1
|
Wu CJ. NEMO Family of Proteins as Polyubiquitin Receptors: Illustrating Non-Degradative Polyubiquitination's Roles in Health and Disease. Cells 2025; 14:304. [PMID: 39996775 PMCID: PMC11854354 DOI: 10.3390/cells14040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
The IκB kinase (IKK) complex plays a central role in many signaling pathways that activate NF-κB, which turns on a battery of genes important for immune response, inflammation, and cancer development. Ubiquitination is one of the most prevalent post-translational modifications of proteins and is best known for targeting substrates for proteasomal degradation. The investigations of NF-κB signaling pathway primed the unveiling of the non-degradative roles of protein ubiquitination. The NF-κB-essential modulator (NEMO) is the IKK regulatory subunit that is essential for IKK activation by diverse intrinsic and extrinsic stimuli. The studies centered on NEMO as a polyubiquitin-binding protein have remarkably advanced understandings of how NEMO transmits signals to NF-κB activation and have laid a foundation for determining the molecular events demonstrating non-degradative ubiquitination as a major driving element in IKK activation. Furthermore, these studies have largely solved the enigma that IKK can be activated by diverse pathways that employ distinct sets of intermediaries in transmitting signals. NEMO and NEMO-related proteins that include optineurin, ABIN1, ABIN2, ABIN3, and CEP55, as non-degradative ubiquitin chain receptors, play a key role in sensing and transmitting ubiquitin signals embodied in different topologies of polyubiquitin chains for a variety of cellular processes and body responses. Studies of these multifaceted proteins in ubiquitin sensing have promoted understanding about the functions of non-degradative ubiquitination in intracellular signaling, protein trafficking, proteostasis, immune response, DNA damage response, and cell cycle control. In this review, I will also discuss how dysfunction in the NEMO family of protein-mediated non-degradative ubiquitin signaling is associated with various diseases, including immune disorders, neurodegenerative diseases, and cancer, and how microbial virulence factors target NEMO to induce pathogenesis or manipulate host response. A profound understanding of the molecular bases for non-degradative ubiquitin signaling will be valuable for developing tailored approaches for therapeutic purposes.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Reiss BT, Bouza L, Thomas S, Suarez CD, Hill ER, Nichols DB. The MC160 protein of the molluscum contagiosum virus dampens cGAS/STING-induced interferon-β activation. Exp Mol Pathol 2023; 134:104876. [PMID: 37890651 DOI: 10.1016/j.yexmp.2023.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Molluscum contagiosum virus (MCV) is a poxvirus that causes benign, persistent skin lesions. MCV encodes a variety of immune evasion molecules to dampen host immune responses. Two of these proteins are the MC159 and MC160 proteins. Both MC159 and MC160 contain two tandem death effector domains and share homology to the cellular FLIPs, FADD, and procaspase-8. MC159 and MC160 dampen several innate immune responses such as NF-κB activation and mitochondrial antiviral signaling (MAVS)-mediated induction of type 1 interferon (IFN). The type 1 IFN response is also activated by the cytosolic DNA sensors cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Both cGAS and STING play a vital role in sensing a poxvirus infection. In this study, we demonstrate that there are nuanced differences between both MC160 and MC159 in terms of how the viral proteins modulate the cGAS/STING and MAVS pathways. Specifically, MC160 expression, but not MC159 expression, dampens cGAS/STING-mediated induction of IFN in HEK 293 T cells. Further, MC160 expression prevented the K63-ubiquitination of both STING and TBK1, a kinase downstream of cGAS/STING. Ectopic expression of the MC160 protein, but not the MC159 protein, resulted in a measurable decrease in the TBK1 protein levels as detected via immunoblotting. Finally, using a panel of MC160 truncation mutants, we report that the MC160 protein requires both DEDs to inhibit cGAS/STING-induced activation of IFN-β. Our model indicates MC160 likely alters the TBK1 signaling complex to decrease IFN-β activation at the molecular intersection of the cGAS/STING and MAVS signaling pathways.
Collapse
Affiliation(s)
- Brian T Reiss
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Lissette Bouza
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Swagath Thomas
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Catherine D Suarez
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Erik R Hill
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
3
|
Sun J, Li J, Li L, Yu H, Ma P, Wang Y, Zhu J, Feng Z, Tu C. Classical swine fever virus NS5A protein antagonizes innate immune response by inhibiting the NF-κB signaling. Virol Sin 2023; 38:900-910. [PMID: 37714433 PMCID: PMC10786662 DOI: 10.1016/j.virs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
The NS5A non-structural protein of classical swine fever virus (CSFV) is a multifunctional protein involved in viral genomic replication, protein translation, assembly of infectious virus particles, and regulation of cellular signaling pathways. Previous report showed that NS5A inhibited nuclear factor kappa B (NF-κB) signaling induced by poly(I:C); however, the mechanism involved has not been elucidated. Here, we reported that NS5A directly interacted with NF-κB essential modulator (NEMO), a regulatory subunit of the IκB kinase (IKK) complex, to inhibit the NF-κB signaling pathway. Further investigations showed that the zinc finger domain of NEMO and the aa 126-250 segment of NS5A are essential for the interaction between NEMO and NS5A. Mechanistic analysis revealed that NS5A mediated the proteasomal degradation of NEMO. Ubiquitination assay showed that NS5A induced the K27-linked but not the K48-linked polyubiquitination of NEMO for proteasomal degradation. In addition, NS5A blocked the K63-linked polyubiquitination of NEMO, thus inhibiting IKK phosphorylation, IκBα degradation, and NF-κB activation. These findings revealed a novel mechanism by which CSFV inhibits host innate immunity, which might guide the drug design against CSFV in the future.
Collapse
Affiliation(s)
- Jinfu Sun
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| | - Jiaying Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Liming Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Haixiao Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Ping Ma
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yingnan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Jinqi Zhu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Zezhong Feng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Ward BM, Riccio DA, Cartwright M, Maeda-Chubachi T. The Antiviral Effect of Berdazimer Sodium on Molluscum Contagiosum Virus Using a Novel In Vitro Methodology. Viruses 2023; 15:2360. [PMID: 38140601 PMCID: PMC10747301 DOI: 10.3390/v15122360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Molluscum contagiosum (MC) is characterized by skin lesions containing the highly contagious molluscum contagiosum poxvirus (MCV). MCV primarily infects children, with one US Food and Drug Administration (FDA)-approved drug-device treatment in use but no approved medications. Assessing antivirals is hindered by the inability of MCV to replicate in vitro. Here, we use vaccinia virus as a surrogate to provide evidence of the anti-poxvirus properties of berdazimer sodium, a new chemical entity, and the active substance in berdazimer gel, 10.3%, a nitric oxide-releasing topical in phase 3 development for the treatment of MC. We show that berdazimer sodium reduced poxvirus replication and, through a novel methodology, demonstrate that cells infected with drug-treated MCV virions have reduced early gene expression. Specifically, this is accomplished by studying the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB)-blocking protein MC160 as an example of an early gene. The results provide a plausible unique antiviral mechanism of action supporting increased MCV resolution observed in patients treated with berdazimer gel, 10.3% and describe a novel methodology that overcomes limitations in investigating MCV response in vitro to a potential new MC topical medication.
Collapse
Affiliation(s)
- Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | | | | | | |
Collapse
|
5
|
Phelan T, Lawler C, Pichlmair A, Little MA, Bowie AG, Brady G. Molluscum Contagiosum Virus Protein MC008 Targets NF-κB Activation by Inhibiting Ubiquitination of NEMO. J Virol 2023; 97:e0010823. [PMID: 36916940 PMCID: PMC10062130 DOI: 10.1128/jvi.00108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Molluscum contagiosum virus (MCV) is a human-adapted poxvirus that causes a common and persistent yet mild infection characterized by distinct, contagious, papular skin lesions. These lesions are notable for having little or no inflammation associated with them and can persist for long periods without an effective clearance response from the host. Like all poxviruses, MCV encodes potent immunosuppressive proteins that perturb innate immune pathways involved in virus sensing, the interferon response, and inflammation, which collectively orchestrate antiviral immunity and clearance, with several of these pathways converging at common signaling nodes. One such node is the regulator of canonical nuclear factor kappa B (NF-κB) activation, NF-κB essential modulator (NEMO). Here, we report that the MCV protein MC008 specifically inhibits NF-κB through its interaction with NEMO, disrupting its early ubiquitin-mediated activation and subsequent downstream signaling. MC008 is the third NEMO-targeting inhibitor to be described in MCV to date, with each inhibiting NEMO activation in distinct ways, highlighting strong selective pressure to evolve multiple ways of disabling this key signaling protein. IMPORTANCE Inflammation lies at the heart of most human diseases. Understanding the pathways that drive this response is the key to new anti-inflammatory therapies. Viruses evolve to target inflammation; thus, understanding how they do this reveals how inflammation is controlled and, potentially, how to disable it when it drives disease. Molluscum contagiosum virus (MCV) has specifically evolved to infect humans and displays an unprecedented ability to suppress inflammation in our tissue. We have identified a novel inhibitor of human innate signaling from MCV, MC008, which targets NEMO, a core regulator of proinflammatory signaling. Furthermore, MC008 appears to inhibit early ubiquitination, thus interrupting later events in NEMO activation, thereby validating current models of IκB kinase (IKK) complex regulation.
Collapse
Affiliation(s)
- Thomas Phelan
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Clara Lawler
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | | | - Mark A. Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| |
Collapse
|
6
|
I226R Protein of African Swine Fever Virus Is a Suppressor of Innate Antiviral Responses. Viruses 2022; 14:v14030575. [PMID: 35336982 PMCID: PMC8951476 DOI: 10.3390/v14030575] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
African swine fever is one of the most devastating swine diseases caused by African swine fever virus (ASFV). Although ASFV encodes more than 160 viral proteins, the implication of a majority of ASFV proteins in regulating host immunity is yet to be explored, and the mechanisms of immune evasion by ASFV proteins are largely unknown. Here, we report that the I226R protein of ASFV significantly suppressed innate immune responses. The ectopic expression of ASFV I226R in 293T cells significantly inhibited the activation of interferon-stimulated response element promoters triggered by Sendai virus (SeV), poly(I:C), or cyclic GMP-AMP synthase (cGAS)/STING. The I226R protein caused a significant decrease in the expression of interferons and interferon-stimulating genes in cells infected with SeV. Similar results were obtained from experiments using I226R-overexpressed PK15 and 3D4/21 cells stimulated with vesicular stomatitis virus. We observed that I226R inhibited the activation of both nuclear factor-kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). Furthermore, it was shown that overexpression of I226R suppressed IRF3 activation and caused the degradation of NF-κB essential modulator (NEMO) protein. The I226R-induced NEMO degradation could be prevented by treatment with MG132, a proteasome inhibitor. Together, these results reveal that the ASFV I226R protein impairs antiviral responses, likely through multiple mechanisms including the suppression of NF-κB and IRF3 activation, to counteract innate immune responses during the viral infection.
Collapse
|
7
|
IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling. Cells 2020; 9:cells9051118. [PMID: 32365919 PMCID: PMC7290580 DOI: 10.3390/cells9051118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination substrates involved in non-immune signaling pathways. This review aimed to present IAP ubiquitination substrates and the role of IAP-mediated ubiquitination in regulating signaling pathways.
Collapse
|
8
|
MC159 of Molluscum Contagiosum Virus Suppresses Autophagy by Recruiting Cellular SH3BP4 via an SH3 Domain-Mediated Interaction. J Virol 2019; 93:JVI.01613-18. [PMID: 30842330 DOI: 10.1128/jvi.01613-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
MC159 is a viral FLIP (FLICE inhibitory protein) encoded by the molluscum contagiosum virus (MCV) enabling MCV to evade antiviral immunity and to establish persistent infections in humans. Here, we show that MC159 contains a functional SH3 binding motif, which mediates avid and selective binding to SH3BP4, a signaling protein known to regulate endocytic trafficking and suppress cellular autophagy. The capacity to bind SH3BP4 was dispensable for regulation of NF-κB-mediated transcription and suppression of proapoptotic caspase activation but contributed to inhibition of amino acid starvation-induced autophagy by MC159. These results provide new insights into the cellular functions of MC159 and reveal SH3BP4 as a novel host cell factor targeted by a viral immune evasion protein.IMPORTANCE After the eradication of smallpox, molluscum contagiosum virus (MCV) is the only poxvirus restricted to infecting humans. MCV infection is common and causes benign skin lesions that usually resolve spontaneously but may persist for years and grow large, especially in immunocompromised individuals. While not life threatening, MCV infections pose a significant global health burden. No vaccine or specific anti-MCV therapy is available. MCV encodes several proteins that enable it to evade antiviral immunity, a notable example of which is the MC159 protein. In this study, we describe a novel mechanism of action for MC159 involving hijacking of a host cell protein called SH3BP4 to suppress autophagy, a cellular recycling mechanism important for antiviral immunity. This study contributes to our understanding of the host cell interactions of MCV and the molecular function of MC159.
Collapse
|
9
|
De Martini W, Coutu J, Bugert J, Iversen T, Cottrell J, Nichols DB. The molluscum contagiosum virus protein MC163 inhibits TNF-α-induced NF-κB activation. Future Virol 2019. [DOI: 10.2217/fvl-2019-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The molluscum contagiosum virus (MCV) expresses several immune evasion molecules that inhibit activation of NF-κB. Presumably, inhibition of inflammatory responses mediated by NF-κB allows MCV to cause persistent infections. Materials & methods: MC163-IKK-α interactions were detected by immunoprecipitations. Results: Here, we identify a novel MCV inhibitor of NF-κB. Ectopic expression of the MC163 protein resulted in a significant decrease in TNF-α-induced NF-κB activation. However, MC163 had no detectable effect on mitochondrial antiviral-signaling protein-induced activation of the IFN-β-promoter. MC163 dampened NF-κB activation induced via the overexpression of either IKK-α or IKK-β suggesting MC163 targets the IKK complex. Conclusion: Our data highlight a previously unknown function for the MC163 protein and may represent an additional strategy used by MCV to subvert host immune responses.
Collapse
Affiliation(s)
- William De Martini
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Jesse Coutu
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
- Department of Microbiology, Oregon State University, Dryden Hall 106A, Corvallis, OR 97333, USA
| | - Joachim Bugert
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 München, Germany
| | - Timothy Iversen
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| |
Collapse
|
10
|
Molluscum contagiosum virus MC80 sabotages MHC-I antigen presentation by targeting tapasin for ER-associated degradation. PLoS Pathog 2019; 15:e1007711. [PMID: 31034515 PMCID: PMC6508746 DOI: 10.1371/journal.ppat.1007711] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/09/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022] Open
Abstract
The human specific poxvirus molluscum contagiosum virus (MCV) produces skin lesions that can persist with minimal inflammation, suggesting that the virus has developed robust immune evasion strategies. However, investigations into the underlying mechanisms of MCV pathogenesis have been hindered by the lack of a model system to propagate the virus. Herein we demonstrate that MCV-encoded MC80 can disrupt MHC-I antigen presentation in human and mouse cells. MC80 shares moderate sequence-similarity with MHC-I and we find that it associates with components of the peptide-loading complex. Expression of MC80 results in ER-retention of host MHC-I and thereby reduced cell surface presentation. MC80 accomplishes this by engaging tapasin via its luminal domain, targeting it for ubiquitination and ER-associated degradation in a process dependent on the MC80 transmembrane region and cytoplasmic tail. Tapasin degradation is accompanied by a loss of TAP, which limits MHC-I access to cytosolic peptides. Our findings reveal a unique mechanism by which MCV undermines adaptive immune surveillance.
Collapse
|
11
|
Biswas S, Smith GL, Roy EJ, Ward B, Shisler JL. A comparison of the effect of molluscum contagiosum virus MC159 and MC160 proteins on vaccinia virus virulence in intranasal and intradermal infection routes. J Gen Virol 2019; 99:246-252. [PMID: 29393023 DOI: 10.1099/jgv.0.001006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Molluscum contagiosum virus (MCV) causes persistent, benign skin neoplasm in children and adults. MCV is refractive to growth in standard tissue culture and there is no relevant animal model of infection. Here we investigated whether another poxvirus (vaccinia virus; VACV) could be used to examine MCV immunoevasion protein properties in vivo. The MCV MC159L or MC160L genes, which encode NF-κB antagonists, were inserted into an attenuated VACV lacking an NF-κB antagonist (vΔA49), creating vMC159 and vMC160. vMC160 slightly increased vΔA49 virulence in the intranasal and intradermal routes of inoculation. vMC159 infection was less virulent than vΔA49 in both inoculation routes. vMC159-infected ear pinnae did not form lesions, but virus replication still occurred. Thus, the lack of lesions was not due to abortive virus replication. This system provides a new approach to examine MCV immunoevasion proteins within the context of a complete and complex immune system.
Collapse
Affiliation(s)
- Sunetra Biswas
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey L Smith
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, UK
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA
| | - Brian Ward
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 2018; 56:12-24. [PMID: 29486318 DOI: 10.1016/j.semcancer.2018.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.
Collapse
|
13
|
Maubach G, Schmädicke AC, Naumann M. NEMO Links Nuclear Factor-κB to Human Diseases. Trends Mol Med 2017; 23:1138-1155. [PMID: 29128367 DOI: 10.1016/j.molmed.2017.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
The nuclear factor (NF)-κB essential modulator (NEMO) is a key regulator in NF-κB-mediated signaling. By transmitting extracellular or intracellular signals, NEMO can control NF-κB-regulated genes. NEMO dysfunction is associated with inherited diseases such as incontinentia pigmenti (IP), ectodermal dysplasia, anhidrotic, with immunodeficiency (EDA-ID), and some cancers. We focus on molecular studies, human case reports, and mouse models emphasizing the significance of NEMO molecular interactions and modifications in health and diseases. This knowledge opens new opportunities to engineer suitable drugs that may putatively target precise NEMO functions attributable to various diseases, while leaving other functions intact, and eliminating cytotoxicity. Indeed, with the advent of novel gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9, treating some inherited diseases may in the long run, become a reality.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Ann-Christin Schmädicke
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|