1
|
Ushioda W, Kotani O, Kawachi K, Iwata-Yoshikawa N, Suzuki T, Hasegawa H, Shimizu H, Takahashi K, Nagata N. Neuropathology in Neonatal Mice After Experimental Coxsackievirus B2 Infection Using a Prototype Strain, Ohio-1. J Neuropathol Exp Neurol 2020; 79:209-225. [PMID: 31845989 DOI: 10.1093/jnen/nlz124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/08/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
Coxsackievirus B (CVB) causes severe morbidity and mortality in neonates and is sometimes associated with severe brain damage resulting from acute severe viral encephalomyelitis. However, the neuropathology of CVB infection remains unclear. A prototype strain of coxsackievirus B2 (Ohio-1) induces brain lesions in neonatal mice, resulting in dome-shaped heads, ventriculomegaly, and loss of the cerebral cortex. Here, we characterized the glial pathology in this mouse model. Magnetic resonance imaging revealed an absence of the cerebral cortex within 2 weeks after inoculation. Histopathology showed that virus replication triggered activation of microglia and astrocytes, and induced apoptosis in the cortex, with severe necrosis and lateral ventricular dilation. In contrast, the brainstem and cerebellum remained morphologically intact. Immunohistochemistry revealed high expression of the coxsackievirus and adenovirus receptor (a primary receptor for CVB) in mature neurons of the cortex, hippocampus, thalamus, and midbrain, demonstrating CVB2 infection of mature neurons in these areas. However, apoptosis and neuroinflammation from activated microglia and astrocytes differed in thalamic and cortical areas. Viral antigens were retained in the brains of animals in the convalescence phase with seroconversion. This animal model will contribute to a better understanding of the neuropathology of CVB infection.
Collapse
Affiliation(s)
- Waka Ushioda
- From the Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.,Department of Veterinary Pathology, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Osamu Kotani
- From the Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kengo Kawachi
- From the Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.,Laboratory of Clinical Research of Infectious Diseases, Osaka University, Osaka, Japan
| | - Naoko Iwata-Yoshikawa
- From the Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tadaki Suzuki
- From the Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hideki Hasegawa
- From the Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology 2, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kimimasa Takahashi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Noriyo Nagata
- From the Department of Pathology, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| |
Collapse
|
2
|
Bonanno Ferraro G, Mancini P, Veneri C, Iaconelli M, Suffredini E, Brandtner D, La Rosa G. Evidence of Saffold virus circulation in Italy provided through environmental surveillance. Lett Appl Microbiol 2019; 70:102-108. [PMID: 31742735 DOI: 10.1111/lam.13249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Saffold virus (SAFV) is an emerging human cardiovirus associated with respiratory and gastrointestinal infection, and, more recently, to symptoms related to the endocrine, cardiovascular, and neurological systems. Information about SAFV circulation in Italy is scarce. In order to provide insights into the epidemiology of SAFV in Italy, 141 raw sewage samples collected throughout Italy were tested using broad-range nested RT-PCR primers targeting the 5'-NC region. Seven samples (5·0%) were confirmed as SAFV in samples collected in North, Centre and Southern Italy. Typing was attempted through amplification of the VP1 coding region, using both published and newly designed primers, and one sample was characterized as SAFV-2. SIGNIFICANCE AND IMPACT OF THE STUDY: Prevalence, genetic diversity and geographic distribution of SAFV in Italy is currently unknown. This study represents the first detection of SAFV in sewage samples in Italy, suggesting that it is circulating in the population despite lack of clinical reporting. Whether the virus is associated with asymptomatic cases or with undetected gastroenteritis or respiratory illness is unknown. Further studies are needed to investigate on the occurrence and persistence of SAFV in water environments and its waterborne transmission potential.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - C Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|