1
|
Johnson P, Needham J, Lim N, Simon A. Direct nanopore RNA sequencing of umbra-like virus-infected plants reveals long non-coding RNAs, specific cleavage sites, D-RNAs, foldback RNAs, and temporal- and tissue-specific profiles. NAR Genom Bioinform 2024; 6:lqae104. [PMID: 39157584 PMCID: PMC11327873 DOI: 10.1093/nargab/lqae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The traditional view of plus (+)-strand RNA virus transcriptomes is that infected cells contain a limited variety of viral RNAs, such as full-length (+)-strand genomic RNA(s), (-)-strand replication intermediate(s), 3' co-terminal subgenomic RNA(s), and viral recombinant defective (D)-RNAs. To ascertain the full complement of viral RNAs associated with the simplest plant viruses, long-read direct RNA nanopore sequencing was used to perform transcriptomic analyses of two related umbra-like viruses: citrus yellow vein-associated virus (CY1) from citrus and CY2 from hemp. Analysis of different timepoints/tissues in CY1- and CY2-infected Nicotiana benthamiana plants and CY2-infected hemp revealed: (i) three 5' co-terminal RNAs of 281 nt, 442 nt and 671 nt, each generated by a different mechanism; (ii) D-RNA populations containing the 671 fragment at their 5'ends; (iii) many full-length genomic RNAs and D-RNAs with identical 3'end 61 nt truncations; (iv) virtually all (-)-strand reads missing 3 nt at their 3' termini; (v) (±) foldback RNAs comprising about one-third of all (-)-strand reads and (vi) a higher proportion of full-length gRNAs in roots than in leaves, suggesting that roots may be functioning as a gRNA reservoir. These findings suggest that viral transcriptomes are much more complex than previously thought.
Collapse
Affiliation(s)
- Philip Z Johnson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Jason M Needham
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Natalie K Lim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, USA
| |
Collapse
|
2
|
Mikkelsen AA, Gao F, Carino E, Bera S, Simon A. -1 Programmed ribosomal frameshifting in Class 2 umbravirus-like RNAs uses multiple long-distance interactions to shift between active and inactive structures and destabilize the frameshift stimulating element. Nucleic Acids Res 2023; 51:10700-10718. [PMID: 37742076 PMCID: PMC10602861 DOI: 10.1093/nar/gkad744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023] Open
Abstract
Plus-strand RNA viruses frequently employ -1 programmed ribosomal frameshifting (-1 PRF) to maximize their coding capacity. Ribosomes can frameshift at a slippery sequence if progression is impeded by a frameshift stimulating element (FSE), which is generally a stable, complex, dynamic structure with multiple conformations that contribute to the efficiency of -1 PRF. As FSE are usually analyzed separate from the viral genome, little is known about cis-acting long-distance interactions. Using full-length genomic RNA of umbravirus-like (ula)RNA citrus yellow vein associated virus (CY1) and translation in wheat germ extracts, six tertiary interactions were found associated with the CY1 FSE that span nearly three-quarters of the 2.7 kb genomic RNA. All six tertiary interactions are conserved in other Class 2 ulaRNAs and two are conserved in all ulaRNAs. Two sets of interactions comprise local and distal pseudoknots that involve overlapping FSE nucleotides and thus are structurally incompatible, suggesting that Class 2 FSEs assume multiple conformations. Importantly, two long-distance interactions connect with sequences on opposite sides of the critical FSE central stem, which would unzip the stem and destabilize the FSE. These latter interactions could allow a frameshifting ribosome to translate through a structurally disrupted upstream FSE that no longer blocks ribosome progression.
Collapse
Affiliation(s)
- Anna A Mikkelsen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth Carino
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Novel 3' Proximal Replication Elements in Umbravirus Genomes. Viruses 2022; 14:v14122615. [PMID: 36560619 PMCID: PMC9780821 DOI: 10.3390/v14122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The 3' untranslated regions (UTRs) of positive-strand RNA plant viruses commonly contain elements that promote viral replication and translation. The ~700 nt 3'UTR of umbravirus pea enation mosaic virus 2 (PEMV2) contains three 3' cap-independent translation enhancers (3'CITEs), including one (PTE) found in members of several genera in the family Tombusviridae and another (the 3'TSS) found in numerous umbraviruses and several carmoviruses. In addition, three 3' terminal replication elements are found in nearly every umbravirus and carmovirus. For this report, we have identified a set of three hairpins and a putative pseudoknot, collectively termed "Trio", that are exclusively found in a subset of umbraviruses and are located just upstream of the 3'TSS. Modification of these elements had no impact on viral translation in wheat germ extracts or in translation of luciferase reporter constructs in vivo. In contrast, Trio hairpins were critical for viral RNA accumulation in Arabidopsis thaliana protoplasts and for replication of a non-autonomously replicating replicon using a trans-replication system in Nicotiana benthamiana leaves. Trio and other 3' terminal elements involved in viral replication are highly conserved in umbraviruses possessing different classes of upstream 3'CITEs, suggesting conservation of replication mechanisms among umbraviruses despite variation in mechanisms for translation enhancement.
Collapse
|
4
|
Liu J, Carino E, Bera S, Gao F, May JP, Simon AE. Structural Analysis and Whole Genome Mapping of a New Type of Plant Virus Subviral RNA: Umbravirus-Like Associated RNAs. Viruses 2021; 13:646. [PMID: 33918656 PMCID: PMC8068935 DOI: 10.3390/v13040646] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
We report the biological and structural characterization of umbravirus-like associated RNAs (ulaRNAs), a new category of coat-protein dependent subviral RNA replicons that infect plants. These RNAs encode an RNA-dependent RNA polymerase (RdRp) following a -1 ribosomal frameshift event, are 2.7-4.6 kb in length, and are related to umbraviruses, unlike similar RNA replicons that are related to tombusviruses. Three classes of ulaRNAs are proposed, with citrus yellow vein associated virus (CYVaV) placed in Class 2. With the exception of CYVaV, Class 2 and Class 3 ulaRNAs encode an additional open reading frame (ORF) with movement protein-like motifs made possible by additional sequences just past the RdRp termination codon. The full-length secondary structure of CYVaV was determined using Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE) structure probing and phylogenic comparisons, which was used as a template for determining the putative structures of the other Class 2 ulaRNAs, revealing a number of distinctive structural features. The ribosome recoding sites of nearly all ulaRNAs, which differ significantly from those of umbraviruses, may exist in two conformations and are highly efficient. The 3' regions of Class 2 and Class 3 ulaRNAs have structural elements similar to those of nearly all umbraviruses, and all Class 2 ulaRNAs have a unique, conserved 3' cap-independent translation enhancer. CYVaV replicates independently in protoplasts, demonstrating that the reported sequence is full-length. Additionally, CYVaV contains a sequence in its 3' UTR that confers protection to nonsense mediated decay (NMD), thus likely obviating the need for umbravirus ORF3, a known suppressor of NMD. This initial characterization lays down a road map for future investigations into these novel virus-like RNAs.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| | - Elizabeth Carino
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| | - Feng Gao
- Silvec Biologics, Rockville, MD 20850, USA;
| | - Jared P. May
- Department of Cell and Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64110, USA;
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA; (J.L.); (E.C.); (S.B.)
| |
Collapse
|
5
|
He L, Wang Q, Gu Z, Liao Q, Palukaitis P, Du Z. A conserved RNA structure is essential for a satellite RNA-mediated inhibition of helper virus accumulation. Nucleic Acids Res 2019; 47:8255-8271. [PMID: 31269212 PMCID: PMC6735963 DOI: 10.1093/nar/gkz564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
As a class of parasitic, non-coding RNAs, satellite RNAs (satRNAs) have to compete with their helper virus for limited amounts of viral and/or host resources for efficient replication, by which they usually reduce viral accumulation and symptom expression. Here, we report a cucumber mosaic virus (CMV)-associated satRNA (sat-T1) that ameliorated CMV-induced symptoms, accompanied with a significant reduction in the accumulation of viral genomic RNAs 1 and 2, which encode components of the viral replicase. Intrans replication assays suggest that the reduced accumulation is the outcome of replication competition. The structural basis of sat-T1 responsible for the inhibition of viral RNA accumulation was determined to be a three-way branched secondary structure that contains two biologically important hairpins. One is indispensable for the helper virus inhibition, and the other engages in formation of a tertiary pseudoknot structure that is essential for sat-T1 survival. The secondary structure containing the pseudoknot is the first RNA element with a biological phenotype experimentally identified in CMV satRNAs, and it is structurally conserved in most CMV satRNAs. Thus, this may be a generic method for CMV satRNAs to inhibit the accumulation of the helper virus via the newly-identified RNA structure.
Collapse
Affiliation(s)
- Lu He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qian Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Zhouhang Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Nowon-gu, Seoul 01797, Republic of Korea
| | - Zhiyou Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
6
|
Bayne CF, Widawski ME, Gao F, Masab MH, Chattopadhyay M, Murawski AM, Sansevere RM, Lerner BD, Castillo RJ, Griesman T, Fu J, Hibben JK, Garcia-Perez AD, Simon AE, Kushner DB. SELEX and SHAPE reveal that sequence motifs and an extended hairpin in the 5' portion of Turnip crinkle virus satellite RNA C mediate fitness in plants. Virology 2018; 520:137-152. [PMID: 29864677 DOI: 10.1016/j.virol.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/06/2018] [Accepted: 05/12/2018] [Indexed: 11/19/2022]
Abstract
Noncoding RNAs use their sequence and/or structure to mediate function(s). The 5' portion (166 nt) of the 356-nt noncoding satellite RNA C (satC) of Turnip crinkle virus (TCV) was previously modeled to contain a central region with two stem-loops (H6 and H7) and a large connecting hairpin (H2). We now report that in vivo functional selection (SELEX) experiments assessing sequence/structure requirements in H2, H6, and H7 reveal that H6 loop sequence motifs were recovered at nonrandom rates and only some residues are proposed to base-pair with accessible complementary sequences within the 5' central region. In vitro SHAPE of SELEX winners indicates that the central region is heavily base-paired, such that along with the lower stem and H2 region, one extensive hairpin exists composing the entire 5' region. As these SELEX winners are highly fit, these characteristics facilitate satRNA amplification in association with TCV in plants.
Collapse
Affiliation(s)
- Charlie F Bayne
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | - Max E Widawski
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Mohammed H Masab
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | - Maitreyi Chattopadhyay
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | - Bryan D Lerner
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | | | - Trevor Griesman
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | - Jiantao Fu
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | | | | | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - David B Kushner
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA.
| |
Collapse
|
7
|
Atypical RNA Elements Modulate Translational Readthrough in Tobacco Necrosis Virus D. J Virol 2017; 91:JVI.02443-16. [PMID: 28148800 DOI: 10.1128/jvi.02443-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022] Open
Abstract
Tobacco necrosis virus, strain D (TNV-D), is a positive-strand RNA virus in the genus Betanecrovirus and family Tombusviridae The production of its RNA-dependent RNA polymerase, p82, is achieved by translational readthrough. This process is stimulated by an RNA structure that is positioned immediately downstream of the recoding site, termed the readthrough stem-loop (RTSL), and a sequence in the 3' untranslated region of the TNV-D genome, called the distal readthrough element (DRTE). Notably, a base pairing interaction between the RTSL and the DRTE, spanning ∼3,000 nucleotides, is required for enhancement of readthrough. Here, some of the structural features of the RTSL, as well as RNA sequences and structures that flank either the RTSL or DRTE, were investigated for their involvement in translational readthrough and virus infectivity. The results revealed that (i) the RTSL-DRTE interaction cannot be functionally replaced by stabilizing the RTSL structure, (ii) a novel tertiary RNA structure positioned just 3' to the RTSL is required for optimal translational readthrough and virus infectivity, and (iii) these same activities also rely on an RNA stem-loop located immediately upstream of the DRTE. Functional counterparts for the RTSL-proximal structure may also be present in other tombusvirids. The identification of additional distinct RNA structures that modulate readthrough suggests that regulation of this process by genomic features may be more complex than previously appreciated. Possible roles for these novel RNA elements are discussed.IMPORTANCE The analysis of factors that affect recoding events in viruses is leading to an ever more complex picture of this important process. In this study, two new atypical RNA elements were shown to contribute to efficient translational readthrough of the TNV-D polymerase and to mediate robust viral genome accumulation in infections. One of the structures, located close to the recoding site, could have functional equivalents in related genera, while the other structure, positioned 3' proximally in the viral genome, is likely limited to betanecroviruses. Irrespective of their prevalence, the identification of these novel RNA elements adds to the current repertoire of viral genome-based modulators of translational readthrough and provides a notable example of the complexity of regulation of this process.
Collapse
|
8
|
Le MT, Kasprzak WK, Kim T, Gao F, Young MYL, Yuan X, Shapiro BA, Seog J, Simon AE. Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch. eLife 2017; 6:e22883. [PMID: 28186489 PMCID: PMC5336357 DOI: 10.7554/elife.22883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Turnip crinkle virus contains a T-shaped, ribosome-binding, translation enhancer (TSS) in its 3'UTR that serves as a hub for interactions throughout the region. The viral RNA-dependent RNA polymerase (RdRp) causes the TSS/surrounding region to undergo a conformational shift postulated to inhibit translation. Using optical tweezers (OT) and steered molecular dynamic simulations (SMD), we found that the unusual stability of pseudoknotted element H4a/Ψ3 required five upstream adenylates, and H4a/Ψ3 was necessary for cooperative association of two other hairpins (H5/H4b) in Mg2+. SMD recapitulated the TSS unfolding order in the absence of Mg2+, showed dependence of the resistance to pulling on the 3D orientation and gave structural insights into the measured contour lengths of the TSS structure elements. Adenylate mutations eliminated one-site RdRp binding to the 3'UTR, suggesting that RdRp binding to the adenylates disrupts H4a/Ψ3, leading to loss of H5/H4b interaction and promoting a conformational switch interrupting translation and promoting replication.
Collapse
Affiliation(s)
- My-Tra Le
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Wojciech K Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Taejin Kim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Megan YL Young
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Xuefeng Yuan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Bruce A Shapiro
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, United States
| | - Joonil Seog
- Department of Materials Science and Engineering, University of Maryland, College Park, United States
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| |
Collapse
|
9
|
Hellmund C, Lever AML. Coordination of Genomic RNA Packaging with Viral Assembly in HIV-1. Viruses 2016; 8:E192. [PMID: 27428992 PMCID: PMC4974527 DOI: 10.3390/v8070192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022] Open
Abstract
The tremendous progress made in unraveling the complexities of human immunodeficiency virus (HIV) replication has resulted in a library of drugs to target key aspects of the replication cycle of the virus. Yet, despite this accumulated wealth of knowledge, we still have much to learn about certain viral processes. One of these is virus assembly, where the viral genome and proteins come together to form infectious progeny. Here we review this topic from the perspective of how the route to production of an infectious virion is orchestrated by the viral genome, and we compare and contrast aspects of the assembly mechanisms employed by HIV-1 with those of other RNA viruses.
Collapse
Affiliation(s)
- Chris Hellmund
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
10
|
Chattopadhyay M, Stupina VA, Gao F, Szarko CR, Kuhlmann MM, Yuan X, Shi K, Simon AE. Requirement for Host RNA-Silencing Components and the Virus-Silencing Suppressor when Second-Site Mutations Compensate for Structural Defects in the 3' Untranslated Region. J Virol 2015; 89:11603-18. [PMID: 26355083 PMCID: PMC4645682 DOI: 10.1128/jvi.01566-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/01/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Turnip crinkle virus (TCV) contains a structured 3' region with hairpins and pseudoknots that form a complex network of noncanonical RNA:RNA interactions supporting higher-order structure critical for translation and replication. We investigated several second-site mutations in the p38 coat protein open reading frame (ORF) that arose in response to a mutation in the asymmetric loop of a critical 3' untranslated region (UTR) hairpin that disrupts local higher-order structure. All tested second-site mutations improved accumulation of TCV in conjunction with a partial reversion of the primary mutation (TCV-rev1) but had neutral or a negative effect on wild-type (wt) TCV or TCV with the primary mutation. SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) structure probing indicated that these second-site mutations reside in an RNA domain that includes most of p38 (domain 2), and evidence for RNA:RNA interactions between domain 2 and 3'UTR-containing domain 1 was found. However, second-site mutations were not compensatory in the absence of p38, which is also the TCV silencing suppressor, or in dcl-2/dcl4 or ago1/ago2 backgrounds. One second-site mutation reduced silencing suppressor activity of p38 by altering one of two GW motifs that are required for p38 binding to double-stranded RNAs (dsRNAs) and interaction with RNA-induced silencing complex (RISC)-associated AGO1/AGO2. Another second-site mutation substantially reduced accumulation of TCV-rev1 in the absence of p38 or DCL2/DCL4. We suggest that the second-site mutations in the p38 ORF exert positive effects through a similar downstream mechanism, either by enhancing accumulation of beneficial DCL-produced viral small RNAs that positively regulate the accumulation of TCV-rev1 or by affecting the susceptibility of TCV-rev1 to RISC loaded with viral small RNAs. IMPORTANCE Genomes of positive-strand RNA viruses fold into high-order RNA structures. Viruses with mutations in regions critical for translation and replication often acquire second-site mutations that exert a positive compensatory effect through reestablishment of canonical base pairing with the altered region. In this study, two distal second-site mutations that individually arose in response to a primary mutation in a critical 3' UTR hairpin in the genomic RNA of turnip crinkle virus did not directly interact with the primary mutation. Although different second-site changes had different attributes, compensation was dependent on the production of the viral p38 silencing suppressor and on the presence of silencing-required DCL and AGO proteins. Our results provide an unexpected connection between a 3' UTR primary-site mutation proposed to disrupt higher-order structure and the RNA-silencing machinery.
Collapse
Affiliation(s)
- Maitreyi Chattopadhyay
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Vera A Stupina
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Christine R Szarko
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Micki M Kuhlmann
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Xuefeng Yuan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Kerong Shi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
11
|
Ashton P, Wu B, D'Angelo J, Grigull J, White KA. Biologically-supported structural model for a viral satellite RNA. Nucleic Acids Res 2015; 43:9965-77. [PMID: 26384416 PMCID: PMC4787747 DOI: 10.1093/nar/gkv917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023] Open
Abstract
Satellite RNAs (satRNAs) are a class of small parasitic RNA replicon that associate with different viruses, including plus-strand RNA viruses. Because satRNAs do not encode a polymerase or capsid subunit, they rely on a companion virus to provide these proteins for their RNA replication and packaging. SatRNAs recruit these and other required factors via their RNA sequences and structures. Here, through a combination of chemical probing analysis of RNA structure, phylogenetic structural comparisons, and viability assays of satRNA mutants in infected cells, the biological importance of a deduced higher-order structure for a 619 nt long tombusvirus satRNA was assessed. Functionally-relevant secondary and tertiary RNA structures were identified throughout the length of the satRNA. Notably, a 3′-terminal segment was found to adopt two mutually-exclusive RNA secondary structures, both of which were required for efficient satRNA accumulation. Accordingly, these alternative conformations likely function as a type of RNA switch. The RNA switch was also found to engage in a required long-range kissing-loop interaction with an upstream sequence. Collectively, these results establish a high level of conformational complexity within this small parasitic RNA and provide a valuable structural framework for detailed mechanistic studies.
Collapse
Affiliation(s)
- Peter Ashton
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Baodong Wu
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Jessica D'Angelo
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3 Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| |
Collapse
|
12
|
Rapid evolution of in vivo-selected sequences and structures replacing 20% of a subviral RNA. Virology 2015; 483:149-62. [PMID: 25974866 DOI: 10.1016/j.virol.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022]
Abstract
The 356 nt noncoding satellite RNA C (satC) of Turnip crinkle virus (TCV) is composed of 5' sequences from a second TCV satRNA (satD) and 3' sequences derived from TCV. SHAPE structure mapping revealed that 76 nt in the poorly-characterized satD-derived region form an extended hairpin (H2). Pools of satC in which H2 was replaced with 76, 38, or 19 random nt were co-inoculated with TCV helper virus onto plants and satC fitness assessed using in vivo functional selection (SELEX). The most functional progeny satCs, including one as fit as wild-type, contained a 38-39 nt H2 region that adopted a hairpin structure and exhibited an increased ratio of dimeric to monomeric molecules. Some progeny of satC with H2 deleted featured a duplication of 38 nt, partially rebuilding the deletion. Therefore, H2 can be replaced by a 38-39 nt hairpin, sufficient for overall structural stability of the 5' end of satC.
Collapse
|
13
|
Abstract
Carmovirus is a genus of small, single-stranded, positive-strand RNA viruses in the Tombusviridae. One member of the carmoviruses, Turnip crinkle virus (TCV), has been used extensively as a model for examining the structure and function of RNA elements in 3'UTR as well as in other regions of the virus. Using a variety of genetic, biochemical and computational methods, a structure for the TCV 3'UTR has emerged where secondary structures and tertiary interactions combine to adopt higher order 3-D structures including an internal, ribosome-binding tRNA-shaped configuration that functions as a 3' cap-independent translation enhancer (3'CITE). The TCV 3'CITE also serves as a scaffold for non-canonical interactions throughout the 3'UTR and extending into the upstream open reading frame, interactions that are significantly disrupted upon binding by the RNA-dependent RNA polymerase. Long-distance interactions that connect elements in the 3'UTR with both the 5' end and the internal ribosome recoding site suggest that 3'UTR of carmoviruses are intimately involved in multiple functions in the virus life cycle. Although carmoviruses share very similar genome organizations, lengths of 5' and 3'UTRs, and structural features at the 3' end, the similarity rapidly breaks down the further removed from the 3' terminus revealing different 3'CITEs and unique virus-specific structural features. This review summarizes 20 years of work dissecting the structure and function of the 3'UTR of TCV and other carmoviruses. The astonishing structural complexity of the 3'UTRs of these simple carmoviruses provides lessons that are likely applicable to many other plant and animal RNA viruses.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, United States.
| |
Collapse
|
14
|
Gao F, Kasprzak WK, Szarko C, Shapiro BA, Simon AE. The 3' untranslated region of Pea Enation Mosaic Virus contains two T-shaped, ribosome-binding, cap-independent translation enhancers. J Virol 2014; 88:11696-712. [PMID: 25100834 PMCID: PMC4178710 DOI: 10.1128/jvi.01433-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023] Open
Abstract
Many plant viruses without 5' caps or 3' poly(A) tails contain 3' proximal, cap-independent translation enhancers (3'CITEs) that bind to ribosomal subunits or translation factors thought to assist in ribosome recruitment. Most 3'CITEs participate in a long-distance kissing-loop interaction with a 5' proximal hairpin to deliver ribosomal subunits to the 5' end for translation initiation. Pea Enation Mosaic Virus (PEMV) contains two adjacent 3'CITEs in the center of its 703-nucleotide 3' untranslated region (3'UTR), the ribosome-binding, kissing-loop T-shaped structure (kl-TSS) and eukaryotic translation initiation factor 4E-binding Panicum mosaic virus-like translation enhance (PTE). We now report that PEMV contains a third, independent 3'CITE located near the 3' terminus. This 3'CITE is composed of three hairpins and two pseudoknots, similar to the TSS 3'CITE of the carmovirus Turnip crinkle virus (TCV). As with the TCV TSS, the PEMV 3'TSS is predicted to fold into a T-shaped structure that binds to 80S ribosomes and 60S ribosomal subunits. A small hairpin (kl-H) upstream of the 3'TSS contains an apical loop capable of forming a kissing-loop interaction with a 5' proximal hairpin and is critical for the accumulation of full-length PEMV in protoplasts. Although the kl-H and 3'TSS are dispensable for the translation of a reporter construct containing the complete PEMV 3'UTR in vitro, deleting the normally required kl-TSS and PTE 3'CITEs and placing the kl-H and 3'TSS proximal to the reporter termination codon restores translation to near wild-type levels. This suggests that PEMV requires three 3'CITEs for proper translation and that additional translation enhancers may have been missed if reporter constructs were used in 3'CITE identification. Importance: The rapid life cycle of viruses requires efficient translation of viral-encoded proteins. Many plant RNA viruses contain 3' cap-independent translation enhancers (3'CITEs) to effectively compete with ongoing host translation. Since only single 3'CITEs have been identified for the vast majority of individual viruses, it is widely accepted that this is sufficient for a virus's translational needs. Pea Enation Mosaic Virus possesses a ribosome-binding 3'CITE that can connect to the 5' end through an RNA-RNA interaction and an adjacent eukaryotic translation initiation factor 4E-binding 3'CITE. We report the identification of a third 3'CITE that binds weakly to ribosomes and requires an upstream hairpin to form a bridge between the 3' and 5' ends. Although both ribosome-binding 3'CITEs are critical for virus accumulation in vivo, only the CITE closest to the termination codon of a reporter open reading frame is active, suggesting that artificial constructs used for 3'CITE identification may underestimate the number of CITEs that participate in translation.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christine Szarko
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Bruce A. Shapiro
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| |
Collapse
|
15
|
Gao F, Kasprzak W, Stupina VA, Shapiro BA, Simon AE. A ribosome-binding, 3' translational enhancer has a T-shaped structure and engages in a long-distance RNA-RNA interaction. J Virol 2012; 86:9828-42. [PMID: 22761367 PMCID: PMC3446580 DOI: 10.1128/jvi.00677-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/25/2012] [Indexed: 12/23/2022] Open
Abstract
Many plant RNA viruses contain elements in their 3' untranslated regions (3' UTRs) that enhance translation. The PTE (Panicum mosaic virus-like translational enhancer) of Pea enation mosaic virus (PEMV) binds to eukaryotic initiation factor 4E (eIF4E), but how this affects translation from the 5' end is unknown. We have discovered a three-way branched element just upstream of the PEMV PTE that engages in a long-distance kissing-loop interaction with a coding sequence hairpin that is critical for the translation of a reporter construct and the accumulation of the viral genome in vivo. Loss of the long-distance interaction was more detrimental than elimination of the adjacent PTE, indicating that the RNA-RNA interaction supports additional translation functions besides relocating the PTE to the 5' end. The branched element is predicted by molecular modeling and molecular dynamics to form a T-shaped structure (TSS) similar to the ribosome-binding TSS of Turnip crinkle virus (TCV). The PEMV element binds to plant 80S ribosomes with a K(d) (dissociation constant) of 0.52 μM and to 60S subunits with a K(d) of 0.30 μM. Unlike the TCV TSS, the PEMV element also binds 40S subunits (K(d), 0.36 μM). Mutations in the element that suppressed translation reduced either ribosome binding or the RNA-RNA interaction, suggesting that ribosome binding is important for function. This novel, multifunctional element is designated a kl-TSS (kissing-loop T-shaped structure) to distinguish it from the TCV TSS. The kl-TSS has sequence and structural features conserved with the upper portion of most PTE-type elements, which, with the exception of the PEMV PTE, can engage in similar long-distance RNA-RNA interactions.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, Maryland, USA
| | - Wojciech Kasprzak
- Basic Science Program, SAIC—Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vera A. Stupina
- Department of Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, Maryland, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland—College Park, College Park, Maryland, USA
| |
Collapse
|
16
|
Cimino PA, Nicholson BL, Wu B, Xu W, White KA. Multifaceted regulation of translational readthrough by RNA replication elements in a tombusvirus. PLoS Pathog 2011; 7:e1002423. [PMID: 22174683 PMCID: PMC3234231 DOI: 10.1371/journal.ppat.1002423] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/22/2011] [Indexed: 11/18/2022] Open
Abstract
Translational readthrough of stop codons by ribosomes is a recoding event used by a variety of viruses, including plus-strand RNA tombusviruses. Translation of the viral RNA-dependent RNA polymerase (RdRp) in tombusviruses is mediated using this strategy and we have investigated this process using a variety of in vitro and in vivo approaches. Our results indicate that readthrough generating the RdRp requires a novel long-range RNA-RNA interaction, spanning a distance of ∼3.5 kb, which occurs between a large RNA stem-loop located 3'-proximal to the stop codon and an RNA replication structure termed RIV at the 3'-end of the viral genome. Interestingly, this long-distance RNA-RNA interaction is modulated by mutually-exclusive RNA structures in RIV that represent a type of RNA switch. Moreover, a different long-range RNA-RNA interaction that was previously shown to be necessary for viral RNA replicase assembly was also required for efficient readthrough production of the RdRp. Accordingly, multiple replication-associated RNA elements are involved in modulating the readthrough event in tombusviruses and we propose an integrated mechanistic model to describe how this regulatory network could be advantageous by (i) providing a quality control system for culling truncated viral genomes at an early stage in the replication process, (ii) mediating cis-preferential replication of viral genomes, and (iii) coordinating translational readthrough of the RdRp with viral genome replication. Based on comparative sequence analysis and experimental data, basic elements of this regulatory model extend to other members of Tombusviridae, as well as to viruses outside of this family. Viruses use many different strategies to produce their proteins and some viral proteins are made with terminal extensions that confer unique properties. The polymerase that replicates the RNA genomes of tombusviruses is an extended version of another viral protein and is generated by a process called translational readthrough. We have determined the regulatory mechanism that modulates the production of this viral polymerase. Our results show that control of the readthrough process is complex and involves both local structures and long-range interactions within the viral genome. This system is also integrated with viral RNA replication elements and this allows the virus to coordinate polymerase production with genome replication. This regulatory scheme appears to represent a common tactic used by a variety of viruses.
Collapse
Affiliation(s)
- Peter A. Cimino
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Baodong Wu
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Wei Xu
- Department of Biology, York University, Toronto, Ontario, Canada
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Evolution of a helper virus-derived, ribosome binding translational enhancer in an untranslated satellite RNA of Turnip crinkle virus. Virology 2011; 419:10-6. [PMID: 21862095 DOI: 10.1016/j.virol.2011.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 07/27/2011] [Accepted: 07/31/2011] [Indexed: 01/01/2023]
Abstract
SatC is a noncoding subviral RNA associated with Turnip crinkle virus (TCV). A 100-nt stretch in the 3' UTR of TCV contains three hairpins and two pseudoknots that fold into a tRNA-shaped structure (TSS) that binds 80S ribosomes. The 3' half of satC is derived from TCV and contains 6-nt differences in the TSS-analogous region. SatC binds poorly to 80S ribosomes, and molecular modeling that predicted the 3D structure of the TSS did not predict a similar structure for satC. When the satC TSS region was step-wise converted to the original TCV TSS bases, ribosome binding increased to TCV TSS levels without significantly affecting satC replication. However, mutant satC was less fit when accumulating in plants and gave rise to numerous second site changes that weakened one of two satC conformations. These results suggest that minor changes from the original TCV sequence in satC reflect requirements other than elimination of ribosome binding.
Collapse
|
18
|
Chattopadhyay M, Shi K, Yuan X, Simon AE. Long-distance kissing loop interactions between a 3' proximal Y-shaped structure and apical loops of 5' hairpins enhance translation of Saguaro cactus virus. Virology 2011; 417:113-25. [PMID: 21664637 PMCID: PMC3152624 DOI: 10.1016/j.virol.2011.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/12/2011] [Accepted: 05/14/2011] [Indexed: 12/24/2022]
Abstract
Circularization of cellular mRNAs is a key event prior to translation initiation. We report that efficient translation of Saguaro cactus virus (SCV) requires a 3' translational enhancer (PTE) located partially in coding sequences. Unlike a similar PTE reported in the 3' UTR of Pea enation mosaic virus that does not engage in an RNA:RNA interaction (Wang Z. et al., J. Biol. Chem. 284, 14189-14202, 2009), the SCV PTE participates in long distance RNA:RNA interactions with hairpins located in the p26 ORF and in the 5' UTR of one subgenomic RNA. At least two additional RNA:RNA interactions are also present, one of which involves the p26 initiation codon. Similar PTE can be found in six additional carmoviruses that can putatively form long-distance interactions with 5' hairpins located in comparable positions.
Collapse
Affiliation(s)
- Maitreyi Chattopadhyay
- Department of Cell Biology and Molecular Genetics University of Maryland College Park College Park, MD 20742
| | | | - Xuefeng Yuan
- Department of Cell Biology and Molecular Genetics University of Maryland College Park College Park, MD 20742
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics University of Maryland College Park College Park, MD 20742
| |
Collapse
|
19
|
Manzano M, Reichert ED, Polo S, Falgout B, Kasprzak W, Shapiro BA, Padmanabhan R. Identification of cis-acting elements in the 3'-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem 2011; 286:22521-34. [PMID: 21515677 PMCID: PMC3121397 DOI: 10.1074/jbc.m111.234302] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/21/2011] [Indexed: 12/30/2022] Open
Abstract
Using the massively parallel genetic algorithm for RNA folding, we show that the core region of the 3'-untranslated region of the dengue virus (DENV) RNA can form two dumbbell structures (5'- and 3'-DBs) of unequal frequencies of occurrence. These structures have the propensity to form two potential pseudoknots between identical five-nucleotide terminal loops 1 and 2 (TL1 and TL2) and their complementary pseudoknot motifs, PK2 and PK1. Mutagenesis using a DENV2 replicon RNA encoding the Renilla luciferase reporter indicated that all four motifs and the conserved sequence 2 (CS2) element within the 3'-DB are important for replication. However, for translation, mutation of TL1 alone does not have any effect; TL2 mutation has only a modest effect in translation, but translation is reduced by ∼60% in the TL1/TL2 double mutant, indicating that TL1 exhibits a cooperative synergy with TL2 in translation. Despite the variable contributions of individual TL and PK motifs in translation, WT levels are achieved when the complementarity between TL1/PK2 and TL2/PK1 is maintained even under conditions of inhibition of the translation initiation factor 4E function mediated by LY294002 via a noncanonical pathway. Taken together, our results indicate that the cis-acting RNA elements in the core region of DENV2 RNA that include two DB structures are required not only for RNA replication but also for optimal translation.
Collapse
Affiliation(s)
- Mark Manzano
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Erin D. Reichert
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| | - Stephanie Polo
- the Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, Maryland 20892
| | - Barry Falgout
- the Center for Biologics Evaluation and Review, Food and Drug Administration, Bethesda, Maryland 20892
| | | | - Bruce A. Shapiro
- the Center for Cancer Research Nanobiology Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Radhakrishnan Padmanabhan
- From the Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, D. C. 20057
| |
Collapse
|
20
|
Ribosome binding to a 5' translational enhancer is altered in the presence of the 3' untranslated region in cap-independent translation of turnip crinkle virus. J Virol 2011; 85:4638-53. [PMID: 21389125 DOI: 10.1128/jvi.00005-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plus-strand RNA viruses without 5' caps require noncanonical mechanisms for ribosome recruitment. A translational enhancer in the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) contains an internal T-shaped structure (TSS) that binds to 60S ribosomal subunits. We now report that the 63-nucleotide (nt) 5' UTR of TCV contains a 19-nt pyrimidine-rich element near the initiation codon that supports translation of an internal open reading frame (ORF) independent of upstream 5' UTR sequences. Addition of 80S ribosomes to the 5' UTR reduced the flexibility of the polypyrimidine residues and generated a toeprint consistent with binding to this region. Binding of salt-washed 40S ribosomal subunits was reduced 6-fold when the pyrimidine-rich sequence was mutated. 40S subunit binding generated the same toeprint as 80S ribosomes but also additional ones near the 5' end. Generation of out-of-frame AUGs upstream of the polypyrimidine region reduced translation, which suggests that 5'-terminal entry of 40S subunits is followed by scanning and that the polypyrimidine region is needed for an alternative function that requires ribosome binding. No evidence for RNA-RNA interactions between 5' and 3' sequences was found, suggesting that TCV utilizes an alternative means for circularizing its genome. Combining 5' and 3' UTR fragments in vitro had no discernible effect on the structures of the RNAs. In contrast, when 80S ribosomes were added to both fragments, structural changes were found in the 5' UTR polypyrimidine tract that were not evident when ribosomes interacted with the individual fragments. This suggests that ribosomes can promote an interaction between the 5' and 3' UTRs of TCV.
Collapse
|
21
|
Yuan X, Shi K, Young MYL, Simon AE. The terminal loop of a 3' proximal hairpin plays a critical role in replication and the structure of the 3' region of Turnip crinkle virus. Virology 2010; 402:271-80. [PMID: 20403628 PMCID: PMC2891086 DOI: 10.1016/j.virol.2010.03.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 01/26/2023]
Abstract
Plus-strand RNA viruses serve as templates for translation and then transcription by newly synthesized RdRp. A ribosome-binding tRNA-shaped structure (TSS) and upstream hairpin H4 in the 3' UTR of Turnip crinkle virus (TCV) play key roles in translation and transcription. Second-site mutations generated to compensate for altering the critical asymmetric internal loop of H4 included a three- to two-base alteration in the terminal loop of a 3' proximal hairpin (Pr) located downstream of the TSS. Unlike the non-deleterious three-base alteration, single mutations in Pr loop were detrimental for RdRp transcription while enhancing translation and RdRp binding. One deleterious mutation in the Pr loop altered the structures of both the TSS and H4. These complex interactions in the 3' UTR support a compact structural arrangement likely permitting RdRp access to a number of residues within a 195-base region including the 3' end that are necessary for efficient transcription initiation.
Collapse
Affiliation(s)
| | | | - Megan Y. L. Young
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD, 20742 USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD, 20742 USA
| |
Collapse
|
22
|
Lettuce infectious yellows virus (LIYV) RNA 1-encoded P34 is an RNA-binding protein and exhibits perinuclear localization. Virology 2010; 403:67-77. [PMID: 20447670 DOI: 10.1016/j.virol.2010.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/02/2009] [Accepted: 04/07/2010] [Indexed: 11/22/2022]
Abstract
The Crinivirus, Lettuce infectious yellows virus (LIYV) has a bipartite, positive-sense ssRNA genome. LIYV RNA 1 encodes replication-associated proteins while RNA 2 encodes proteins needed for other aspects of the LIYV life cycle. LIYV RNA 1 ORF 2 encodes P34, a trans enhancer for RNA 2 accumulation. Here we show that P34 is a sequence non-specific ssRNA-binding protein in vitro. P34 binds ssRNA in a cooperative manner, and the C-terminal region contains the RNA-binding domain. Topology predictions suggest that P34 is a membrane-associated protein and the C-terminal region is exposed outside of the membrane. Furthermore, fusions of P34 to GFP localized to the perinuclear region of transfected protoplasts, and colocalized with an ER-specific dye. This localization was of interest since LIYV RNA 1 replication (with or without P34 protein) induced strong ER rearrangement to the perinuclear region. Together, these data provide insight into LIYV replication and possible functions of P34.
Collapse
|
23
|
Zuo X, Wang J, Yu P, Eyler D, Xu H, Starich MR, Tiede DM, Simon AE, Kasprzak W, Schwieters CD, Shapiro BA, Wang YX. Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3' UTR of turnip crinkle virus. Proc Natl Acad Sci U S A 2010; 107:1385-90. [PMID: 20080629 PMCID: PMC2803139 DOI: 10.1073/pnas.0908140107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The 3(') untranslated region (3(') UTR) of turnip crinkle virus (TCV) genomic RNA contains a cap-independent translation element (CITE), which includes a ribosome-binding structural element (RBSE) that participates in recruitment of the large ribosomal subunit. In addition, a large symmetric loop in the RBSE plays a key role in coordinating the incompatible processes of viral translation and replication, which require enzyme progression in opposite directions on the viral template. To understand the structural basis for the large ribosomal subunit recruitment and the intricate interplay among different parts of the molecule, we determined the global structure of the 102-nt RBSE RNA using solution NMR and small-angle x-ray scattering. This RNA has many structural features that resemble those of a tRNA in solution. The hairpins H1 and H2, linked by a 7-nucleotide linker, form the upper part of RBSE and hairpin H3 is relatively independent from the rest of the structure and is accessible to interactions. This global structure provides insights into the three-dimensional layout for ribosome binding, which may serve as a structural basis for its involvement in recruitment of the large ribosomal subunit and the switch between viral translation and replication. The experimentally determined three-dimensional structure of a functional element in the 3(') UTR of an RNA from any organism has not been previously reported. The RBSE structure represents a prototype structure of a new class of RNA structural elements involved in viral translation/replication processes.
Collapse
Affiliation(s)
- Xiaobing Zuo
- Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702
| | - Jinbu Wang
- Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702
| | - Ping Yu
- Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702
| | - Dan Eyler
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Huan Xu
- Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702
| | - Mary R. Starich
- Office of Chief, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702
| | - David M. Tiede
- The Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742
| | - Wojciech Kasprzak
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702
| | - Charles D. Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Bruce A. Shapiro
- Center for Cancer Research, Nanobiology Program, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702
| | - Yun-Xing Wang
- Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702
| |
Collapse
|
24
|
Satellite RNAs and Satellite Viruses of Plants. Viruses 2009; 1:1325-50. [PMID: 21994595 PMCID: PMC3185516 DOI: 10.3390/v1031325] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 12/24/2022] Open
Abstract
The view that satellite RNAs (satRNAs) and satellite viruses are purely molecular parasites of their cognate helper viruses has changed. The molecular mechanisms underlying the synergistic and/or antagonistic interactions among satRNAs/satellite viruses, helper viruses, and host plants are beginning to be comprehended. This review aims to summarize the recent achievements in basic and practical research, with special emphasis on the involvement of RNA silencing mechanisms in the pathogenicity, population dynamics, and, possibly, the origin(s) of these subviral agents. With further research following current trends, the comprehensive understanding of satRNAs and satellite viruses could lead to new insights into the trilateral interactions among host plants, viruses, and satellites.
Collapse
|
25
|
Simon AE, Gehrke L. RNA conformational changes in the life cycles of RNA viruses, viroids, and virus-associated RNAs. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:571-83. [PMID: 19501200 PMCID: PMC2784224 DOI: 10.1016/j.bbagrm.2009.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/13/2022]
Abstract
The rugged nature of the RNA structural free energy landscape allows cellular RNAs to respond to environmental conditions or fluctuating levels of effector molecules by undergoing dynamic conformational changes that switch on or off activities such as catalysis, transcription or translation. Infectious RNAs must also temporally control incompatible activities and rapidly complete their life cycle before being targeted by cellular defenses. Viral genomic RNAs must switch between translation and replication, and untranslated subviral RNAs must control other activities such as RNA editing or self-cleavage. Unlike well characterized riboswitches in cellular RNAs, the control of infectious RNA activities by altering the configuration of functional RNA domains has only recently been recognized. In this review, we will present some of these molecular rearrangements found in RNA viruses, viroids and virus-associated RNAs, relating how these dynamic regions were discovered, the activities that might be regulated, and what factors or conditions might cause a switch between conformations.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA.
| | | |
Collapse
|
26
|
Christiansen ME, Znosko BM. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA. Nucleic Acids Res 2009; 37:4696-706. [PMID: 19509311 PMCID: PMC2724281 DOI: 10.1093/nar/gkp465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence.
Collapse
|
27
|
Structural plasticity and rapid evolution in a viral RNA revealed by in vivo genetic selection. J Virol 2008; 83:927-39. [PMID: 19004956 DOI: 10.1128/jvi.02060-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Satellite RNAs usually lack substantial homology with their helper viruses. The 356-nucleotide satC of Turnip crinkle virus (TCV) is unusual in that its 3'-half shares high sequence similarity with the TCV 3' end. Computer modeling, structure probing, and/or compensatory mutagenesis identified four hairpins and three pseudoknots in this TCV region that participate in replication and/or translation. Two hairpins and two pseudoknots have been confirmed as important for satC replication. One portion of the related 3' end of satC that remains poorly characterized corresponds to juxtaposed TCV hairpins H4a and H4b and pseudoknot psi(3), which are required for the TCV-specific requirement of translation (V. A. Stupina et al., RNA 14:2379-2393, 2008). Replacement of satC H4a with randomized sequence and scoring for fitness in plants by in vivo genetic selection (SELEX) resulted in winning sequences that contain an H4a-like stem-loop, which can have additional upstream sequence composing a portion of the stem. SELEX of the combined H4a and H4b region in satC generated three distinct groups of winning sequences. One group models into two stem-loops similar to H4a and H4b of TCV. However, the selected sequences in the other two groups model into single hairpins. Evolution of these single-hairpin SELEX winners in plants resulted in satC that can accumulate to wild-type (wt) levels in protoplasts but remain less fit in planta when competed against wt satC. These data indicate that two highly distinct RNA conformations in the H4a and H4b region can mediate satC fitness in protoplasts.
Collapse
|
28
|
Stupina VA, Meskauskas A, McCormack JC, Yingling YG, Shapiro BA, Dinman JD, Simon AE. The 3' proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. RNA (NEW YORK, N.Y.) 2008; 14:2379-93. [PMID: 18824512 PMCID: PMC2578866 DOI: 10.1261/rna.1227808] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 08/20/2008] [Indexed: 05/19/2023]
Abstract
During cap-dependent translation of eukaryotic mRNAs, initiation factors interact with the 5' cap to attract ribosomes. When animal viruses translate in a cap-independent fashion, ribosomes assemble upstream of initiation codons at internal ribosome entry sites (IRES). In contrast, many plant viral genomes do not contain 5' ends with substantial IRES activity but instead have 3' translational enhancers that function by an unknown mechanism. A 393-nucleotide (nt) region that includes the entire 3' UTR of the Turnip crinkle virus (TCV) synergistically enhances translation of a reporter gene when associated with the TCV 5' UTR. The major enhancer activity was mapped to an internal region of approximately 140 nt that partially overlaps with a 100-nt structural domain previously predicted to adopt a form with some resemblance to a tRNA, according to a recent study by J.C. McCormack and colleagues. The T-shaped structure binds to 80S ribosomes and 60S ribosomal subunits, and binding is more efficient in the absence of surrounding sequences and in the presence of a pseudoknot that mimics the tRNA-acceptor stem. Untranslated TCV satellite RNA satC, which contains the TCV 3' end and 6-nt differences in the region corresponding to the T-shaped element, does not detectably bind to 80S ribosomes and is not predicted to form a comparable structure. Binding of the TCV T-shaped element by 80S ribosomes was unaffected by salt-washing, reduced in the presence of AcPhe-tRNA, which binds to the P-site, and enhanced binding of Phe-tRNA to the ribosome A site. Mutations that reduced translation in vivo had similar effects on ribosome binding in vitro. This strong correlation suggests that ribosome entry in the 3' UTR is a key function of the 3' translational enhancer of TCV and that the T-shaped element contains some tRNA-like properties.
Collapse
Affiliation(s)
- Vera A Stupina
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Song BH, Yun SI, Choi YJ, Kim JM, Lee CH, Lee YM. A complex RNA motif defined by three discontinuous 5-nucleotide-long strands is essential for Flavivirus RNA replication. RNA (NEW YORK, N.Y.) 2008; 14:1791-1813. [PMID: 18669441 PMCID: PMC2525960 DOI: 10.1261/rna.993608] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/23/2008] [Indexed: 05/26/2023]
Abstract
Tertiary or higher-order RNA motifs that regulate replication of positive-strand RNA viruses are as yet poorly understood. Using Japanese encephalitis virus (JEV), we now show that a key element in JEV RNA replication is a complex RNA motif that includes a string of three discontinuous complementary sequences (TDCS). The TDCS consists of three 5-nt-long strands, the left (L) strand upstream of the translation initiator AUG adjacent to the 5'-end of the genome, and the middle (M) and right (R) strands corresponding to the base of the Flavivirus-conserved 3' stem-loop structure near the 3'-end of the RNA. The three strands are arranged in an antiparallel configuration, with two sets of base-pairing interactions creating L-M and M-R duplexes. Disrupting either or both of these duplex regions of TDCS completely abolished RNA replication, whereas reconstructing both duplex regions, albeit with mutated sequences, fully restored RNA replication. Modeling of replication-competent genomes recovered from a large pool of pseudorevertants originating from six replication-incompetent TDCS mutants suggests that both duplex base-pairing potentials of TDCS are required for RNA replication. In all cases, acquisition of novel sequences within the 3'M-R duplex facilitated a long-range RNA-RNA interaction of its 3'M strand with either the authentic 5'L strand or its alternative (invariably located upstream of the 5' initiator), thereby restoring replicability. We also found that a TDCS homolog is conserved in other flaviviruses. These data suggest that two duplex base-pairings defined by the TDCS play an essential regulatory role in a key step(s) of Flavivirus RNA replication.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | | | |
Collapse
|
30
|
McCormack JC, Yuan X, Yingling YG, Kasprzak W, Zamora RE, Shapiro BA, Simon AE. Structural domains within the 3' untranslated region of Turnip crinkle virus. J Virol 2008; 82:8706-20. [PMID: 18579599 PMCID: PMC2519621 DOI: 10.1128/jvi.00416-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 06/16/2008] [Indexed: 11/20/2022] Open
Abstract
The genomes of positive-strand RNA viruses undergo conformational shifts that complicate efforts to equate structures with function. We have initiated a detailed analysis of secondary and tertiary elements within the 3' end of Turnip crinkle virus (TCV) that are required for viral accumulation in vivo. MPGAfold, a massively parallel genetic algorithm, suggested the presence of five hairpins (H4a, H4b, and previously identified hairpins H4, H5, and Pr) and one H-type pseudoknot (Psi(3)) within the 3'-terminal 194 nucleotides (nt). In vivo compensatory mutagenesis analyses confirmed the existence of H4a, H4b, Psi(3) and a second pseudoknot (Psi(2)) previously identified in a TCV satellite RNA. In-line structure probing of the 194-nt fragment supported the coexistence of H4, H4a, H4b, Psi(3) and a pseudoknot that connects H5 and the 3' end (Psi(1)). Stepwise replacements of TCV elements with the comparable elements from Cardamine chlorotic fleck virus indicated that the complete 142-nt 3' end, and subsets containing Psi(3), H4a, and H4b or Psi(3), H4a, H4b, H5, and Psi(2), form functional domains for virus accumulation in vivo. A new 3-D molecular modeling protocol (RNA2D3D) predicted that H4a, H4b, H5, Psi(3), and Psi(2) are capable of simultaneous existence and bears some resemblance to a tRNA. The related Japanese iris necrotic ring virus does not have comparable domains. These results provide a framework for determining how interconnected elements participate in processes that require 3' untranslated region sequences such as translation and replication.
Collapse
Affiliation(s)
- John C McCormack
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Park MR, Kwon SJ, Choi HS, Hemenway CL, Kim KH. Mutations that alter a repeated ACCA element located at the 5' end of the Potato virus X genome affect RNA accumulation. Virology 2008; 378:133-41. [PMID: 18589472 DOI: 10.1016/j.virol.2008.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/08/2008] [Accepted: 05/08/2008] [Indexed: 11/19/2022]
Abstract
The repeated ACCA or AC-rich sequence and structural (SL1) elements in the 5' non-translated region (NTR) of the Potato virus X (PVX) RNA play vital roles in the PVX life cycle by controlling translation, RNA replication, movement, and assembly. It has already been shown that the repeated ACCA or AC-rich sequence affect both gRNA and sgRNA accumulation, while not affecting minus-strand RNA accumulation, and are also required for host protein binding. The functional significance of the repeated ACCA sequence elements in the 5' NTR region was investigated by analyzing the effects of deletion and site-directed mutations on PVX replication in Nicotiana benthamiana plants and NT1 protoplasts. Substitution (ACCA into AAAA or UUUU) mutations introduced in the first (nt 10-13) element in the 5' NTR of the PVX RNA significantly affected viral replication, while mutations introduced in the second (nt 17-20) and third (nt 20-23) elements did not. The fourth (nt 29-32) ACCA element weakly affected virus replication, whereas mutations in the fifth (nt 38-41) significantly reduced virus replication due to the structure disruption of SL1 by AAAA and/or UUUU substitutions. Further characterization of the first ACCA element indicated that duplication of ACCA at nt 10-13 (nt 10-17, ACCAACCA) caused severe symptom development as compared to that of wild type, while deletion of the single element (nt 10-13), DeltaACCA) or tripling of this element caused reduced symptom development. Single- and double-nucleotide substitutions introduced into the first ACCA element revealed the importance of CC located at nt positions 11 and 12. Altogether, these results indicate that the first ACCA element is important for PVX replication.
Collapse
Affiliation(s)
- Mi-Ri Park
- Department of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | |
Collapse
|
32
|
Christiansen ME, Znosko BM. Thermodynamic characterization of the complete set of sequence symmetric tandem mismatches in RNA and an improved model for predicting the free energy contribution of sequence asymmetric tandem mismatches. Biochemistry 2008; 47:4329-36. [PMID: 18330995 DOI: 10.1021/bi7020876] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of the availability of an abundance of RNA sequence information, the ability to rapidly and accurately predict the secondary structure of RNA from sequence is becoming increasingly important. A common method for predicting RNA secondary structure from sequence is free energy minimization. Therefore, accurate free energy contributions for every RNA secondary structure motif are necessary for accurate secondary structure predictions. Tandem mismatches are prevalent in naturally occurring sequences and are biologically important. A common method for predicting the stability of a sequence asymmetric tandem mismatch relies on the stabilities of the two corresponding sequence symmetric tandem mismatches [Mathews, D. H., Sabina, J., Zuker, M., and Turner, D. H. (1999) J. Mol. Biol. 288, 911-940]. To improve the prediction of sequence asymmetric tandem mismatches, the experimental thermodynamic parameters for the 22 previously unmeasured sequence symmetric tandem mismatches are reported. These new data, however, do not improve prediction of the free energy contributions of sequence asymmetric tandem mismatches. Therefore, a new model, independent of sequence symmetric tandem mismatch free energies, is proposed. This model consists of two penalties to account for destabilizing tandem mismatches, two bonuses to account for stabilizing tandem mismatches, and two penalties to account for A-U and G-U adjacent base pairs. This model improves the prediction of asymmetric tandem mismatch free energy contributions and is likely to improve the prediction of RNA secondary structure from sequence.
Collapse
|
33
|
Shapiro BA, Bindewald E, Kasprzak W, Yingling Y. Protocols for the in silico design of RNA nanostructures. Methods Mol Biol 2008; 474:93-115. [PMID: 19031063 DOI: 10.1007/978-1-59745-480-3_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent developments in the field of nanobiology have significantly expanded the possibilities for new modalities in the treatment of many diseases, including cancer. Ribonucleic acid (RNA) represents a relatively new molecular material for the development of these biologically oriented nanodevices. In addition, RNA nanobiology presents a relatively new approach for the development of RNA-based nanoparticles that can be used as crystallization substrates and scaffolds for RNA-based nanoarrays. Presented in this chapter are some methodological shaped-based protocols for the design of such RNA nanostructures. Included are descriptions and background materials describing protocols that use a database of three-dimensional RNA structure motifs; designed RNA secondary structure motifs; and a combination of the two approaches. An example is also given illustrating one of the protocols.
Collapse
Affiliation(s)
- Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD, USA
| | | | | | | |
Collapse
|
34
|
Shapiro BA, Yingling YG, Kasprzak W, Bindewald E. Bridging the gap in RNA structure prediction. Curr Opin Struct Biol 2007; 17:157-65. [PMID: 17383172 DOI: 10.1016/j.sbi.2007.03.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/11/2007] [Accepted: 03/12/2007] [Indexed: 11/24/2022]
Abstract
The field of RNA structure prediction has experienced significant advances in the past several years, thanks to the availability of new experimental data and improved computational methodologies. These methods determine RNA secondary structures and pseudoknots from sequence alignments, thermodynamics-based dynamic programming algorithms, genetic algorithms and combined approaches. Computational RNA three-dimensional modeling uses this information in conjunction with manual manipulation, constraint satisfaction methods, molecular mechanics and molecular dynamics. The ultimate goal of automatically producing RNA three-dimensional models from given secondary and tertiary structure data, however, is still not fully realized. Recent developments in the computational prediction of RNA structure have helped bridge the gap between RNA secondary structure prediction, including pseudoknots, and three-dimensional modeling of RNA.
Collapse
Affiliation(s)
- Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
35
|
Sun X, Simon AE. A cis-replication element functions in both orientations to enhance replication of Turnip crinkle virus. Virology 2006; 352:39-51. [PMID: 16757010 PMCID: PMC2937274 DOI: 10.1016/j.virol.2006.03.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/14/2005] [Accepted: 03/14/2006] [Indexed: 01/10/2023]
Abstract
Turnip crinkle virus (TCV) (family Tombusviridae, genus Carmovirus) is a positive-sense RNA virus containing a 4054-base genome. Previous results indicated that insertion of Hairpin 4 (H4) into a TCV-associated satellite RNA enhanced replication 6-fold in vivo (Nagy, P., Pogany, J., Simon, A. E., 1999. EMBO J. 18:5653-5665). A detailed structural and functional analysis of H4 has now been performed to investigate its role in TCV replication. RNA structural probing of H4 in full-length TCV supported the sequence forming hairpin structures in both orientations in vitro. Deletion and mutational analyses determined that H4 is important for efficient accumulation of TCV in protoplasts, with a 98% reduction of genomic RNA levels when H4 was deleted. In vitro transcription using p88 [the TCV RNA-dependent RNA polymerase] demonstrated that H4 in its plus-sense orientation [H4(+)] caused a nearly 2-fold increase in RNA synthesis from a core hairpin promoter located on TCV plus-strands. H4 in its minus-sense orientation [H4(-)] stimulated RNA synthesis by 100-fold from a linear minus-strand promoter. Gel mobility shift assays indicated that p88 binds H4(+) and H4(-) with equal affinity, which was substantially greater than the binding affinity to the core promoters. These results support roles for H4(+) and H4(-) in TCV replication by enhancing syntheses of both strands through attracting the RdRp to the template.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742
| |
Collapse
|
36
|
Zhang J, Zhang G, McCormack JC, Simon AE. Evolution of virus-derived sequences for high-level replication of a subviral RNA. Virology 2006; 351:476-88. [PMID: 16682064 PMCID: PMC2921640 DOI: 10.1016/j.virol.2006.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 03/07/2006] [Accepted: 03/09/2006] [Indexed: 12/17/2022]
Abstract
Turnip crinkle virus (TCV) and its 356-nt satellite RNA satC share 151 nt of 3'-terminal sequence, which contain 8 positional differences and are predicted to fold into virtually identical structures, including a series of four phylogenetically inferred hairpins. SatC and TCV containing reciprocal exchanges of this region accumulate to only 15% or 1% of wild-type levels, respectively. Step-wise conversion of satC and TCV 3'-terminal sequences into the counterpart's sequence revealed the importance of having the cognate core promoter (Pr), which is composed of a single hairpin that differs in both sequence and stability, and an adjacent short 3'-terminal segment. The negative impact of the more stable TCV Pr on satC could not be attributed to lack of formation of a known tertiary interaction involving the 3'-terminal bases, nor an effect of coat protein, which binds specifically to TCV-like Pr and not the satC Pr. The satC Pr was a substantially better promoter than the TCV Pr when assayed in vitro using purified recombinant TCV RdRp, either in the context of satC or when assayed downstream of non-TCV-related sequence. Poor activity of the TCV Pr in vitro occurred despite solution structure probing indicating that its conformation in the context of satC is similar to the active form of the satC Pr, which is thought to form following a required conformational switch. These results suggest that evolution of satC following its initial formation generated a Pr that can function more efficiently in the absence of additional TCV sequence that may be required for full functionality of the TCV Pr.
Collapse
Affiliation(s)
- Jiuchun Zhang
- Department of Cell Biology and Molecular Genetics University of Maryland College Park, MD 20742
| | - Guohua Zhang
- Department of Cell Biology and Molecular Genetics University of Maryland College Park, MD 20742
| | - John C. McCormack
- Department of Cell Biology and Molecular Genetics University of Maryland College Park, MD 20742
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics University of Maryland College Park, MD 20742
| |
Collapse
|