1
|
Mokaleng B, Choga WT, Bareng OT, Maruapula D, Ditshwanelo D, Kelentse N, Mokgethi P, Moraka NO, Motswaledi MS, Tawe L, Koofhethile CK, Moyo S, Zachariah M, Gaseitsiwe S. No Difference in the Prevalence of HIV-1 gag Cytotoxic T-Lymphocyte-Associated Escape Mutations in Viral Sequences from Early and Late Parts of the HIV-1 Subtype C Pandemic in Botswana. Vaccines (Basel) 2023; 11:1000. [PMID: 37243104 PMCID: PMC10221913 DOI: 10.3390/vaccines11051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
HIV is known to accumulate escape mutations in the gag gene in response to the immune response from cytotoxic T lymphocytes (CTLs). These mutations can occur within an individual as well as at a population level. The population of Botswana exhibits a high prevalence of HLA*B57 and HLA*B58, which are associated with effective immune control of HIV. In this retrospective cross-sectional investigation, HIV-1 gag gene sequences were analyzed from recently infected participants across two time periods which were 10 years apart: the early time point (ETP) and late time point (LTP). The prevalence of CTL escape mutations was relatively similar between the two time points-ETP (10.6%) and LTP (9.7%). The P17 protein had the most mutations (9.4%) out of the 36 mutations that were identified. Three mutations (A83T, K18R, Y79H) in P17 and T190A in P24 were unique to the ETP sequences at a prevalence of 2.4%, 4.9%, 7.3%, and 5%, respectively. Mutations unique to the LTP sequences were all in the P24 protein, including T190V (3%), E177D (6%), R264K (3%), G248D (1%), and M228L (11%). Mutation K331R was statistically higher in the ETP (10%) compared to the LTP (1%) sequences (p < 0.01), while H219Q was higher in the LTP (21%) compared to the ETP (5%) (p < 0.01). Phylogenetically, the gag sequences clustered dependently on the time points. We observed a slower adaptation of HIV-1C to CTL immune pressure at a population level in Botswana. These insights into the genetic diversity and sequence clustering of HIV-1C can aid in the design of future vaccine strategies.
Collapse
Affiliation(s)
- Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Wonderful Tatenda Choga
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Ontlametse Thato Bareng
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Doreen Ditshwanelo
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
| | - Patrick Mokgethi
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone 999106, Botswana
| | - Natasha Onalenna Moraka
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Modisa Sekhamo Motswaledi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Catherine Kegakilwe Koofhethile
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Matshediso Zachariah
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone 999106, Botswana; (M.S.M.); (L.T.); (M.Z.)
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership for HIV Research and Education, Gaborone 999106, Botswana; (B.M.); (W.T.C.); (O.T.B.); (D.M.); (D.D.); (N.K.); (P.M.); (N.O.M.); (C.K.K.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
2
|
San D, Lei J, Liu Y, Jing B, Ye X, Wei P, Paek C, Yang Y, Zhou J, Chen P, Wang H, Chen Y, Yin L. Structural basis of the TCR-pHLA complex provides insights into the unconventional recognition of CDR3β in TCR cross-reactivity and alloreactivity. CELL INSIGHT 2023; 2:100076. [PMID: 37192909 PMCID: PMC10120306 DOI: 10.1016/j.cellin.2022.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 05/18/2023]
Abstract
Evidence shows that some class I human leucocyte antigen (HLA) alleles are related to durable HIV controls. The T18A TCR, which has the alloreactivity between HLA-B∗42:01 and HLA-B∗81:01 and the cross-reactivity with different antigen mutants, can sustain long-term HIV controls. Here the structural basis of the T18A TCR binding to the immunodominant HIV epitope TL9 (TPQDLNTML180-188) presented by HLA-B∗42:01 was determined and compared to T18A TCR binding to the TL9 presented by the allo-HLA-B∗81:01. For differences between HLA-B∗42:01 and HLA-B∗81:01, the CDR1α and CDR3α loops adopt a small rearrangement to accommodate them. For different conformations of the TL9 presented by different HLA alleles, not like the conventional recognition of CDR3s to interact with peptide antigens, CDR3β of the T18A TCR shifts to avoid the peptide antigen but intensively recognizes the HLA only, which is different with other conventional TCR structures. Featured sequence pairs of CDR3β and HLA might account for this and were additionally found in multiple other diseases indicating the popularity of the unconventional recognition pattern which would give insights into the control of diseases with epitope mutating such as HIV.
Collapse
Affiliation(s)
| | | | | | - Baowei Jing
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiang Ye
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Pengcheng Wei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chonil Paek
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Yang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hongjian Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongshun Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Immunological Control of HIV-1 Disease Progression by Rare Protective HLA Allele. J Virol 2022; 96:e0124822. [DOI: 10.1128/jvi.01248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HLA-B57 is a relatively rare allele around world and the strongest protective HLA allele in Caucasians and African black individuals infected with HIV-1. Previous studies suggested that the advantage of this allele in HIV-1 disease progression is due to a strong functional ability of HLA-B57-restricted Gag-specific T cells and lower fitness of mutant viruses selected by the T cells.
Collapse
|
4
|
Pereira LMS, França EDS, Costa IB, Jorge EVO, Mattos PJDSM, Freire ABC, Ramos FLDP, Monteiro TAF, Macedo O, Sousa RCM, Dos Santos EJM, Freitas FB, Costa IB, Vallinoto ACR. HLA-B*13, B*35 and B*39 Alleles Are Closely Associated With the Lack of Response to ART in HIV Infection: A Cohort Study in a Population of Northern Brazil. Front Immunol 2022; 13:829126. [PMID: 35371095 PMCID: PMC8966405 DOI: 10.3389/fimmu.2022.829126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Immune reconstitution failure after HIV treatment is a multifactorial phenomenon that may also be associated with a single polymorphism of human leukocyte antigen (HLA); however, few reports include patients from the Brazilian Amazon. Our objective was to evaluate the association of the immunogenic profile of the “classical” HLA-I and HLA-II loci with treatment nonresponse in a regional cohort monitored over 24 months since HIV diagnosis. Materials and Methods Treatment-free participants from reference centers in the state of Pará, Brazil, were enrolled. Infection screening was performed using enzyme immunoassays (Murex AG/AB Combination DiaSorin, UK) and confirmed by immunoblots (Bio-Manguinhos, FIOCRUZ). Plasma viral load was quantified by real-time PCR (ABBOTT, Chicago, Illinois, USA). CD4+/CD8+ T lymphocyte quantification was performed by immunophenotyping and flow cytometry (BD Biosciences, San Jose, CA, USA). Infection was monitored via test and logistics platforms (SISCEL and SICLOM). Therapeutic response failure was inferred based on CD4+ T lymphocyte quantification after 1 year of therapy. Loci A, B and DRB1 were genotyped using PCR-SSO (One Lambda Inc., Canoga Park, CA, USA). Statistical tests were applied using GENEPOP, GraphPad Prism 8.4.3 and BioEstat 5.3. Results Of the 270 patients monitored, 134 responded to treatment (CD4+ ≥ 500 cells/µL), and 136 did not respond to treatment (CD4+ < 500 cells/µL). The allele frequencies of the loci were similar to heterogeneous populations. The allelic profile of locus B was statistically associated with treatment nonresponse, and the B*13, B*35 and B*39 alleles had the greatest probabilistic influence. The B*13 allele had the highest risk of treatment nonresponse, and carriers of the allele had a detectable viral load and a CD4+ T lymphocyte count less than 400 cells/µL with up to 2 years of therapy. The B*13 allele was associated with a switch in treatment regimens, preferably to efavirenz (EFZ)-based regimens, and among those who switched regimens, half had a history of coinfection with tuberculosis. Conclusions The allelic variants of the B locus are more associated with non-response to therapy in people living with HIV (PLHIV) from a heterogeneous population in the Brazilian Amazon.
Collapse
Affiliation(s)
| | | | - Iran Barros Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | | | | | | | | | | | - Olinda Macedo
- Retrovirus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rita Catarina Medeiros Sousa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,School of Medicine, Federal University of Pará, Belém, Brazil
| | - Eduardo José Melo Dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Igor Brasil Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
5
|
Liu Y, Lei J, San D, Yang Y, Paek C, Xia Z, Chen Y, Yin L. Structural Basis for Unusual TCR CDR3β Usage Against an Immunodominant HIV-1 Gag Protein Peptide Restricted to an HLA-B*81:01 Molecule. Front Immunol 2022; 13:822210. [PMID: 35173732 PMCID: PMC8841528 DOI: 10.3389/fimmu.2022.822210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
In HIV infection, some closely associated human leukocyte antigen (HLA) alleles are correlated with distinct clinical outcomes although presenting the same HIV epitopes. The mechanism that underpins this observation is still unknown, but may be due to the essential features of HLA alleles or T cell receptors (TCR). In this study, we investigate how T18A TCR, which is beneficial for a long-term control of HIV in clinic, recognizes immunodominant Gag epitope TL9 (TPQDLTML180-188) from HIV in the context of the antigen presenting molecule HLA-B*81:01. We found that T18A TCR exhibits differential recognition for TL9 restricted by HLA-B*81:01. Furthermore, via structural and biophysical approaches, we observed that TL9 complexes with HLA-B*81:01 undergoes no conformational change after TCR engagement. Remarkably, the CDR3β in T18A complexes does not contact with TL9 at all but with intensive contacts to HLA-B*81:01. The binding kinetic data of T18A TCR revealed that this TCR can recognize TL9 epitope and several mutant versions, which might explain the correlation of T18A TCR with better clinic outcomes despite the relative high mutation rate of HIV. Collectively, we provided a portrait of how CD8+ T cells engage in HIV-mediated T cell response.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Lei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan San
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chonil Paek
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixiong Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yongshun Chen, ; Lei Yin,
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Yongshun Chen, ; Lei Yin,
| |
Collapse
|
6
|
Two distinct mechanisms leading to loss of virological control in the rare group of antiretroviral therapy-naïve, transiently aviraemic children living with HIV. J Virol 2021; 96:e0153521. [PMID: 34757843 PMCID: PMC8791270 DOI: 10.1128/jvi.01535-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-specific CD8+ T-cells play a central role in immune control of adult HIV, but their contribution in paediatric infection is less well-characterised. Previously, we identified a group of ART-naïve children with persistently undetectable plasma viraemia, termed 'elite controllers', and a second group who achieved aviraemia only transiently. To investigate the mechanisms of failure to maintain aviraemia, we characterized in three transient aviraemics (TAs), each of whom expressed the disease-protective HLA-B*81:01, longitudinal HIV-specific T-cell activity and viral sequences. In two TAs, a CD8+ T-cell response targeting the immunodominant epitope TPQDLNTML ('Gag-TL9') was associated with viral control, followed by viral rebound and the emergence of escape variants with lower replicative capacity. Both TAs mounted variant-specific responses, but only at low functional avidity, resulting in immunological progression. By contrast, in TA-3, intermittent viraemic episodes followed aviraemia without virus escape or a diminished CD4+ T-cell count. High quality and magnitude of the CD8+ T-cell response was associated with aviraemia. We therefore identify two distinct mechanisms of loss of viral control. In one scenario, CD8+ T-cell responses initially cornered low replicative capacity escape variants, but with insufficient avidity to prevent viraemia and disease progression. In the other, loss of viral control was associated neither with virus escape nor progression, but with a decrease in the quality of the CD8+ T-cell response, followed by recovery of viral control in association with improved antiviral response. These data suggest the potential for a consistently strong and polyfunctional antiviral response to achieve long-term viral control without escape. IMPORTANCE Very early initiation of antiretroviral therapy (ART) in paediatric HIV infection offers a unique opportunity to limit the size and diversity of the viral reservoir. However, only exceptionally is ART alone sufficient to achieve remission. Additional interventions are therefore required that likely include contributions from host immunity. The HIV-specific T-cell response plays a central role in immune control of adult HIV, often mediated through protective alleles such as HLA-B*57/58:01/81:01. However, due to the tolerogenic and type 2 biased immune response in early life, HLA-I-mediated immune suppression of viraemia is seldom observed in children. We describe a rare group of HLA-B*81:01-positive, ART-naïve children who achieved aviraemia, albeit only transiently, and investigate the role of the CD8+ T-cell response in the establishment and loss of viral control. We identify a mechanism by which the HIV-specific response can achieve viraemic control without viral escape, that can be explored in strategies to achieve remission.
Collapse
|
7
|
Kaseke C, Park RJ, Singh NK, Koundakjian D, Bashirova A, Garcia Beltran WF, Takou Mbah OC, Ma J, Senjobe F, Urbach JM, Nathan A, Rossin EJ, Tano-Menka R, Khatri A, Piechocka-Trocha A, Waring MT, Birnbaum ME, Baker BM, Carrington M, Walker BD, Gaiha GD. HLA class-I-peptide stability mediates CD8 + T cell immunodominance hierarchies and facilitates HLA-associated immune control of HIV. Cell Rep 2021; 36:109378. [PMID: 34260940 PMCID: PMC8293625 DOI: 10.1016/j.celrep.2021.109378] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/24/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
Defining factors that govern CD8+ T cell immunodominance is critical for the rational design of vaccines for viral pathogens. Here, we assess the contribution of human leukocyte antigen (HLA) class-I-peptide stability for 186 optimal HIV epitopes across 18 HLA alleles using transporter associated with antigen processing (TAP)-deficient mono-allelic HLA-expressing cell lines. We find that immunodominant HIV epitopes increase surface stabilization of HLA class-I molecules in comparison to subdominant epitopes. HLA class-I-peptide stability is also strongly correlated with overall immunodominance hierarchies, particularly for epitopes from high-abundance proteins (e.g., Gag). Moreover, HLA alleles associated with HIV protection are preferentially stabilized by epitopes derived from topologically important viral regions at a greater frequency than neutral and risk alleles. These findings indicate that relative stabilization of HLA class-I is a key factor for CD8+ T cell epitope immunodominance hierarchies, with implications for HIV control and the design of T-cell-based vaccines.
Collapse
Affiliation(s)
- Clarety Kaseke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ryan J Park
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA
| | - Nishant K Singh
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Arman Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wilfredo F Garcia Beltran
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Jiaqi Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46556, USA
| | - Fernando Senjobe
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Program in Virology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Elizabeth J Rossin
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA 02114, USA; The Broad Institute, Cambridge, MA 02142, USA
| | - Rhoda Tano-Menka
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ashok Khatri
- Massachusetts General Hospital Endocrine Unit and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael T Waring
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael E Birnbaum
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46556, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; The Broad Institute, Cambridge, MA 02142, USA; Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa; Institute for Medical Engineering and Science and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Ogunshola F, Anmole G, Miller RL, Goering E, Nkosi T, Muema D, Mann J, Ismail N, Chopera D, Ndung'u T, Brockman MA, Ndhlovu ZM. Dual HLA B*42 and B*81-reactive T cell receptors recognize more diverse HIV-1 Gag escape variants. Nat Commun 2018; 9:5023. [PMID: 30479346 PMCID: PMC6258674 DOI: 10.1038/s41467-018-07209-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022] Open
Abstract
Some closely related human leukocyte antigen (HLA) alleles are associated with variable clinical outcomes following HIV-1 infection despite presenting the same viral epitopes. Mechanisms underlying these differences remain unclear but may be due to intrinsic characteristics of the HLA alleles or responding T cell repertoires. Here we examine CD8+ T cell responses against the immunodominant HIV-1 Gag epitope TL9 (TPQDLNTML180–188) in the context of the protective allele B*81:01 and the less protective allele B*42:01. We observe a population of dual-reactive T cells that recognize TL9 presented by both B*81:01 and B*42:01 in individuals lacking one allele. The presence of dual-reactive T cells is associated with lower plasma viremia, suggesting a clinical benefit. In B*42:01 expressing individuals, the dual-reactive phenotype defines public T cell receptor (TCR) clones that recognize a wider range of TL9 escape variants, consistent with enhanced control of viral infection through containment of HIV-1 sequence adaptation. Closely related HLA alleles presenting similar HIV-1 epitopes can be associated with variable clinical outcome. Here the authors report their findings on CD8+ T cell responses to the HIV-1 Gag-p24 TL9 immunodominant epitope in the context of closely related protective and less protective HLA alleles, and their differential effect on viral control
Collapse
Affiliation(s)
- Funsho Ogunshola
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Gursev Anmole
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Rachel L Miller
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Emily Goering
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Thandeka Nkosi
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Muema
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismail
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Denis Chopera
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mark A Brockman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada.
| | - Zaza M Ndhlovu
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa. .,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Sharma S, Arunachalam PS, Menon M, Ragupathy V, Satya RV, Jebaraj J, Aralaguppe SG, Rao C, Pal S, Saravanan S, Murugavel KG, Balakrishnan P, Solomon S, Hewlett I, Ranga U. PTAP motif duplication in the p6 Gag protein confers a replication advantage on HIV-1 subtype C. J Biol Chem 2018; 293:11687-11708. [PMID: 29773649 DOI: 10.1074/jbc.m117.815829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 04/30/2018] [Indexed: 11/06/2022] Open
Abstract
HIV-1 subtype C (HIV-1C) may duplicate longer amino acid stretches in the p6 Gag protein, leading to the creation of an additional Pro-Thr/Ser-Ala-Pro (PTAP) motif necessary for viral packaging. However, the biological significance of a duplication of the PTAP motif for HIV-1 replication and pathogenesis has not been experimentally validated. In a longitudinal study of two different clinical cohorts of select HIV-1 seropositive, drug-naive individuals from India, we found that 8 of 50 of these individuals harbored a mixed infection of viral strains discordant for the PTAP duplication. Conventional and next-generation sequencing of six primary viral quasispecies at multiple time points disclosed that in a mixed infection, the viral strains containing the PTAP duplication dominated the infection. The dominance of the double-PTAP viral strains over a genetically similar single-PTAP viral clone was confirmed in viral proliferation and pairwise competition assays. Of note, in the proximity ligation assay, double-PTAP Gag proteins exhibited a significantly enhanced interaction with the host protein tumor susceptibility gene 101 (Tsg101). Moreover, Tsg101 overexpression resulted in a biphasic effect on HIV-1C proliferation, an enhanced effect at low concentration and an inhibitory effect only at higher concentrations, unlike a uniformly inhibitory effect on subtype B strains. In summary, our results indicate that the duplication of the PTAP motif in the p6 Gag protein enhances the replication fitness of HIV-1C by engaging the Tsg101 host protein with a higher affinity. Our results have implications for HIV-1 pathogenesis, especially of HIV-1C.
Collapse
Affiliation(s)
- Shilpee Sharma
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Prabhu S Arunachalam
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Malini Menon
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Viswanath Ragupathy
- the Laboratory of Molecular Virology, Division of Emerging and Transmission Transmitted Diseases, Office of Blood Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | | | - Joshua Jebaraj
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | | | - Chaitra Rao
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Sreshtha Pal
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India
| | - Shanmugam Saravanan
- the Y. R. Gaitonde Centre for AIDS Research and Education, Chennai 600113, India
| | | | | | - Suniti Solomon
- the Y. R. Gaitonde Centre for AIDS Research and Education, Chennai 600113, India
| | - Indira Hewlett
- the Laboratory of Molecular Virology, Division of Emerging and Transmission Transmitted Diseases, Office of Blood Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Udaykumar Ranga
- From the Jawaharlal Nehru Centre for Advanced Scientific Research, HIV-AIDS Laboratory, Bengaluru 56006, India,
| |
Collapse
|
10
|
Replication Capacity of Viruses from Acute Infection Drives HIV-1 Disease Progression. J Virol 2017; 91:JVI.01806-16. [PMID: 28148791 DOI: 10.1128/jvi.01806-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/19/2017] [Indexed: 01/09/2023] Open
Abstract
The viral genotype has been shown to play an important role in HIV pathogenesis following transmission. However, the viral phenotypic properties that contribute to disease progression remain unclear. Most studies have been limited to the evaluation of Gag function in the context of a recombinant virus backbone. Using this approach, important biological information may be lost, making the evaluation of viruses obtained during acute infection, representing the transmitted virus, a more biologically relevant model. Here, we evaluate the roles of viral infectivity and the replication capacity of viruses from acute infection in disease progression in women who seroconverted in the CAPRISA 004 tenofovir microbicide trial. We show that viral replication capacity, but not viral infectivity, correlates with the set point viral load (Spearman r = 0.346; P = 0.045) and that replication capacity (hazard ratio [HR] = 4.52; P = 0.01) can predict CD4 decline independently of the viral load (HR = 2.9; P = 0.004) or protective HLA alleles (HR = 0.61; P = 0.36). We further demonstrate that Gag-Pro is not the main driver of this association, suggesting that additional properties of the transmitted virus play a role in disease progression. Finally, we find that although viruses from the tenofovir arm were 2-fold less infectious, they replicated at rates similar to those of viruses from the placebo arm. This indicates that the use of tenofovir gel did not select for viral variants with higher replication capacity. Overall, this study supports a strong influence of the replication capacity in acute infection on disease progression, potentially driven by interaction of multiple genes rather than a dominant role of the major structural gene gagIMPORTANCE HIV disease progression is known to differ between individuals, and defining which fraction of this variation can be attributed to the virus is important both clinically and epidemiologically. In this study, we show that the replication capacity of viruses isolated during acute infection predicts subsequent disease progression and drives CD4 decline independently of the viral load. This provides further support for the hypothesis that the replication capacity of the transmitted virus determines the initial damage to the immune system, setting the pace for later disease progression. However, we did not find evidence that the major structural gene gag drives this correlation, highlighting the importance of other genes in determining disease progression.
Collapse
|
11
|
The PTAP sequence duplication in HIV-1 subtype C Gag p6 in drug-naive subjects of India and South Africa. BMC Infect Dis 2017; 17:95. [PMID: 28118816 PMCID: PMC5259826 DOI: 10.1186/s12879-017-2184-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022] Open
Abstract
Background HIV-1 subtype C demonstrates several biological properties distinct from other viral subtypes. One such variation is the duplication of PTAP motif in p6 Gag. PTAP motif is a key player in viral budding. Here, we studied the prevalence of PTAP motif duplication in subtype C viral strains in a longitudinal study. Methods In a prospective follow-up study, 65 HIV-1 seropositive drug-naive subjects were monitored in two different clinical cohorts of India for 2 years with repeated sampling at 6-month intervals. The viral RNA was extracted from plasma, the gag segment was amplified and sequenced. From a subset of viral isolates the sequences of pol, env and LTR were sequenced. Using HIV-1 gag amino acid sequences available from public databases and additional sequences derived from the Indian and South-African cohorts, we examined the nature of PTAP motif duplication in subtype C. Results In 16% (8 of 50) of the primary viral strains of India, we identified a sequence duplication of the PTAP motif in Gag p6. The length of the sequence duplication varied from 6 to 14 amino acids in the viral isolates but remained fixed within a subject over a period of 24–36 month follow-up. In the duplicated motif, the core PTAP motif was invariable, but the flanking residues were highly variable. In an acute phase clinical cohort of South Africa, in a subset of 75 subjects, we found the presence of the PTAP duplication at a frequency of 29.3%. An analysis of the gag sequences from the extant databases showed that unlike other subtypes of HIV-1, subtype C has a natural propensity to generate the PTAP motif duplication at a significantly higher frequency and of greater length. Additionally, the global prevalence of PTAP duplication in subtype C appears to be increasing progressively over the past 30 years. Conclusion We showed that in subtype C, the duplication of the PTAP motif in p6 Gag involves sequence stretches of greater length, and at a much higher frequency as compared to other HIV-1 subtypes. Given that subtype C naturally lacks the Alix binding motif, the acquisition of an additional PTAP motif may confer replication advantage on this HIV-1 subtype. Further investigation is warranted to examine the significance of PTAP motif duplication on the replicative fitness of HIV-1.
Collapse
|
12
|
Early evolution of human leucocyte antigen-associated escape mutations in variable Gag proteins predicts CD4+ decline in HIV-1 subtype C-infected women. AIDS 2017; 31:191-197. [PMID: 27755110 DOI: 10.1097/qad.0000000000001298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE HIV-1 escape from cytotoxic T-lymphocytes results in the accumulation of human leucocyte antigen (HLA)-associated mutations in the viral genome. To understand the contribution of early escape to disease progression, this study investigated the evolution and pathogenic implications of cytotoxic T-lymphocyte escape in a cohort followed from infection for 5 years. METHODS Viral loads and CD4 cell counts were monitored in 78 subtype C-infected individuals from onset of infection until CD4 cell count decline to less than 350 cells/μl or 5 years postinfection. The gag gene was sequenced and HLA-associated changes between enrolment and 12 months postinfection were mapped. RESULTS HLA-associated escape mutations were identified in 48 (62%) of the participants and were associated with CD4 decline to less than 350 cells/μl (P = 0.05). Escape mutations in variable Gag proteins (p17 and p7p6) had a greater impact on disease progression than escape in more conserved regions (p24) (P = 0.03). The association between HLA-associated escape mutations and CD4 decline was independent of protective HLA allele (B57, B58 : 01 and B81) expression. CONCLUSION The high frequency of escape contributed to rapid disease progression in this cohort. Although HLA-adaption in both conserved and variable Gag domains in the first year of infection was detrimental to long-term clinical outcome, escape in variable domains had greater impact.
Collapse
|
13
|
Abstract
Human leukocyte antigen class I (HLA)-restricted CD8(+) T lymphocyte (CTL) responses are crucial to HIV-1 control. Although HIV can evade these responses, the longer-term impact of viral escape mutants remains unclear, as these variants can also reduce intrinsic viral fitness. To address this, we here developed a metric to determine the degree of HIV adaptation to an HLA profile. We demonstrate that transmission of viruses that are pre-adapted to the HLA molecules expressed in the recipient is associated with impaired immunogenicity, elevated viral load and accelerated CD4(+) T cell decline. Furthermore, the extent of pre-adaptation among circulating viruses explains much of the variation in outcomes attributed to the expression of certain HLA alleles. Thus, viral pre-adaptation exploits 'holes' in the immune response. Accounting for these holes may be key for vaccine strategies seeking to elicit functional responses from viral variants, and to HIV cure strategies that require broad CTL responses to achieve successful eradication of HIV reservoirs.
Collapse
|
14
|
Liu D, Zuo T, Hora B, Song H, Kong W, Yu X, Goonetilleke N, Bhattacharya T, Perelson AS, Haynes BF, McMichael AJ, Gao F. Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation. Retrovirology 2014; 11:101. [PMID: 25407514 PMCID: PMC4264250 DOI: 10.1186/s12977-014-0101-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. RESULTS The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. CONCLUSIONS Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.
Collapse
Affiliation(s)
- Donglai Liu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA. .,National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| | - Tao Zuo
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA. .,National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Hongshuo Song
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wei Kong
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| | - Xianghui Yu
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| | - Nilu Goonetilleke
- Department of Microbiology, Immunology and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National laboratory, Los Alamos, NM, 87545, USA.
| | - Alan S Perelson
- Theoretical Division, Los Alamos National laboratory, Los Alamos, NM, 87545, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Andrew J McMichael
- Weatherall Institute of molecular Medicine, University of Oxford, Oxford, OX3 9DS, England, UK.
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA. .,National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
15
|
Pereyra F, Heckerman D, Carlson JM, Kadie C, Soghoian DZ, Karel D, Goldenthal A, Davis OB, DeZiel CE, Lin T, Peng J, Piechocka A, Carrington M, Walker BD. HIV control is mediated in part by CD8+ T-cell targeting of specific epitopes. J Virol 2014; 88:12937-48. [PMID: 25165115 PMCID: PMC4249072 DOI: 10.1128/jvi.01004-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED We investigated the hypothesis that the correlation between the class I HLA types of an individual and whether that individual spontaneously controls HIV-1 is mediated by the targeting of specific epitopes by CD8(+) T cells. By measuring gamma interferon enzyme-linked immunosorbent spot (ELISPOT) assay responses to a panel of 257 optimally defined epitopes in 341 untreated HIV-infected persons, including persons who spontaneously control viremia, we found that the correlation between HLA types and control is mediated by the targeting of specific epitopes. Moreover, we performed a graphical model-based analysis that suggested that the targeting of specific epitopes is a cause of such control--that is, some epitopes are protective rather than merely associated with control--and identified eight epitopes that are significantly protective. In addition, we use an in silico analysis to identify protein regions where mutations are likely to affect the stability of a protein, and we found that the protective epitopes identified by the ELISPOT analysis correspond almost perfectly to such regions. This in silico analysis thus suggests a possible mechanism for control and could be used to identify protective epitopes that are not often targeted in natural infection but that may be potentially useful in a vaccine. Our analyses thus argue for the inclusion (and exclusion) of specific epitopes in an HIV vaccine. IMPORTANCE Some individuals naturally control HIV replication in the absence of antiretroviral therapy, and this ability to control is strongly correlated with the HLA class I alleles that they express. Here, in a large-scale experimental study, we provide evidence that this correlation is mediated largely by the targeting of specific CD8(+) T-cell epitopes, and we identify eight epitopes that are likely to cause control. In addition, we provide an in silico analysis indicating that control occurs because mutations within these epitopes change the stability of the protein structures. This in silico analysis also identified additional epitopes that are not typically targeted in natural infection but may lead to control when included in a vaccine, provided that other epitopes that would otherwise distract the immune system from targeting them are excluded from the vaccine.
Collapse
Affiliation(s)
- Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Carl Kadie
- Microsoft Research, Redmond, Washington, USA
| | | | - Daniel Karel
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Ariel Goldenthal
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Oliver B Davis
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | | | - Tienho Lin
- Microsoft Research, Los Angeles, California, USA
| | - Jian Peng
- Microsoft Research, Los Angeles, California, USA
| | - Alicja Piechocka
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
16
|
Kharsany AB, Buthelezi TJ, Frohlich JA, Yende-Zuma N, Samsunder N, Mahlase G, Williamson C, Travers SA, Marais JC, Dellar R, Karim SSA, Karim QA. HIV infection in high school students in rural South Africa: role of transmissions among students. AIDS Res Hum Retroviruses 2014; 30:956-65. [PMID: 25077861 DOI: 10.1089/aid.2014.0110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In South Africa, adolescents constitute a key population at high risk of HIV acquisition. However, little is known about HIV transmission among students within schools. This study was undertaken to assess the risk factors for HIV infection and the extent of transmission among rural high school students. Between February and May 2012, consenting students from five randomly selected public sector high schools in rural KwaZulu-Natal participated in an anonymous cross-sectional survey. Dried blood spot samples were collected and tested for HIV. β-Human chorionic gonadotropin (βHCG) levels were measured in females for pregnancy. Family circumstances as well as sociodemographic and behavioral factors were assessed as potential risk factors. A subset (106/148, 72%) of HIV-positive samples underwent gag p17p24 sequencing for phylogenetic analysis. A total of 3,242 students (81.7% of enrolled students) participated. HIV prevalence was 6.8% [95% confidence interval (CI) 3.9-9.8%] in girls and 2.7% (CI 1.6-3.8%) in boys [adjusted odds ratio (aOR)=3.0, CI 2.4-3.8; p<0.001]. HIV prevalence increased from 4.6% (95% CI 1.9-7.3) in the 12- to 15-year-old girls to 23.1% (95% CI 7.7-38.5) in girls over 20 years, while in boys HIV prevalence increased from 2.7% (95% CI 0.6-4.9) in the 12- to15-year-old boys to 11.1% (95% CI 2.7-19.4) in those over 20 years. Sequencing of samples obtained from students revealed only two clusters, suggesting within-school transmission and three interschool clusters, while the remainder was most likely acquired from sources other than those currently found in students attending the school concerned. HIV prevalence in both girls (aOR=3.6, CI 2.9-4.5; p<0.001) and boys (aOR=2.8, CI 1.2-6.2; p=0.01) was higher in those without a living biological mother. The high burden of HIV infection among students was not associated with intraschool transmission in this rural setting. Lack of a living parent is an important factor defining high risk in this group of adolescents.
Collapse
Affiliation(s)
- Ayesha B.M. Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
| | - Thulasizwe John Buthelezi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
| | - Janet A. Frohlich
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
| | - Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
| | | | - Carolyn Williamson
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
- Division of Medical Virology, Clinical Laboratory Sciences and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Durban, South Africa
| | - Simon A. Travers
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, University of the Western Cape, Bellville, South Africa
| | - Jinny C. Marais
- Division of Medical Virology, Clinical Laboratory Sciences and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rachael Dellar
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Congella, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
17
|
Chaudhari DV, Chavan VR, Ahir SP, Kerkar SC, Mehta PR, Mania-Pramanik J. Human leukocyte antigen B distribution in HIV discordant cohort from India. Immunol Lett 2013; 156:1-6. [PMID: 24029662 DOI: 10.1016/j.imlet.2013.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 01/11/2023]
Abstract
Limited reports are available on association of HLA-B with HIV infection from India, a home to the third largest population of HIV infected people in the world. This emphasizes the need to have more information specifically the genetic constitution of HIV serodiscordant couples (DCs), where one spouse is seropositive (HSP) while the other remains seronegative (HSN) even after repeated exposure. Hence, aim of this study was to document association of HLA-B with HIV infection in DCs living in Mumbai, India. A cohort was designed to enroll DCs attending the ICTC/Shakti Clinic of KEM Hospital, Mumbai. A group of unexposed volunteers were also enrolled as healthy controls (HC). HLA-B alleles were typed using sequence-specific oligonucleotide probes. Allele frequency comparison was done using 2×2 contingency tables. Results were considered significant, when p<0.05 with two-tailed Fisher's exact test. At HLA-B locus, the frequencies of HLA-B*40;-B*35;-B*07;-B*15;-B*51;-B*44;-B*52;-B*37 and -B*57 were found in decreasing order in the population. Frequency of HLA-B*35 allele was significantly higher (HSP vs HSN; p<0.02 and HSP vs HC; p<0.04) in HSP. HLA-B*40 (HSN vs HSP; p<0.01 and HC vs HSP; p<0.01) and HLA-B*18 (HSN vs HSP; p<0.02) were significantly associated with HSN. Both HSN and HC had similar HLA-B*35 and -B*40 allele frequency. HLA-B*57 allele was observed in 15 individuals (3.69%). However, HLA-B*57:01 which is known to be associated with adverse reactions against Abacavir was observed in 7 of them. HLA-B*39 was observed exclusively in HSP. Our observation in DCs confirmed the association of HLA-B*35 with susceptibility while HLA-B*40 (specifically *B40:06), -B*18 with protection. These identified alleles can be used as possible marker associated with HIV transmission. In India, HLA screening is not carried out before initiation of HIV treatment. However, the presence of HLA-B*57:01 in the population emphasizes the importance of such screening to predict/avoid Abacavir hypersensitivity.
Collapse
Affiliation(s)
- Deepali V Chaudhari
- Department of Infectious Diseases Biology, National Institute for Research in Reproductive Health (DHR/ICMR), J. M. Street, Parel, Mumbai 400012, Maharashtra, India
| | | | | | | | | | | |
Collapse
|
18
|
Kumar P. Long term non-progressor (LTNP) HIV infection. Indian J Med Res 2013; 138:291-3. [PMID: 24135172 PMCID: PMC3818590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Praveen Kumar
- Pediatric ART Centre, Lady Hardinge Medical College & Associated Kalawati Saran Children's Hospital, New Delhi 110 001, India
| |
Collapse
|