1
|
Weaver GC, Schneider CL, Becerra-Artiles A, Clayton KL, Hudson AW, Stern LJ. The HHV-6B U20 glycoprotein binds ULBP1, masking it from recognition by NKG2D and interfering with natural killer cell activation. Front Immunol 2024; 15:1363156. [PMID: 38953028 PMCID: PMC11215065 DOI: 10.3389/fimmu.2024.1363156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Human Herpesvirus 6B (HHV-6B) impedes host immune responses by downregulating class I MHC molecules (MHC-I), hindering antigen presentation to CD8+ T cells. Downregulation of MHC-I disengages inhibitory receptors on natural killer (NK) cells, resulting in activation and killing of the target cell if NK cell activating receptors such as NKG2D have engaged stress ligands upregulated on the target cells. Previous work has shown that HHV-6B downregulates three MHC-like stress ligands MICB, ULBP1, and ULBP3, which are recognized by NKG2D. The U20 glycoprotein of the related virus HHV-6A has been implicated in the downregulation of ULBP1, but the precise mechanism remains undetermined. Methods We set out to investigate the role of HHV-6B U20 in modulating NK cell activity. We used HHV-6B U20 expressed as a recombinant protein or transduced into target cells, as well as HHV-6B infection, to investigate binding interactions with NK cell ligands and receptors and to assess effects on NK cell activation. Small-angle X-ray scattering was used to align molecular models derived from machine-learning approaches. Results We demonstrate that U20 binds directly to ULBP1 with sub-micromolar affinity. Transduction of U20 decreases NKG2D binding to ULBP1 at the cell surface but does not decrease ULBP1 protein levels, either at the cell surface or in toto. HHV-6B infection and soluble U20 have the same effect. Transduction of U20 blocks NK cell activation in response to cell-surface ULBP1. Structural modeling of the U20 - ULBP1 complex indicates some similarities to the m152-RAE1γ complex.
Collapse
Affiliation(s)
- Grant C. Weaver
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | - Christine L. Schneider
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Kiera L. Clayton
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | - Amy W. Hudson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lawrence J. Stern
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
2
|
Romeo F, Delgado S, Yavorsky M, Martinez Cuesta L, Pereyra S, González Altamiranda E, Louge Uriarte E, Pérez S, Verna A. Modulation of Apoptosis by Bovine Gammaherpesvirus 4 Infection in Bovine Endometrial Cells and the Possible Role of LPS in This Process. BIOLOGY 2024; 13:249. [PMID: 38666861 PMCID: PMC11048171 DOI: 10.3390/biology13040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 04/28/2024]
Abstract
The prevalent pathogens associated with bovine uterine infections are bacteria that appear to increase the host's susceptibility to secondary infections with other bacteria or viruses, among which BoGHV4 is the most frequently found. In this work, the study of the pathways of apoptosis induction was carried out on an experimental model of primary culture of endometrial cells, in order to know the implication of BoGHV4 and the presence of bacterial LPS in the pathogenesis of the bovine reproductive tract. For this, different staining techniques and molecular analysis by RT-PCR were used. The results obtained allowed us to conclude that the level of cell death observed in the proposed primary culture is directly related to the time of viral infection and the presence of LPS in BoGHV4 infection. The apoptosis indices in cells infected with BoGHV4 and BoGHV4 + LPS revealed a maximum that correlated with the appearance of cytopathic effects and the maximum viral titers in the model studied. However, morphological, biochemical, and molecular changes were evident during both early and late stages of apoptosis. These findings provide information on the factors that may influence the pathogenesis of BoGHV4 and help to better understand the mechanisms involved in virus infection.
Collapse
Affiliation(s)
- Florencia Romeo
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina;
| | - Santiago Delgado
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina;
| | - Marisol Yavorsky
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina;
| | - Lucía Martinez Cuesta
- Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires—CONICET, Tandil 7000, Argentina; (L.M.C.); (S.P.)
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil 7000, Argentina
| | - Susana Pereyra
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
| | - Erika González Altamiranda
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
| | - Enrique Louge Uriarte
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
| | - Sandra Pérez
- Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires—CONICET, Tandil 7000, Argentina; (L.M.C.); (S.P.)
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil 7000, Argentina
| | - Andrea Verna
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
| |
Collapse
|
3
|
Abstract
Roseoloviruses (human herpesvirus 6A [HHV-6A], -6B, and -7) infect >90% of the human population during early childhood and are thought to remain latent or persistent throughout the life of the host. As such, these viruses are among the most pervasive and stealthy of all viruses; they must necessarily excel at escaping immune detection throughout the life of the host, and yet, very little is known about how these viruses so successfully escape host defenses. Here, we characterize the expression, trafficking, and posttranslational modifications of the HHV6B U20 gene product, which is encoded within a block of genes unique to the roseoloviruses. HHV-6B U20 trafficked slowly through the secretory system, receiving several posttranslational modifications to its N-linked glycans, indicative of surface-expressed glycoproteins, and eventually reaching the cell surface before being internalized. Interestingly, U20 is also phosphorylated on at least one Ser, Thr, or Tyr residue. These results provide a framework to understand the role(s) of U20 in evading host defenses. IMPORTANCE The roseolovirus U20 proteins are virus-encoded integral membrane glycoproteins possessing class I major histocompatibility complex (MHC)-like folds. Surprisingly, although U20 proteins from HHV-6A and -6B share 92% identity, recent studies ascribe different functions to HHV6A U20 and HHV6B U20. HHV6A U20 was shown to downregulate NKG2D ligands, while HHV6B U20 was shown to inhibit tumor necrosis factor alpha (TNF-α)-induced apoptosis during nonproductive infection with HHV6B (E. Kofod-Olsen, K. Ross-Hansen, M. H. Schleimann, D. K. Jensen, et al., J Virol 86:11483-11492, 2012, https://doi.org/10.1128/jvi.00847-12; A. E. Chaouat, B. Seliger, O. Mandelboim, D. Schmiedel, Front Immunol 12:714799, 2021, https://doi.org/10.3389/fimmu.2021.714799). Here, we have performed cell biological and biochemical characterization of the trafficking, glycosylation, and posttranslational modifications occurring on HHV6B U20.
Collapse
|
4
|
Weaver GC, Arya R, Schneider CL, Hudson AW, Stern LJ. Structural Models for Roseolovirus U20 And U21: Non-Classical MHC-I Like Proteins From HHV-6A, HHV-6B, and HHV-7. Front Immunol 2022; 13:864898. [PMID: 35444636 PMCID: PMC9013968 DOI: 10.3389/fimmu.2022.864898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
Human roseolovirus U20 and U21 are type I membrane glycoproteins that have been implicated in immune evasion by interfering with recognition of classical and non-classical MHC proteins. U20 and U21 are predicted to be type I glycoproteins with extracytosolic immunoglobulin-like domains, but detailed structural information is lacking. AlphaFold and RoseTTAfold are next generation machine-learning-based prediction engines that recently have revolutionized the field of computational three-dimensional protein structure prediction. Here, we review the structural biology of viral immunoevasins and the current status of computational structure prediction algorithms. We use these computational tools to generate structural models for U20 and U21 proteins, which are predicted to adopt MHC-Ia-like folds with closed MHC platforms and immunoglobulin-like domains. We evaluate these structural models and place them within current understanding of the structural basis for viral immune evasion of T cell and natural killer cell recognition.
Collapse
Affiliation(s)
- Grant C. Weaver
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | - Richa Arya
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
| | | | - Amy W. Hudson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lawrence J. Stern
- Immunology and Microbiology Graduate Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
- Department of Pathology, UMass Chan Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
5
|
Jiang X, Tang T, Guo J, Wang Y, Li P, Chen X, Wang L, Wen Y, Jia J, Emanuela G, Hu B, Chen S, Yao K, Li L, Tang H. Human Herpesvirus 6B U26 Inhibits the Activation of the RLR/MAVS Signaling Pathway. mBio 2021; 12:e03505-20. [PMID: 33593967 PMCID: PMC8545120 DOI: 10.1128/mbio.03505-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
U26 is one of the roseolovirus unique genes with unknown function. Human herpesvirus 6B (HHV-6B) pU26 is predicted to be an 8-transmembrane protein containing a mitochondrion location signal. Here, we analyzed U26 function during HHV-6B infection and find that (i) HHV-6B U26 is expressed at a very early stage during HHV-6B infection, and knockdown of it results in a significant decrease of HHV-6B progeny virus production; (ii) U26 inhibits the activation of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)/mitochondrial antiviral signaling protein (MAVS) signaling pathway, an important anti-HHV-6B infection innate immune response, by targeting MAVS protein for degradation; and (iii) a portion of U26 locates to the mitochondria, which could affect the mitochondrial membrane potential and finally leads to MAVS degradation. These findings indicate that HHV-6B U26 is a novel antagonistic viral factor against host innate antiviral immunity.IMPORTANCE HHV-6B (human herpesvirus 6B) is well known to evade host antiviral responses and establish a lifelong latent infection. How HHV-6B evades RNA recognition is still poorly understood. Our results indicate that HHV-6 U26 plays a vital role in RLR/MAVS signaling pathway activity. Knockout of endogenous MAVS could facilitate HHV-6B replication. The findings in this study could provide new insights into host-virus interactions and help develop a new therapy against HHV-6B infection.
Collapse
Affiliation(s)
- Xuefeng Jiang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Tian Tang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinfeng Guo
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuhang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Peipei Li
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiangjun Chen
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lily Wang
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yiqun Wen
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Garbarino Emanuela
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Benshun Hu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuhua Chen
- Department of Critical Care Medicine, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, People's Republic of China
| | - Kun Yao
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Linyun Li
- Department of Medical Genetics, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huaming Tang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, People's Republic of China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
He J, Mi S, Qin XW, Weng SP, Guo CJ, He JG. Tiger frog virus ORF104R interacts with cellular VDAC2 to inhibit cell apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 92:889-896. [PMID: 31299465 DOI: 10.1016/j.fsi.2019.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/06/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Ranaviruses belong to the family Iridoviridae, and have become a serious threat to both farmed and natural populations of fish and amphibians. Previous reports showed that ranaviruses could encode viral Bcl-2 family-like proteins (vBcl-2), which play a critical role in the regulation of cell apoptosis. However, the mechanism of ranaviruses vBcl-2 interactions with host protein in mediating apoptosis remains unknown. Tiger frog virus (TFV) belonging to the genus Ranavirus has been isolated from infected tadpoles of Rana tigrina rugulosa, and it causes a high mortality rate among tiger frog tadpoles cultured in southern China. This study elucidated the molecular mechanism underlying the interaction of TFV ORF104R with the VDAC2 protein to regulate cell apoptosis. TFV ORF104R is highly similar to other ranaviruses vBcl-2 and host Mcl-1 proteins, indicating that TFV ORF104R is a postulate vBcl-2 protein. Transcription and protein expression levels showed that TFV orf104r was a late viral gene. Western blot results suggested that TFV ORF104R was a viral structural protein. Subcellular localization analysis indicated that TFV ORF104R was predominantly colocalized with the mitochondria. Overexpressed TFV ORF104R could suppress the release of cytochrome C and the activities of caspase-9 and caspase-3. These results indicated that TFV ORF104R might play an important role in anti-apoptosis. Furthermore, the interaction between TFV ORF104R and VDAC2 was detected by co-immunoprecipitation in vitro. The above observations suggest that the molecular mechanism of TFV-regulated anti-apoptosis is through the interaction of TFV ORF104R with the VDAC2 protein. Our study provided a mechanistic basis for the ranaviruses vBcl-2-mediated inhibition of apoptosis and improved the understanding on how TFV subverts host defense mechanisms in vivo.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Shu Mi
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Xiao-Wei Qin
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Shao-Ping Weng
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| | - Jian-Guo He
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| |
Collapse
|
7
|
Greninger AL, Roychoudhury P, Makhsous N, Hanson D, Chase J, Krueger G, Xie H, Huang ML, Saunders L, Ablashi D, Koelle DM, Cook L, Jerome KR. Copy Number Heterogeneity, Large Origin Tandem Repeats, and Interspecies Recombination in Human Herpesvirus 6A (HHV-6A) and HHV-6B Reference Strains. J Virol 2018; 92:e00135-18. [PMID: 29491155 PMCID: PMC5923074 DOI: 10.1128/jvi.00135-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
Quantitative PCR is a diagnostic pillar for clinical virology testing, and reference materials are necessary for accurate, comparable quantitation between clinical laboratories. Accurate quantitation of human herpesvirus 6A/B (HHV-6A/B) is important for detection of viral reactivation and inherited chromosomally integrated HHV-6A/B in immunocompromised patients. Reference materials in clinical virology commonly consist of laboratory-adapted viral strains that may be affected by the culture process. We performed next-generation sequencing to make relative copy number measurements at single nucleotide resolution of eight candidate HHV-6A and seven HHV-6B reference strains and DNA materials from the HHV-6 Foundation and Advanced Biotechnologies Inc. Eleven of 17 (65%) HHV-6A/B candidate reference materials showed multiple copies of the origin of replication upstream of the U41 gene by next-generation sequencing. These large tandem repeats arose independently in culture-adapted HHV-6A and HHV-6B strains, measuring 1,254 bp and 983 bp, respectively. The average copy number measured was between 5 and 10 times the number of copies of the rest of the genome. We also report the first interspecies recombinant HHV-6A/B strain with a HHV-6A backbone and a >5.5-kb region from HHV-6B, from U41 to U43, that covered the origin tandem repeat. Specific HHV-6A reference strains demonstrated duplication of regions at U1/U2, U87, and U89, as well as deletion in the U12-to-U24 region and the U94/U95 genes. HHV-6A/B strains derived from cord blood mononuclear cells from different laboratories on different continents with fewer passages revealed no copy number differences throughout the viral genome. These data indicate that large origin tandem duplications are an adaptation of both HHV-6A and HHV-6B in culture and show interspecies recombination is possible within the Betaherpesvirinae.IMPORTANCE Anything in science that needs to be quantitated requires a standard unit of measurement. This includes viruses, for which quantitation increasingly determines definitions of pathology and guidelines for treatment. However, the act of making standard or reference material in virology can alter its very accuracy through genomic duplications, insertions, and rearrangements. We used deep sequencing to examine candidate reference strains for HHV-6, a ubiquitous human virus that can reactivate in the immunocompromised population and is integrated into the human genome in every cell of the body for 1% of people worldwide. We found large tandem repeats in the origin of replication for both HHV-6A and HHV-6B that are selected for in culture. We also found the first interspecies recombinant between HHV-6A and HHV-6B, a phenomenon that is well known in alphaherpesviruses but to date has not been seen in betaherpesviruses. These data critically inform HHV-6A/B biology and the standard selection process.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Negar Makhsous
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Derek Hanson
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jill Chase
- HHV-6 Foundation, Santa Barbara, California, USA
| | - Gerhard Krueger
- Department of Pathology and Laboratory Medicine, University of Houston, Houston, Texas, USA
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Lindsay Saunders
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | | - David M Koelle
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Linda Cook
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| |
Collapse
|
8
|
Tang H, Mori Y. Glycoproteins of HHV-6A and HHV-6B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:145-165. [PMID: 29896667 DOI: 10.1007/978-981-10-7230-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, human herpesvirus 6A and 6B (HHV-6A and HHV-6B) were classified into distinct species. Although these two viruses share many similarities, cell tropism is one of their striking differences, which is partially because of the difference in their entry machinery. Many glycoproteins of HHV-6A/B have been identified and analyzed in detail, especially in their functions during entry process into host cells. Some of these glycoproteins were unique to HHV-6A/B. The cellular factors associated with these viral glycoproteins (or glycoprotein complex) were also identified in recent years. Detailed interaction analyses were also conducted, which could partially prove the difference of entry machinery in these two viruses. Although there are still issues that should be addressed, all the knowledges that have been earned in recent years could not only help us to understand these viruses' entry mechanism well but also would contribute to the development of the therapy and/or prophylaxis methods for HHV-6A/B-associated diseases.
Collapse
Affiliation(s)
- Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
9
|
Inherited Chromosomally Integrated Human Herpesvirus 6 Genomes Are Ancient, Intact, and Potentially Able To Reactivate from Telomeres. J Virol 2017; 91:JVI.01137-17. [PMID: 28835501 PMCID: PMC5660504 DOI: 10.1128/jvi.01137-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 01/31/2023] Open
Abstract
The genomes of human herpesvirus 6A (HHV-6A) and HHV-6B have the capacity to integrate into telomeres, the essential capping structures of chromosomes that play roles in cancer and ageing. About 1% of people worldwide are carriers of chromosomally integrated HHV-6 (ciHHV-6), which is inherited as a genetic trait. Understanding the consequences of integration for the evolution of the viral genome, for the telomere, and for the risk of disease associated with carrier status is hampered by a lack of knowledge about ciHHV-6 genomes. Here, we report an analysis of 28 ciHHV-6 genomes and show that they are significantly divergent from the few modern nonintegrated HHV-6 strains for which complete sequences are currently available. In addition, ciHHV-6B genomes in Europeans are more closely related to each other than to ciHHV-6B genomes from China and Pakistan, suggesting regional variation of the trait. Remarkably, at least one group of European ciHHV-6B carriers has inherited the same ciHHV-6B genome, integrated in the same telomere allele, from a common ancestor estimated to have existed 24,500 ± 10,600 years ago. Despite the antiquity of some, and possibly most, germ line HHV-6 integrations, the majority of ciHHV-6B (95%) and ciHHV-6A (72%) genomes contain a full set of intact viral genes and therefore appear to have the capacity for viral gene expression and full reactivation. IMPORTANCE Inheritance of HHV-6A or HHV-6B integrated into a telomere occurs at a low frequency in most populations studied to date, but its characteristics are poorly understood. However, stratification of ciHHV-6 carriers in modern populations due to common ancestry is an important consideration for genome-wide association studies that aim to identify disease risks for these people. Here, we present full sequence analysis of 28 ciHHV-6 genomes and show that ciHHV-6B in many carriers with European ancestry most likely originated from ancient integration events in a small number of ancestors. We propose that ancient ancestral origins for ciHHV-6A and ciHHV-6B are also likely in other populations. Moreover, despite their antiquity, all of the ciHHV-6 genomes appear to retain the capacity to express viral genes, and most are predicted to be capable of full viral reactivation. These discoveries represent potentially important considerations in immunocompromised patients, in particular in organ transplantation and in stem cell therapy.
Collapse
|
10
|
A Murine Herpesvirus Closely Related to Ubiquitous Human Herpesviruses Causes T-Cell Depletion. J Virol 2017; 91:JVI.02463-16. [PMID: 28179532 PMCID: PMC5391440 DOI: 10.1128/jvi.02463-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the Roseolovirus genus of the human Betaherpesvirinae subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4+ T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.IMPORTANCE Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties.
Collapse
|
11
|
Roseoloviruses and their modulation of host defenses. Curr Opin Virol 2014; 9:178-87. [DOI: 10.1016/j.coviro.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/27/2022]
|
12
|
Puimège L, Libert C, Van Hauwermeiren F. Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev 2014; 25:285-300. [PMID: 24746195 DOI: 10.1016/j.cytogfr.2014.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
TNF is an essential regulator of the immune system. Dysregulation of TNF plays a role in the pathology of many auto-immune diseases. TNF-blocking agents have proven successful in the treatment of such diseases. Development of novel, safer or more effective drugs requires a deeper understanding of the regulation of the pro-inflammatory activities of TNF and its receptors. The ubiquitously expressed TNFR1 is responsible for most TNF effects, while TNFR2 has a limited expression pattern and performs immune-regulatory functions. Despite extensive knowledge of TNFR1 signaling, the regulation of TNFR1 expression, its modifications, localization and processing are less clear and the data are scattered. Here we review the current knowledge of TNFR1 regulation and discuss the impact this has on the host.
Collapse
Affiliation(s)
- Leen Puimège
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Hauwermeiren
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Human herpesvirus 6A infection in CD46 transgenic mice: viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J Virol 2014; 88:5421-36. [PMID: 24574405 DOI: 10.1128/jvi.03763-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human herpesvirus 6 (HHV-6) is widely spread in the human population and has been associated with several neuroinflammatory diseases, including multiple sclerosis. To develop a small-animal model of HHV-6 infection, we analyzed the susceptibility of several lines of transgenic mice expressing human CD46, identified as a receptor for HHV-6. We showed that HHV-6A (GS) infection results in the expression of viral transcripts in primary brain glial cultures from CD46-expressing mice, while HHV-6B (Z29) infection was inefficient. HHV-6A DNA persisted for up to 9 months in the brain of CD46-expressing mice but not in the nontransgenic littermates, whereas HHV-6B DNA levels decreased rapidly after infection in all mice. Persistence in the brain was observed with infectious but not heat-inactivated HHV-6A. Immunohistological studies revealed the presence of infiltrating lymphocytes in periventricular areas of the brain of HHV-6A-infected mice. Furthermore, HHV-6A stimulated the production of a panel of proinflammatory chemokines in primary brain glial cultures, including CCL2, CCL5, and CXCL10, and induced the expression of CCL5 in the brains of HHV-6A-infected mice. HHV-6A-induced production of chemokines in the primary glial cultures was dependent on the stimulation of toll-like receptor 9 (TLR9). Finally, HHV-6A induced signaling through human TLR9 as well, extending observations from the murine model to human infection. Altogether, this study presents a first murine model for HHV-6A-induced brain infection and suggests a role for TLR9 in the HHV-6A-initiated production of proinflammatory chemokines in the brain, opening novel perspectives for the study of virus-associated neuropathology. IMPORTANCE HHV-6 infection has been related to neuroinflammatory diseases; however, the lack of a suitable small-animal infection model has considerably hampered further studies of HHV-6-induced neuropathogenesis. In this study, we have characterized a new model for HHV-6 infection in mice expressing the human CD46 protein. Infection of CD46 transgenic mice with HHV-6A resulted in long-term persistence of viral DNA in the brains of infected animals and was followed by lymphocyte infiltration and upregulation of the CCL5 chemokine in the absence of clinical signs of disease. The secretion of a panel of chemokines was increased after infection in primary murine brain glial cultures, and the HHV-6-induced chemokine expression was inhibited when TLR9 signaling was blocked. These results describe the first murine model for HHV-6A-induced brain infection and suggest the importance of the TLR9 pathway in HHV-6A-initiated neuroinflammation.
Collapse
|
14
|
Characterization of the human herpesvirus 6A U23 gene. Virology 2013; 450-451:98-105. [PMID: 24503071 DOI: 10.1016/j.virol.2013.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/01/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
Abstract
Human herpesvirus 6 (HHV-6), which replicates abundantly in T cells, belongs to the Roseolovirus genus within the betaherpesvirus subfamily. Members of the Roseolovirus genus encode seven unique genes, U20, U21, U23, U24, U24A, U26, and U100. The present study focused on one of these, U23, by analyzing the characteristics of its gene product in HHV-6A-infected cells. The results indicated that the U23 protein was expressed at the late phase of infection as a glycoprotein, but was not incorporated into virions, and mostly stayed within the trans Golgi network (TGN) in HHV-6A-infected cells. Furthermore, analysis using a U23-defective mutant virus showed that the gene is nonessential for viral replication in vitro.
Collapse
|
15
|
Abstract
A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.
Collapse
|
16
|
Kofod-Olsen E, Møller JML, Schleimann MH, Bundgaard B, Bak RO, Øster B, Mikkelsen JG, Hupp T, Höllsberg P. Inhibition of p53-dependent, but not p53-independent, cell death by U19 protein from human herpesvirus 6B. PLoS One 2013; 8:e59223. [PMID: 23555634 PMCID: PMC3608612 DOI: 10.1371/journal.pone.0059223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/12/2013] [Indexed: 01/20/2023] Open
Abstract
Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after γ irradiation in both permissive and non-permissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following γ irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein.
Collapse
Affiliation(s)
| | | | | | | | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bodil Øster
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute of Genetics and Molecular Medicine, Cancer Research UK p53 Signal Transduction Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Ted Hupp
- Institute of Genetics and Molecular Medicine, Cancer Research UK p53 Signal Transduction Laboratories, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Per Höllsberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|