa, Greece.
| | | | | |
Collapse
|
20
|
Bessaud M, Delpeyroux F. Development of a simple and rapid protocol for the production of customized intertypic recombinant polioviruses. J Virol Methods 2012; 186:104-8. [PMID: 22939977 DOI: 10.1016/j.jviromet.2012.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/31/2012] [Accepted: 08/13/2012] [Indexed: 01/20/2023]
Abstract
The three attenuated strains Sabin are used as oral vaccine to immunize against poliomyelitis in many countries. Low vaccine coverage can allow these strains to circulate among non-immunized people, accumulating genetic modifications through nucleotide substitutions and recombination with non-polio enteroviruses. These modifications can induce a loss of attenuation, so promoting the emergence of pathogenic vaccine-derived polioviruses responsible for poliomyelitis outbreaks. In vitro-engineered chimeric viruses containing both Sabin and non-polio sequences constitute a powerful tool for understanding the constraints that drive and limit the recombination events between the Sabin strains and other enteroviruses and to understand the consequences on the viral phenotypic properties of substitutions of large genomic regions due to recombination events. A method was optimized that allowed the rapid production of customized Sabin-derived viruses. By using sequences from Sabin 2 and 3 polioviruses and from non-polio field enteroviruses, several recombinant genomes were engineered by using fusion PCR. The corresponding viruses were recovered after cell transfection. This method was found able to generate rapidly a wide range of unnatural viruses with multiple breakpoints that can be chosen precisely. Furthermore, this method is also suitable to engineer nucleotide deletions, insertions and/or substitutions within a given genome, so increasing the number of unnatural viruses that can be studied.
Collapse
Affiliation(s)
- Maël Bessaud
- Institut Pasteur, Unité postulante de biologie des virus entériques, 25 rue du Dr Roux, 75015 Paris, France.
| | | |
Collapse
|
21
|
Sequencing of a porcine enterovirus strain prevalent in swine groups in China and recombination analysis. Vet Microbiol 2012; 159:265-8. [PMID: 22533990 DOI: 10.1016/j.vetmic.2012.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 11/27/2022]
|
22
|
Joffret ML, Jégouic S, Bessaud M, Balanant J, Tran C, Caro V, Holmblat B, Razafindratsimandresy R, Reynes JM, Rakoto-Andrianarivelo M, Delpeyroux F. Common and diverse features of cocirculating type 2 and 3 recombinant vaccine-derived polioviruses isolated from patients with poliomyelitis and healthy children. J Infect Dis 2012; 205:1363-73. [PMID: 22457288 DOI: 10.1093/infdis/jis204] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Five cases of poliomyelitis due to type 2 or 3 recombinant vaccine-derived polioviruses (VDPVs) were reported in the Toliara province of Madagascar in 2005. METHODS We sequenced the genome of the VDPVs isolated from the patients and from 12 healthy children and characterized phenotypic aspects, including pathogenicity, in mice transgenic for the poliovirus receptor. RESULTS We identified 6 highly complex mosaic recombinant lineages composed of sequences derived from different vaccine polioviruses and other species C human enteroviruses (HEV-Cs). Most had some recombinant genome features in common and contained nucleotide sequences closely related to certain cocirculating coxsackie A virus isolates. However, they differed in terms of their recombinant characteristics or nucleotide substitutions and phenotypic features. All VDPVs were neurovirulent in mice. CONCLUSIONS This study confirms the genetic relationship between type 2 and 3 VDPVs, indicating that both types can be involved in a single outbreak of disease. Our results highlight the various ways in which a vaccine-derived poliovirus may become pathogenic in complex viral ecosystems, through frequent recombination events and mutations. Intertypic recombination between cocirculating HEV-Cs (including polioviruses) appears to be a common mechanism of genetic plasticity underlying transverse genetic variability.
Collapse
Affiliation(s)
- Marie-Line Joffret
- Département de Virologie, Institut Pasteur, Unité de Biologie des Virus Entériques, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses. J Virol 2012; 86:3890-904. [PMID: 22278230 DOI: 10.1128/jvi.07173-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent advent of genome sequences as the only source available to classify many newly discovered viruses challenges the development of virus taxonomy by expert virologists who traditionally rely on extensive virus characterization. In this proof-of-principle study, we address this issue by presenting a computational approach (DEmARC) to classify viruses of a family into groups at hierarchical levels using a sole criterion-intervirus genetic divergence. To quantify genetic divergence, we used pairwise evolutionary distances (PEDs) estimated by maximum likelihood inference on a multiple alignment of family-wide conserved proteins. PEDs were calculated for all virus pairs, and the resulting distribution was modeled via a mixture of probability density functions. The model enables the quantitative inference of regions of distance discontinuity in the family-wide PED distribution, which define the levels of hierarchy. For each level, a limit on genetic divergence, below which two viruses join the same group, was objectively selected among a set of candidates by minimizing violations of intragroup PEDs to the limit. In a case study, we applied the procedure to hundreds of genome sequences of picornaviruses and extensively evaluated it by modulating four key parameters. It was found that the genetics-based classification largely tolerates variations in virus sampling and multiple alignment construction but is affected by the choice of protein and the measure of genetic divergence. In an accompanying paper (C. Lauber and A. E. Gorbalenya, J. Virol. 86:3905-3915, 2012), we analyze the substantial insight gained with the genetics-based classification approach by comparing it with the expert-based picornavirus taxonomy.
Collapse
|
24
|
Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence. Viruses 2011; 3:1460-84. [PMID: 21994791 PMCID: PMC3185806 DOI: 10.3390/v3081460] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.
Collapse
|
25
|
Savolainen-Kopra C, Blomqvist S. Mechanisms of genetic variation in polioviruses. Rev Med Virol 2011; 20:358-71. [PMID: 20949639 DOI: 10.1002/rmv.663] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polioviruses, as with all RNA viruses, are in a constant process of evolution driven by different mechanisms. With multiple mechanisms for genetic variability, they are successful conformists, adapting to changes in their habitat. The evolution of polioviruses may occur with generation of point mutations followed by genetic drift and selection. The mutation rate of polioviruses based on several studies is approximately 3 × 10(-2) mutations/synonymous site/year in the gene encoding viral protein 1. Genetic variation in polioviruses may also be increased by sharing of genetic data of two different poliovirus lineages by means of homologous recombination. According to the current view, recombination is considered usually to occur by strand-switching, but a non-replicative model has also been described. In recombination, polioviruses may either gain a set of advantageous mutations selected and fixed in previous generations of the parental viruses or get rid of deleterious ones. The prerequisites and constraints of the evolution mechanisms will be discussed. Furthermore, consequences of poliovirus evolution will be reviewed in the light of observations made on currently circulating polioviruses. We will also describe how polioviruses strike back: as wild type polioviruses approach eradication, vaccine derived strains increase their occurrence and genetic variability.
Collapse
Affiliation(s)
- Carita Savolainen-Kopra
- National Institute for Health and Welfare (THL), Department of Infectious Disease Surveillance and Control, Unit of Intestinal Viruses, Helsinki, Finland.
| | | |
Collapse
|
26
|
Evidence for recombination between vaccine and wild-type mumps virus strains. Arch Virol 2010; 155:1493-6. [PMID: 20574642 DOI: 10.1007/s00705-010-0733-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
Recombination of mumps virus (MuV) has rarely been reported. In this study, phylogenetic and recombination analyses were performed on 30 complete MuV genomes, including 17 vaccine and 13 wild-type strains. One potentially significant recombination event was found to have occurred between the lineage represented by the vaccine strain L3/Russia/Vector (AY508995) as the minor parent and wild MuV strain Drag94 (AY669145) as the major parent, and this led to a recombinant, 9218/Zg98 (EU370206), a wild-type MuV strain isolated from a 3-year-old boy with parotitis. In summary, we found a recombinant of MuV derived from vaccine and wild-type MuV strains.
Collapse
|
27
|
Jegouic S, Joffret ML, Blanchard C, Riquet FB, Perret C, Pelletier I, Colbere-Garapin F, Rakoto-Andrianarivelo M, Delpeyroux F. Recombination between polioviruses and co-circulating Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived polioviruses. PLoS Pathog 2009; 5:e1000412. [PMID: 19412342 PMCID: PMC2669712 DOI: 10.1371/journal.ppat.1000412] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 04/06/2009] [Indexed: 11/30/2022] Open
Abstract
Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3′ half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3′ half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3′ portion of the cVDPV genome was replaced by the 3′ half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence. Following intense vaccination campaigns with Sabin's trivalent live-attenuated oral poliovirus vaccine, poliomyelitis caused by wild polioviruses has disappeared from large parts of the world. However, poliomyelitis outbreaks due to pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in countries with low vaccine coverage. Most of these cVDPVs seem to be recombinants of mutated vaccine strains and undetermined coxsackieviruses. We have previously shown a cVDPV isolated during an outbreak in Madagascar to be co-circulating with coxsackievirus A17 (CA17) strains with 3′ genomic sequences related to those of the cVDPV. In this study, we determined whether these CA17 isolates can act as recombination partners of poliovirus. Using genetic engineering techniques, we constructed a variety of recombinant viruses derived from a CA17 isolate, the cVDPV and the corresponding original vaccine strain. Our results showed that poliovirus/CA17 recombinants are viable. Moreover, the recombinant virus resulting from the replacement of the 3′ half of the cVDPV genome by that of the CA17 genome was almost as pathogenic as the cVDPV. This supports the notion that co-circulation and co-evolution through the recombination of polioviruses and coxsackieviruses contribute to the emergence of epidemic cVDPVs. This constitutes an interesting model of viral evolution and emergence.
Collapse
Affiliation(s)
- Sophie Jegouic
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|