1
|
Abrahams RR, Majumder K. Small Genomes, Big Disruptions: Parvoviruses and the DNA Damage Response. Viruses 2025; 17:494. [PMID: 40284937 PMCID: PMC12031541 DOI: 10.3390/v17040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Parvoviruses are small, single-stranded DNA viruses that have evolved sophisticated mechanisms to hijack host cell machinery for replication and persistence. One critical aspect of this interaction involves the manipulation of the host's DNA Damage Response (DDR) pathways. While the viral genome is comparatively simple, parvoviruses have developed strategies that cause significant DNA damage, activate DDR pathways, and disrupt the host cell cycle. This review will explore the impact of parvovirus infections on host genome stability, focusing on key viral species such as Adeno-Associated Virus (AAV), Minute Virus of Mice (MVM), and Human Bocavirus (HBoV), and their interactions with DDR proteins. Since parvoviruses are used as oncolytic agents and gene therapy vectors, a better understanding of cellular DDR pathways will aid in engineering potent anti-cancer agents and gene therapies for chronic diseases.
Collapse
Affiliation(s)
| | - Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53707, USA;
| |
Collapse
|
2
|
Kasimsetty A, Sabatino DE. Integration and the risk of liver cancer-Is there a real risk? J Viral Hepat 2024; 31 Suppl 1:26-34. [PMID: 38606944 DOI: 10.1111/jvh.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 04/13/2024]
Abstract
Adeno-associated virus (AAV)-based gene therapies are in clinical development for haemophilia and other genetic diseases. Since the recombinant AAV genome primarily remains episomal, it provides the opportunity for long-term expression in tissues that are not proliferating and reduces the safety concerns compared with integrating viral vectors. However, AAV integration events are detected at a low frequency. Preclinical studies in mouse models have reported hepatocellular carcinoma (HCC) after systemic AAV administration in some settings, though this has not been reported in large animal models. The risk of HCC or other cancers after AAV gene therapy in clinical studies thus remains theoretical. Potential risk factors for HCC after gene therapy are beginning to be elucidated through animal studies, but their relevance to human studies remains unknown. Studies to investigate the factors that may influence the risk of oncogenesis as well as detailed investigation of cases of cancer in AAV gene therapy patients will be important to define the potential risk of AAV genotoxicity.
Collapse
Affiliation(s)
- Aradhana Kasimsetty
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Torella L, Klermund J, Bilbao-Arribas M, Tamayo I, Andrieux G, Chmielewski KO, Vales A, Olagüe C, Moreno-Luqui D, Raimondi I, Abad A, Torrens-Baile J, Salido E, Huarte M, Hernaez M, Boerries M, Cathomen T, Zabaleta N, Gonzalez-Aseguinolaza G. Efficient and safe therapeutic use of paired Cas9-nickases for primary hyperoxaluria type 1. EMBO Mol Med 2024; 16:112-131. [PMID: 38182795 PMCID: PMC10897483 DOI: 10.1038/s44321-023-00008-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/07/2024] Open
Abstract
The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.
Collapse
Affiliation(s)
- Laura Torella
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Martin Bilbao-Arribas
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Ibon Tamayo
- IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
- Bioinformatics Core, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Kay O Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106, Freiburg, Germany
| | - Africa Vales
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Cristina Olagüe
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Daniel Moreno-Luqui
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Ivan Raimondi
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Amaya Abad
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Julen Torrens-Baile
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna, CIBERER, 38320, Tenerife, Spain
| | - Maite Huarte
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Mikel Hernaez
- IdISNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
- Bioinformatics Core, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, 79110, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106, Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Harvard Medical School, 02114, Boston, MA, USA.
| | - Gloria Gonzalez-Aseguinolaza
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
4
|
Abstract
Gene therapy is a powerful biological tool that is reshaping therapeutic landscapes for several diseases. Researchers are using both non-viral and viral-based gene therapy methods with success in the lab and the clinic. In the cancer biology field, gene therapies are expanding treatment options and the possibility of favorable outcomes for patients. While cellular immunotherapies and oncolytic virotherapies have paved the way in cancer treatments based on genetic engineering, recombinant adeno-associated virus (rAAV), a viral-based module, is also emerging as a potential cancer therapeutic through its malleability, specificity, and broad application to common as well as rare tumor types, tumor microenvironments, and metastatic disease. A wide range of AAV serotypes, promoters, and transgenes have been successful at reducing tumor growth and burden in preclinical studies, suggesting more groundbreaking advances using rAAVs in cancer are on the horizon.
Collapse
Affiliation(s)
- Patrick L. Mulcrone
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University, Indianapolis, IN 46202, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Hutanu A, Boelsterli D, Schmidli C, Montealegre C, Dang Thai MHN, Bobaly B, Koch M, Schwarz MA. Stronger together: Analytical techniques for recombinant adeno associated virus. Electrophoresis 2021; 43:1107-1117. [PMID: 34821392 PMCID: PMC9300034 DOI: 10.1002/elps.202100302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022]
Abstract
With recent FDA approval of two recombinant adeno‐associated virus (rAAV)‐based gene therapies, these vectors have proven that they are suitable to address monogenic diseases. However, rAAVs are relatively new modalities, and their production and therapy costs significantly exceed those of conventional biologics. Thus, significant efforts are made to improve the processes, methods, and techniques used in manufacturing and quality control (QC). Here, we evaluate transmission electron microscopy (TEM), analytical ultracentrifugation (AUC), and two modes of capillary electrophoresis (CE) for their ability to analyze the DNA encapsidated by rAAVs. While TEM and AUC are well‐established methods for rAAV, capillary gel electrophoresis (CGE) has been just recently proposed for viral genome sizing. The data presented reflect that samples are very complex, with various DNA species incorporated in the virus, including small fragments as well as DNA that is larger than the targeted transgene. CGE provides a good insight in the filling of rAAVs, but the workflow is tedious and the method is not applicable for the determination of DNA titer, since a procedure for the absolute quantification (e.g., calibration) is not yet established. For estimating the genome titer, we propose a simplified capillary zone electrophoresis approach with minimal sample preparation and short separation times (<5 min/run). Our data show the benefits of using the four techniques combined, since each of them alone is prone to delivering ambiguous results. For this reason, a clear view of the rAAV interior can only be provided by using several analytical methods simultaneously.
Collapse
Affiliation(s)
- Andrei Hutanu
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, University of Basel, Basel, 4056, Switzerland.,Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, University of Basel, Basel, 4056, Switzerland
| | | | | | | | - Mike H N Dang Thai
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, University of Basel, Basel, 4056, Switzerland
| | | | | | - Maria A Schwarz
- Analytical Development and Quality Control, Pharma Technical Development Biologics Europe, University of Basel, Basel, 4056, Switzerland.,Solvias AG, Kaiseraugst, Switzerland
| |
Collapse
|
6
|
Barreat JGN, Katzourakis A. Paleovirology of the DNA viruses of eukaryotes. Trends Microbiol 2021; 30:281-292. [PMID: 34483047 DOI: 10.1016/j.tim.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022]
Abstract
Paleovirology is the study of ancient viruses and how they have coevolved with their hosts. An increasingly detailed understanding of the diversity, origins, and evolution of the DNA viruses of eukaryotes has been obtained through the lens of paleovirology in recent years. Members of multiple viral families have been found integrated in the genomes of eukaryotes, providing a rich fossil record to study. These elements have extended our knowledge of exogenous viral diversity, host ranges, and the timing of viral evolution, and are revealing the existence of entire new families of eukaryotic integrating dsDNA viruses and transposons. Future work in paleovirology will continue to provide insights into antiviral immunity, viral diversity, and potential applications, and reveal other secrets of the viral world.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OX1 3SY, UK.
| |
Collapse
|
7
|
Hristova DB, Lauer KB, Ferguson BJ. Viral interactions with non-homologous end-joining: a game of hide-and-seek. J Gen Virol 2020; 101:1133-1144. [PMID: 32735206 PMCID: PMC7879558 DOI: 10.1099/jgv.0.001478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
There are extensive interactions between viruses and the host DNA damage response (DDR) machinery. The outcome of these interactions includes not only direct effects on viral nucleic acids and genome replication, but also the activation of host stress response signalling pathways that can have further, indirect effects on viral life cycles. The non-homologous end-joining (NHEJ) pathway is responsible for the rapid and imprecise repair of DNA double-stranded breaks in the nucleus that would otherwise be highly toxic. Whilst directly repairing DNA, components of the NHEJ machinery, in particular the DNA-dependent protein kinase (DNA-PK), can activate a raft of downstream signalling events that activate antiviral, cell cycle checkpoint and apoptosis pathways. This combination of possible outcomes results in NHEJ being pro- or antiviral depending on the infection. In this review we will describe the broad range of interactions between NHEJ components and viruses and their consequences for both host and pathogen.
Collapse
Affiliation(s)
- Dayana B. Hristova
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
| | - Katharina B. Lauer
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
- Present address: ELIXIR Hub, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Brian J. Ferguson
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Gilbert-Girard S, Gravel A, Collin V, Wight DJ, Kaufer BB, Lazzerini-Denchi E, Flamand L. Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. PLoS Pathog 2020; 16:e1008496. [PMID: 32320442 PMCID: PMC7197865 DOI: 10.1371/journal.ppat.1008496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/04/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p<0.0001). Lastly, TRF2 knockdown reduced HHV-6A/B integration frequency (p<0.05), while no effect was observed on the infection efficiency. Overall, our study identified that HHV-6A/B IE2 localizes to telomeres during infection and highlight the role of TRF2 in HHV-6A/B infection and chromosomal integration.
Collapse
Affiliation(s)
- Shella Gilbert-Girard
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | - Eros Lazzerini-Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of microbiology, infectious diseases and immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
9
|
Abstract
Although the sequence of the AAV inverted terminal repeat has been known for 40 years, there are still unanswered questions about functions attributable to the terminal 125 nucleotides.
Collapse
Affiliation(s)
- Kenneth I Berns
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
10
|
Nagree MS, Scalia S, McKillop WM, Medin JA. An update on gene therapy for lysosomal storage disorders. Expert Opin Biol Ther 2019; 19:655-670. [DOI: 10.1080/14712598.2019.1607837] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Murtaza S. Nagree
- Department of Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee,
WI, USA
| | - Simone Scalia
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee,
WI, USA
| | | | - Jeffrey A. Medin
- Department of Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee,
WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee,
WI, USA
| |
Collapse
|
11
|
Methylation Status of the Adeno-Associated Virus Type 2 (AAV2). Viruses 2019; 11:v11010038. [PMID: 30634383 PMCID: PMC6356613 DOI: 10.3390/v11010038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/16/2022] Open
Abstract
To analyze the methylation status of wild-type adeno-associated virus type 2 (AAV2), bisulfite PCR sequencing (BPS) of the packaged viral genome and its integrated form was performed and 262 of the total 266 CG dinucleotides (CpG) were mapped. In virion-packaged DNA, the ratio of the methylated cytosines ranged between 0⁻1.7%. In contrast, the chromosomally integrated AAV2 genome was hypermethylated with an average of 76% methylation per CpG site. The methylation level showed local minimums around the four known AAV2 promoters. To study the effect of methylation on viral rescue and replication, the replication initiation capability of CpG methylated and non-CpG methylated AAV DNA was compared. The in vitro hypermethylation of the viral genome does not inhibit its rescue and replication from a plasmid transfected into cells. This insensitivity of the viral replicative machinery to methylation may permit the rescue of the integrated heavily methylated AAV genome from the host's chromosomes.
Collapse
|
12
|
Smith LJ, Wright J, Clark G, Ul-Hasan T, Jin X, Fong A, Chandra M, St Martin T, Rubin H, Knowlton D, Ellsworth JL, Fong Y, Wong KK, Chatterjee S. Stem cell-derived clade F AAVs mediate high-efficiency homologous recombination-based genome editing. Proc Natl Acad Sci U S A 2018; 115:E7379-E7388. [PMID: 30018062 PMCID: PMC6077703 DOI: 10.1073/pnas.1802343115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination. Genome editing is guided by complementary homology arms and is highly accurate and seamless, with no evidence of on-target mutations, including insertion/deletions or inclusion of AAV inverted terminal repeats. Efficient genome editing was demonstrated at different loci within the human genome, including a safe harbor locus, AAVS1, and the therapeutically relevant IL2RG gene, and at the murine Rosa26 locus. HSC-derived AAV vector (AAVHSC)-mediated genome editing was robust in primary human cells, including CD34+ cells, adult liver, hepatic endothelial cells, and myocytes. Importantly, high-efficiency gene editing was achieved in vivo upon a single i.v. injection of AAVHSC editing vectors in mice. Thus, clade F AAV-mediated genome editing represents a promising, highly efficient, precise, single-component approach that enables the development of therapeutic in vivo genome editing for the treatment of a multitude of human gene-based diseases.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | | | - Gabriella Clark
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Taihra Ul-Hasan
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Xiangyang Jin
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Abigail Fong
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Manasa Chandra
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | | | | | | | | | - Yuman Fong
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010
| | - Kamehameha K Wong
- Department of Hematology and Stem Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010
| | - Saswati Chatterjee
- Department of Surgery, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010;
| |
Collapse
|
13
|
Rizk F, Laverdure S, d’Alençon E, Bossin H, Dupressoir T. Linear Lepidopteran ambidensovirus 1 sequences drive random integration of a reporter gene in transfected Spodoptera frugiperda cells. PeerJ 2018; 6:e4860. [PMID: 29868273 PMCID: PMC5978394 DOI: 10.7717/peerj.4860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Lepidopteran ambidensovirus 1 isolated from Junonia coenia (hereafter JcDV) is an invertebrate parvovirus considered as a viral transduction vector as well as a potential tool for the biological control of insect pests. Previous works showed that JcDV-based circular plasmids experimentally integrate into insect cells genomic DNA. METHODS In order to approach the natural conditions of infection and possible integration, we generated linear JcDV-gfp based molecules which were transfected into non permissive Spodoptera frugiperda (Sf9) cultured cells. Cells were monitored for the expression of green fluorescent protein (GFP) and DNA was analyzed for integration of transduced viral sequences. Non-structural protein modulation of the VP-gene cassette promoter activity was additionally assayed. RESULTS We show that linear JcDV-derived molecules are capable of long term genomic integration and sustained transgene expression in Sf9 cells. As expected, only the deletion of both inverted terminal repeats (ITR) or the polyadenylation signals of NS and VP genes dramatically impairs the global transduction/expression efficiency. However, all the integrated viral sequences we characterized appear "scrambled" whatever the viral content of the transfected vector. Despite a strong GFP expression, we were unable to recover any full sequence of the original constructs and found rearranged viral and non-viral sequences as well. Cellular flanking sequences were identified as non-coding ones. On the other hand, the kinetics of GFP expression over time led us to investigate the apparent down-regulation by non-structural proteins of the VP-gene cassette promoter. CONCLUSION Altogether, our results show that JcDV-derived sequences included in linear DNA molecules are able to drive efficiently the integration and expression of a foreign gene into the genome of insect cells, whatever their composition, provided that at least one ITR is present. However, the transfected sequences were extensively rearranged with cellular DNA during or after random integration in the host cell genome. Lastly, the non-structural proteins seem to participate in the regulation of p9 promoter activity rather than to the integration of viral sequences.
Collapse
Affiliation(s)
- Francine Rizk
- EPHE, PSL Research University, UMR 1333 DGIMI, Université de Montpellier, Montpellier, France
- UMR 1333 DGIMI INRA/UM, Université de Montpellier, Montpellier, France
- Department of Life and Earth Sciences, Faculty of Sciences, Branch II, Innovative Therapeutic Laboratory, Lebanese University, Beirut, Lebanon
| | - Sylvain Laverdure
- EPHE, PSL Research University, UMR 1333 DGIMI, Université de Montpellier, Montpellier, France
- UMR 1333 DGIMI INRA/UM, Université de Montpellier, Montpellier, France
- Laboratory of Human Retrovirology and Immunoinformatics (LHRI), Leidos Biomedical Research Clinical Services Program, National Cancer Institute, Frederick, MD, USA
| | | | - Hervé Bossin
- UMR 1333 DGIMI INRA/UM, Université de Montpellier, Montpellier, France
- Laboratoire d’Entomologie Médicale, Institut Louis Malardé, Papeete, French Polynesia
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Thierry Dupressoir
- EPHE, PSL Research University, UMR 1333 DGIMI, Université de Montpellier, Montpellier, France
- UMR 1333 DGIMI INRA/UM, Université de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Schiller LT, Lemus-Diaz N, Rinaldi Ferreira R, Böker KO, Gruber J. Enhanced Production of Exosome-Associated AAV by Overexpression of the Tetraspanin CD9. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:278-287. [PMID: 29707602 PMCID: PMC5918177 DOI: 10.1016/j.omtm.2018.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
Research on cell-free vesicles revealed a multitude of characteristics, in particular of microvesicles and exosomes, that range from their potential as biomarkers to a function in horizontal transfer of genetic information from cell to cell and also include supportive functions in viral infection. Exosome-associated adeno-associated viruses (exo-AAVs) are of particular interest for the past couple of years, because they introduced a new source of highly potent recombinant AAVs with improved features, including accelerated transduction rates and more efficient immune escape. However, key factors like the mode of action, efficiency of production, or engineering of exo-AAVs remain elusive to a large extent. Here, we used the established system of CD9 overexpression to boost the exosome output of AAV producing HEK-AAV cells. The CD9-powered high-exosome environment was established during exo-AAV1 production, and we could demonstrate that the yield of exo-AAVs dramatically increased when compared to standard exo-AAVs. Furthermore, we report that exo-AAV-CD9GFP was more efficient in transduction of cells in the same titer ranges as standard exo-AAVs. Our results provide a technological approach for the generation of exo-AAVs with superior performance.
Collapse
Affiliation(s)
- Lara Timantra Schiller
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Nicolás Lemus-Diaz
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Rafael Rinaldi Ferreira
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Kai Oliver Böker
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.,Department for Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Robert-Koch Straße 40, 37075 Göttingen, Germany
| | - Jens Gruber
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Wawrzyniak P, Płucienniczak G, Bartosik D. The Different Faces of Rolling-Circle Replication and Its Multifunctional Initiator Proteins. Front Microbiol 2017; 8:2353. [PMID: 29250047 PMCID: PMC5714925 DOI: 10.3389/fmicb.2017.02353] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
Horizontal gene transfer (HGT) contributes greatly to the plasticity and evolution of prokaryotic and eukaryotic genomes. The main carriers of foreign DNA in HGT are mobile genetic elements (MGEs) that have extremely diverse genetic structures and properties. Various strategies are used for the maintenance and spread of MGEs, including (i) vegetative replication, (ii) transposition (and other types of recombination), and (iii) conjugal transfer. In many MGEs, all of these processes are dependent on rolling-circle replication (RCR). RCR is one of the most well characterized models of DNA replication. Although many studies have focused on describing its mechanism, the role of replication initiator proteins has only recently been subject to in-depth analysis, which indicates their involvement in multiple biological process associated with RCR. In this review, we present a general overview of RCR and its impact in HGT. We focus on the molecular characteristics of RCR initiator proteins belonging to the HUH and Rep_trans protein families. Despite analogous mechanisms of action these are distinct groups of proteins with different catalytic domain structures. This is the first review describing the multifunctional character of various types of RCR initiator proteins, including the latest discoveries in the field. Recent reports provide evidence that (i) proteins initiating vegetative replication (Rep) or mobilization for conjugal transfer (Mob) may also have integrase (Int) activity, (ii) some Mob proteins are capable of initiating vegetative replication (Rep activity), and (iii) some Rep proteins can act like Mob proteins to mobilize plasmid DNA for conjugal transfer. These findings have significant consequences for our understanding of the role of RCR, not only in DNA metabolism but also in the biology of many MGEs.
Collapse
Affiliation(s)
- Paweł Wawrzyniak
- Department of Bioengineering, Institute of Biotechnology and Antibiotics, Warsaw, Poland.,Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grażyna Płucienniczak
- Department of Bioengineering, Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Abstract
AAV has been studied for 55 years and has been developed as a vector for about 35 years. By now, there is a fairly good idea of the dimensions of what would be useful to know to employ AAV optimally as a vector, but there are still many unanswered questions within the system. As with all biological systems, each good experiment raises further questions to answer. This article provides an overview of those areas in which unknown information can be identified and of those questions that have not yet been recognized. Some of these are touched on in the six review articles in this issue of Human Gene Therapy.
Collapse
Affiliation(s)
- Kenneth I Berns
- Guest Co-Editors, Department of Molecular Genetics and Microbiology, University of Florida College of Medicine , Gainesville, Florida
| | - Nicholas Muzyczka
- Guest Co-Editors, Department of Molecular Genetics and Microbiology, University of Florida College of Medicine , Gainesville, Florida
| |
Collapse
|
17
|
Abstract
There are conflicting reports that integration of the wild-type adeno-associated virus 2 (AAV2) genome is associated with induction of hepatocellular carcinoma (HCC) in a small subset of patients. However, there are several lines of evidence that contradict this assertion: (i) AAV2 has long been known to be a non-pathogenic virus, although ∼90% of the human population is seropositive for AAV2 antibodies; (ii) AAV2 has been shown to possess anticancer activity; (iii) epidemiological evidence suggests that AAV2 infection plays a protective role against cervical carcinoma; and (iv) five different AAV serotype vectors (AAV1, AAV2, AAV5, AAV8, and AAV9) have been or are currently being used in 162 Phase I/II clinical trials and one Phase III clinical trial in humans to date, and no cancer of any type has ever been observed or reported. A brief historical account of the putative role of infection by AAV in the etiology of cancer, or lack thereof, is presented.
Collapse
Affiliation(s)
- Arun Srivastava
- 1 Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center; Genetics Institute; University of Florida College of Medicine , Gainesville, Florida
| | | |
Collapse
|
18
|
Tyrosine triple mutated AAV2-BDNF gene therapy in a rat model of transient IOP elevation. Mol Vis 2016; 22:816-26. [PMID: 27440998 PMCID: PMC4947967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/14/2016] [Indexed: 11/08/2022] Open
Abstract
PURPOSE We examined the neuroprotective effects of exogenous brain-derived neurotrophic factor (BDNF), which provides protection to retinal ganglion cells (RGCs) in rodents, in a model of transient intraocular pressure (IOP) elevation using a mutant (triple Y-F) self-complementary adeno-associated virus type 2 vector encoding BDNF (tm-scAAV2-BDNF). METHODS The tm-scAAV2-BDNF or control vector encoding green fluorescent protein (GFP; tm-scAAV2-GFP) was intravitreally administered to rats, which were then divided into four groups: control, ischemia/reperfusion (I/R) injury only, I/R injury with tm-scAAV2-GFP, and tm-scAAV2-BDNF. I/R injury was then induced by transiently increasing IOP, after which the rats were euthanized to measure the inner retinal thickness and cell counts in the RGC layer. RESULTS Intravitreous injection of tm-scAAV2-BDNF resulted in high levels of BDNF expression in the neural retina. Histological analysis showed that the inner retinal thickness and cell numbers in the RGC layer were preserved after transient IOP elevation in eyes treated with tm-scAAV2-BDNF but not in the other I/R groups. Significantly reduced glial fibrillary acidic protein (GFAP) immunostaining after I/R injury in the rats that received tm-scAAV2-BDNF indicated reduced retinal stress, and electroretinogram (ERG) analysis confirmed preservation of retinal function in the tm-scAAV2-BDNF group. CONCLUSIONS These results demonstrate the feasibility and effectiveness of neuroprotective gene therapy using tm-scAAV2-BDNF to protect the inner retina from transiently high intraocular pressure. An in vivo gene therapeutic approach to the clinical management of retinal diseases in conditions such as glaucoma, retinal artery occlusion, hypertensive retinopathy, and diabetic retinopathy thus appears feasible.
Collapse
|
19
|
Abstract
Recombinant AAV vectors (rAAV) are considered as very efficient tools for in vivo gene transfer. Accordingly, several preclinical and clinical gene therapy trials use these vectors to treat inherited and acquired diseases. rAAV vectors possess the capacity to persist for a long term in the transduced tissue in a transcriptionally active, extra-chromosomal (episomal) form. However, many studies have shown that a significant fraction of the rAAV genomes can also nonspecifically integrate into the host cell genome thus raising the possibility of insertional mutagenesis events. This review summarizes the current knowledge on integration of wild type and rAAV genomes and highlights the major questions which remain unresolved.
Collapse
Affiliation(s)
- Axel Rossi
- Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, équipe NucléoVir, École normale supérieure de Lyon, 46, allée d'Italie, 69007 Lyon, France
| | - Anna Salvetti
- Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, équipe NucléoVir, École normale supérieure de Lyon, 46, allée d'Italie, 69007 Lyon, France
| |
Collapse
|
20
|
Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture. Plasmid 2016; 83:12-9. [DOI: 10.1016/j.plasmid.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/24/2022]
|
21
|
Tse LV, Moller-Tank S, Asokan A. Strategies to circumvent humoral immunity to adeno-associated viral vectors. Expert Opin Biol Ther 2015; 15:845-55. [PMID: 25985812 DOI: 10.1517/14712598.2015.1035645] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Recent success in gene therapy of certain monogenic diseases in the clinic has infused enthusiasm into the continued development of recombinant adeno-associated viral (AAV) vectors as next-generation biologics. However, progress in clinical trials has also highlighted the challenges posed by the host humoral immune response to AAV vectors. Specifically, while pre-existing neutralizing antibodies (NAbs) limit the cohort of eligible patients, NAb generation following treatment prevents vector re-dosing. AREAS COVERED In this review, we discuss a spectrum of complementary strategies that can help circumvent the host humoral immune response to AAV. EXPERT OPINION Specifically, we present a dual perspective, that is, vector versus host, and highlight the clinical attributes, potential caveats and limitations as well as complementarity associated with the various approaches.
Collapse
Affiliation(s)
- Longping V Tse
- University of North Carolina, Gene Therapy Center , CB#7352, Thurston Building, Chapel Hill, NC 27599 , USA
| | | | | |
Collapse
|
22
|
Genome Engineering Using Adeno-associated Virus: Basic and Clinical Research Applications. Mol Ther 2015; 24:458-64. [PMID: 26373345 DOI: 10.1038/mt.2015.151] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022] Open
Abstract
In addition to their broad potential for therapeutic gene delivery, adeno-associated virus (AAV) vectors possess the innate ability to stimulate homologous recombination in mammalian cells at high efficiencies. This process--referred to as AAV-mediated gene targeting--has enabled the introduction of a diverse array of genomic modifications both in vitro and in vivo. With the recent emergence of targeted nucleases, AAV-mediated genome engineering is poised for clinical translation. Here, we review key properties of AAV vectors that underscore its unique utility in genome editing. We highlight the broad range of genome engineering applications facilitated by this technology and discuss the strong potential for unifying AAV with targeted nucleases for next-generation gene therapy.
Collapse
|
23
|
Millet R, Jolinon N, Nguyen XN, Berger G, Cimarelli A, Greco A, Bertrand P, Odenthal M, Büning H, Salvetti A. Impact of the MRN Complex on Adeno-Associated Virus Integration and Replication during Coinfection with Herpes Simplex Virus 1. J Virol 2015; 89:6824-34. [PMID: 25903339 PMCID: PMC4468484 DOI: 10.1128/jvi.00171-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Adeno-associated virus (AAV) is a helper-dependent parvovirus that requires coinfection with adenovirus (AdV) or herpes simplex virus 1 (HSV-1) to replicate. In the absence of the helper virus, AAV can persist in an episomal or integrated form. Previous studies have analyzed the DNA damage response (DDR) induced upon AAV replication to understand how it controls AAV replication. In particular, it was shown that the Mre11-Rad50-Nbs1 (MRN) complex, a major player of the DDR induced by double-stranded DNA breaks and stalled replication forks, could negatively regulate AdV and AAV replication during coinfection. In contrast, MRN favors HSV-1 replication and is recruited to AAV replication compartments that are induced in the presence of HSV-1. In this study, we examined the role of MRN during AAV replication induced by HSV-1. Our results indicated that knockdown of MRN significantly reduced AAV DNA replication after coinfection with wild-type (wt) HSV-1 or HSV-1 with the polymerase deleted. This effect was specific to wt AAV, since it did not occur with recombinant AAV vectors. Positive regulation of AAV replication by MRN was dependent on its DNA tethering activity but did not require its nuclease activities. Importantly, knockdown of MRN also negatively regulated AAV integration within the human AAVS1 site, both in the presence and in the absence of HSV-1. Altogether, this work identifies a new function of MRN during integration of the AAV genome and demonstrates that this DNA repair complex positively regulates AAV replication in the presence of HSV-1. IMPORTANCE Viral DNA genomes trigger a DNA damage response (DDR), which can be either detrimental or beneficial for virus replication. Adeno-associated virus (AAV) is a defective parvovirus that requires the help of an unrelated virus such as adenovirus (AdV) or herpes simplex virus 1 (HSV-1) for productive replication. Previous studies have demonstrated that the cellular Mre11-Rad50-Nbs1 (MRN) complex, a sensor and regulator of the DDR, negatively regulates AAV replication during coinfection with AdV, which counteracts this effect by inactivating the complex. Here, we demonstrate that MRN positively regulates AAV replication during coinfection with HSV-1. Importantly, our study also indicates that MRN also favors integration of AAV genomes within the human AAVS1 site. Altogether, this work indicates that MRN differentially regulates AAV replication depending on the helper virus which is present and identifies a new function of this DNA repair complex during AAV integration.
Collapse
Affiliation(s)
- Rachel Millet
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| | - Nelly Jolinon
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France
| | - Xuan-Nhi Nguyen
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| | - Gregory Berger
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France
| | - Andrea Cimarelli
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| | - Anna Greco
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| | - Pascale Bertrand
- INSERM U967, CEA, Université Paris Diderot, Université Paris Sud, CEA DSV, Institut de Radiobiologie Moléculaire et Cellulaire, Fontenay-aux-Roses, France
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany Center for Molecular Medicine of Cologne, University of Cologne, Cologne, Germany
| | - Hildegard Büning
- Center for Molecular Medicine of Cologne, University of Cologne, Cologne, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany German Center for Infection Research, Bonn-Cologne Partner Site, Bonn-Cologne, Germany
| | - Anna Salvetti
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| |
Collapse
|
24
|
Lentz TB, Samulski RJ. Insight into the mechanism of inhibition of adeno-associated virus by the Mre11/Rad50/Nbs1 complex. J Virol 2015; 89:181-94. [PMID: 25320294 PMCID: PMC4301101 DOI: 10.1128/jvi.01990-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/03/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Adeno-associated virus (AAV) is a dependent virus of the family Parvoviridae. The gene expression and replication of AAV and derived recombinant AAV (rAAV) vectors are severely limited (>10-fold) by the cellular DNA damage-sensing complex made up of Mre11, Rad50, and Nbs1 (MRN). The AAV genome does not encode the means to circumvent this block to productive infection but relies on coinfecting helper virus to do so. Using adenovirus helper proteins E1B55k and E4orf6, which enhance the transduction of AAV via degradation of MRN, we investigated the mechanism through which this DNA damage complex inhibits gene expression from rAAV. We tested the substrate specificity of inhibition and the contribution of different functions of the MRN complex. Our results demonstrate that both single- and double-stranded rAAV vectors are inhibited by MRN, which is in contrast to the predominant model that inhibition is the result of a block to second-strand synthesis. Exploring the contribution of known functions of MRN, we found that inhibition of rAAV does not require downstream DNA damage response factors, including signaling kinases ATM and ATR. The nuclease domain of Mre11 appears to play only a minor role in inhibition, while the DNA binding domain makes a greater contribution. Additionally, mutation of the inverted terminal repeat of the rAAV genome, which has been proposed to be the signal for interaction with MRN, is tolerated by the mechanism of inhibition. These results articulate a model of inhibition of gene expression in which physical interaction is more important than enzymatic activity and several key downstream damage repair factors are dispensable. IMPORTANCE Many viruses modulate the host DNA damage response (DDR) in order to create a cellular environment permissive for infection. The MRN complex is a primary sensor of damage in the cell but also responds to invading viral genomes, often posing a block to infection. AAV is greatly inhibited by MRN and dependent on coinfecting helper virus, such as adenovirus, to remove this factor. Currently, the mechanism through which MRN inhibits AAV and other viruses is poorly understood. Our results reform the predominant model that inhibition of rAAV by MRN is due to limiting second-strand DNA synthesis. Instead, a novel mechanism of inhibition of gene expression independent of a block in rAAV DNA synthesis or downstream damage factors is indicated. These findings have clear implications for understanding this restriction to transduction of AAV and rAAV vectors, which have high therapeutic relevance and likely translate to other viruses that must navigate the DDR.
Collapse
Affiliation(s)
- Thomas B Lentz
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Galli A, Cervelli T. Inverted terminal repeats of adeno-associated virus decrease random integration of a gene targeting fragment in Saccharomyces cerevisiae. BMC Mol Biol 2014; 15:5. [PMID: 24521444 PMCID: PMC3925961 DOI: 10.1186/1471-2199-15-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/06/2014] [Indexed: 12/03/2022] Open
Abstract
Background Homologous recombination mediated gene targeting is still too inefficient to be applied extensively in genomics and gene therapy. Although sequence-specific nucleases could greatly stimulate gene targeting efficiency, the off-target cleavage sites of these nucleases highlighted the risk of this strategy. Adeno-associated virus (AAV)-based vectors are used for specific gene knockouts, since several studies indicate that these vectors are able to induce site-specific genome alterations at high frequency. Since each targeted event is accompanied by at least ten random integration events, increasing our knowledge regarding the mechanisms behind these events is necessary in order to understand the potential of AAV-mediated gene targeting for therapy application. Moreover, the role of AAV regulatory proteins (Rep) and inverted terminal repeated sequences (ITRs) in random and homologous integration is not completely known. In this study, we used the yeast Saccharomyces cerevisiae as a genetic model system to evaluate whether the presence of ITRs in the integrating plasmid has an effect on gene targeting and random integration. Results We have shown that the presence of ITRs flanking a gene targeting vector containing homology to its genomic target decreased the frequency of random integration, leading to an increase in the gene targeting/random integration ratio. On the other hand, the expression of Rep proteins, which produce a nick in the ITR, significantly increased non-homologous integration of a DNA fragment sharing no homology to the genome, but had no effect on gene targeting or random integration when the DNA fragment shared homology with the genome. Molecular analysis showed that ITRs are frequently conserved in the random integrants, and that they induce rearrangements. Conclusions Our results indicate that ITRs may be a useful tool for decreasing random integration, and consequently favor homologous gene targeting.
Collapse
Affiliation(s)
- Alvaro Galli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, via Moruzzi 1, 56125 Pisa, Italy.
| | | |
Collapse
|
26
|
Janovitz T, Sadelain M, Falck-Pedersen E. Adeno-associated virus type 2 preferentially integrates single genome copies with defined breakpoints. Virol J 2014; 11:15. [PMID: 24468291 PMCID: PMC3918229 DOI: 10.1186/1743-422x-11-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/22/2014] [Indexed: 01/05/2023] Open
Abstract
Background Adeno-associated virus (AAV) serotype 2 prevalently infects humans and is the only described eukaryotic virus that integrates site-preferentially. In a recent high throughput study, the genome wide distribution of AAV-2 integrants was determined using Integrant Capture Sequencing (IC-Seq). Additional insight regarding the integration of AAV-2 into human genomic DNA could be gleaned by low-throughput sequencing of complete viral-chromosomal junctions. Findings In this study, 140 clones derived from Integrant-Capture Sequencing were sequenced. 100 met sequence inclusion criteria, and of these 39 contained validated junction sequences. These unique sequences were analyzed to investigate the structure and location of viral-chromosomal junctions. Conclusions Overall the low-throughput analysis confirmed the genome wide distribution profile gathered through the IC-Seq analysis. We found no unidentifiable sequence inserted at AAV-2 chromosomal junctions. Assessing both left and right ends of the AAV genome, viral breakpoints predominantly occurred in one hairpin of the inverted terminal repeat and AAV genomes were preferentially integrated as single copies.
Collapse
Affiliation(s)
| | | | - Erik Falck-Pedersen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
27
|
Vogel R, Seyffert M, Pereira BDA, Fraefel C. Viral and Cellular Components of AAV2 Replication Compartments. Open Virol J 2013; 7:98-120. [PMID: 24222808 PMCID: PMC3822785 DOI: 10.2174/1874357901307010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection.
Collapse
Affiliation(s)
| | | | | | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|
28
|
Berns KI. My life with adeno-associated virus: a long time spent studying a short genome. DNA Cell Biol 2013; 32:342-7. [PMID: 23781880 DOI: 10.1089/dna.2013.2120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
My 45 years of studying the molecular biology of adeno-associated virus are recounted. Additional activities as a mentor, department chair, and medical school administrator are described, as are my activities in the public sphere, which involved national issues related to science policy and medical education.
Collapse
Affiliation(s)
- Kenneth I Berns
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32608, USA.
| |
Collapse
|
29
|
González-Prieto C, Agúndez L, Linden RM, Llosa M. HUH site-specific recombinases for targeted modification of the human genome. Trends Biotechnol 2013; 31:305-12. [PMID: 23545167 DOI: 10.1016/j.tibtech.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
Abstract
Site-specific recombinases (SSRs) have been crucial in the development of mammalian transgenesis. For gene therapy purposes, this approach remains challenging, because, for example, SSR delivery is largely unresolved and SSR DNA substrates must pre-exist in target cells. In this review, we discuss the potential of His-hydrophobic-His (HUH) recombinases to overcome some of the limitations of conventional SSRs. Members of the HUH protein family cleave single-stranded (ss)DNA, but can mediate site-specific integration with the aid of the host replication machinery. Adeno-associated virus (AAV) Rep remains the only known example to support site-specific integration in human cells, and AAV is an excellent gene delivery vector that can be targeted to specific cells and organelles. Bacterial protein TrwC catalyzes integration into human sequences and can be delivered to human cells covalently linked to DNA, offering attractive new features for targeted genome modification.
Collapse
Affiliation(s)
- Coral González-Prieto
- Departamento de Biología Molecular (Universidad de Cantabria) and IBBTEC (UC, CSIC, SODERCAN), Santander, Spain
| | | | | | | |
Collapse
|
30
|
Targeted integration of a rAAV vector into the AAVS1 region. Virology 2012; 433:356-66. [PMID: 22981435 DOI: 10.1016/j.virol.2012.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/25/2012] [Accepted: 08/03/2012] [Indexed: 11/22/2022]
Abstract
Adeno-associated virus (AAV) has been reported to integrate in a site-specific manner into chromosome 19 (a site designated AAVS1), a phenomenon that could be exploited for ex vivo targeted gene therapy. Recent studies employing LM-PCR to determine AAV integration loci; however, have, contrary to previous results with less reliable methods, concluded that the proclivity for AAV integration at AAVS1 is minimal. We tested this conclusion employing LM-PCR protocols designed to avoid bias. Hep G2 cells were infected with rAAV2-GFP and coinfected with wt AAV2 to supply Rep in trans. Sorted cells were cloned and cultured. In 26 clones that retained fluorescence, DNA was extracted and AAV-genomic junctions amplified by two LM-PCR methods. Sequencing was performed without bacterial cloning. Of these 26 clones it was possible to assign a genomic integration site to 14, of which 9 were in the AAVS1 region. In three additional clones, rAAV integration junction were to an integrated wt AAV genome while two were to an rAAV genome. We also show that integration of the AAV-GFP genome can be achieved without cointegration of the AAV genome. Based on the pattern of integrants we propose, for potential use in ex vivo targeted gene therapy, a simplified PCR method to identify clones that have rAAV genomes integrated into AAVS1.
Collapse
|
31
|
Romanova LG, Zacharias J, Cannon ML, Philpott NJ. Effect of poly(ADP-ribose) polymerase 1 on integration of the adeno-associated viral vector genome. J Gene Med 2011; 13:342-52. [PMID: 21674737 DOI: 10.1002/jgm.1577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Adeno-associated virus type 2 (AAV) has the ability to target integration of its DNA into a specific locus of the human genome. Site-specific AAV integration is mediated by viral Rep proteins, although the role of cellular factors involved in this process is largely unknown. Recent studies provide evidence showing that cellular DNA repair proteins are involved in targeted integration of AAV, although their specific roles are not well defined. METHODS In the present study, we investigated the interaction between Rep and proteins of the back-up nonhomologous end-joining pathway (B-NHEJ). We then analyzed the effect of one of these proteins, poly(ADP-ribose) polymerase 1 (PARP1) on AAV integration. RESULTS We show that AAV Rep interacts with B-NHEJ members DNA ligase III and PARP1 but does not associate with the scaffolding factor XRCC1. Moreover, PARP1 and Rep bind directly and not via DNA-protein interactions. We also found that Rep increases the enzymatic activity of PARP1 potentially through the endonuclease activity of Rep. Finally, we demonstrate that both chemical inhibition of PARP1 and PARP1 depletion using small hairpin RNA enhance integration of the AAV genome in HeLa cells. CONCLUSIONS The findings of the present study indicate that manipulation of PARP1 activity could be used as a tool for developing new, effective AAV-based therapies for the treatment of genetic diseases and cancer.
Collapse
Affiliation(s)
- Liudmila G Romanova
- Division of Rheumatic and Autoimmune Diseases, Department of Medicine, Institute of Human Genetics, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
32
|
Adeno-associated virus type 2 modulates the host DNA damage response induced by herpes simplex virus 1 during coinfection. J Virol 2011; 86:143-55. [PMID: 22013059 DOI: 10.1128/jvi.05694-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adeno-associated virus type 2 (AAV2) is a human parvovirus that relies on a helper virus for efficient replication. Herpes simplex virus 1 (HSV-1) supplies helper functions and changes the environment of the cell to promote AAV2 replication. In this study, we examined the accumulation of cellular replication and repair proteins at viral replication compartments (RCs) and the influence of replicating AAV2 on HSV-1-induced DNA damage responses (DDR). We observed that the ATM kinase was activated in cells coinfected with AAV2 and HSV-1. We also found that phosphorylated ATR kinase and its cofactor ATR-interacting protein were recruited into AAV2 RCs, but ATR signaling was not activated. DNA-PKcs, another main kinase in the DDR, was degraded during HSV-1 infection in an ICP0-dependent manner, and this degradation was markedly delayed during AAV2 coinfection. Furthermore, we detected phosphorylation of DNA-PKcs during AAV2 but not HSV-1 replication. The AAV2-mediated delay in DNA-PKcs degradation affected signaling through downstream substrates. Overall, our results demonstrate that coinfection with HSV-1 and AAV2 provokes a cellular DDR which is distinct from that induced by HSV-1 alone.
Collapse
|
33
|
The encapsidated genome of Microplitis demolitor bracovirus integrates into the host Pseudoplusia includens. J Virol 2011; 85:11685-96. [PMID: 21880747 DOI: 10.1128/jvi.05726-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Polydnaviruses (PDVs) are symbionts of parasitoid wasps that function as gene delivery vehicles in the insects (hosts) that the wasps parasitize. PDVs persist in wasps as integrated proviruses but are packaged as circularized and segmented double-stranded DNAs into the virions that wasps inject into hosts. In contrast, little is known about how PDV genomic DNAs persist in host cells. Microplitis demolitor carries Microplitis demolitor bracovirus (MdBV) and parasitizes the host Pseudoplusia includens. MdBV infects primarily host hemocytes and also infects a hemocyte-derived cell line from P. includens called CiE1 cells. Here we report that all 15 genomic segments of the MdBV encapsidated genome exhibited long-term persistence in CiE1 cells. Most MdBV genes expressed in hemocytes were persistently expressed in CiE1 cells, including members of the glc gene family whose products transformed CiE1 cells into a suspension culture. PCR-based integration assays combined with cloning and sequencing of host-virus junctions confirmed that genomic segments J and C persisted in CiE1 cells by integration. These genomic DNAs also rapidly integrated into parasitized P. includens. Sequence analysis of wasp-viral junction clones showed that the integration of proviral segments in M. demolitor was associated with a wasp excision/integration motif (WIM) known from other bracoviruses. However, integration into host cells occurred in association with a previously unknown domain that we named the host integration motif (HIM). The presence of HIMs in most MdBV genomic DNAs suggests that the integration of each genomic segment into host cells occurs through a shared mechanism.
Collapse
|
34
|
Computationally designed adeno-associated virus (AAV) Rep 78 is efficiently maintained within an adenovirus vector. Proc Natl Acad Sci U S A 2011; 108:14294-9. [PMID: 21844368 DOI: 10.1073/pnas.1102883108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adeno-associated virus (AAV) is a single-stranded parvovirus retaining the unique capacity for site-specific integration into a transcriptionally silent region of the human genome, a characteristic requiring the functional properties of the Rep 78/68 polypeptide in conjunction with AAV terminal repeat integrating elements. Previous strategies designed to assemble these genetic elements into adenoviral (Ad) backbones have been limited by the general intolerability of AAV Rep sequences, prompting us to computationally reengineer the Rep gene by using synonymous codon pair recoding. Rep mutants generated by using de novo genome synthesis maintained the polypeptide sequence and endonuclease properties of Rep 78, while dramatically enhancing Ad replication and viral titer yields, characteristics indistinguishable from adenovirus lacking coexpressed Rep. Parallel approaches using domain swaps encompassing WT and recoded genomic segments, coupled with iterative computational algorithms, collectively established that 3' cis-acting Rep genetic elements (and not the Rep 78 polypeptide) retain dominant-acting sequences inhibiting Ad replication. These data provide insights into the molecular relationships of AAV Rep and Ad replication, while expanding the applicability of synonymous codon pair reengineering as a strategy to effect phenotypic endpoints.
Collapse
|
35
|
Mattar CN, Choolani M, Biswas A, Waddington SN, Chan JKY. Fetal gene therapy: recent advances and current challenges. Expert Opin Biol Ther 2011; 11:1257-71. [PMID: 21623703 DOI: 10.1517/14712598.2011.585153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Fetal gene therapy (FGT) can potentially be applied to perinatally lethal monogenic diseases for rescuing clinically severe phenotypes, increasing the probability of intact neurological and other key functions at birth, or inducing immune tolerance to a transgenic protein to facilitate readministration of the vector/protein postnatally. As the field is still at an experimental stage, there are several important considerations regarding the practicality and the ethics of FGT. AREAS COVERED Here, through a review of FGT studies, the authors discuss the role and applications of FGT, the progress made with animal models that simulate human development, possible adverse effects in the recipient fetus and the mother and factors that affect clinical translation. EXPERT OPINION Although there are valid safety and ethical concerns, the authors argue that there may soon be enough convincing evidence from non-human primate models to take the next step towards clinical trials in the near future.
Collapse
Affiliation(s)
- Citra N Mattar
- Yong Loo Lin School of Medicine, National University of Singapore, Department of Obstetrics and Gynaecology, Experimental Fetal Medicine Group, NUHS Tower Block, Level 12, 1E Kent Ridge Road, 119228 Singapore
| | | | | | | | | |
Collapse
|
36
|
Weitzman MD, Lilley CE, Chaurushiya MS. Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol 2010; 64:61-81. [PMID: 20690823 DOI: 10.1146/annurev.micro.112408.134016] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cellular surveillance network for sensing and repairing damaged DNA prevents an array of human diseases, and when compromised it can lead to genomic instability and cancer. The carefully maintained cellular response to DNA damage is challenged during viral infection, when foreign DNA is introduced into the cell. The battle between virus and host generates a genomic conflict. The host attempts to limit viral infection and protect its genome, while the virus deploys tactics to eliminate, evade, or exploit aspects of the cellular defense. Studying this conflict has revealed that the cellular DNA damage response machinery comprises part of the intrinsic cellular defense against viral infection. In this review we examine recent advances in this emerging field. We identify common themes used by viruses in their attempts to commandeer or circumvent the host cell's DNA repair machinery, and highlight potential outcomes of the conflict for both virus and host.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
37
|
McAlister VJ, Owens RA. Substitution of adeno-associated virus Rep protein binding and nicking sites with human chromosome 19 sequences. Virol J 2010; 7:218. [PMID: 20825662 PMCID: PMC2944168 DOI: 10.1186/1743-422x-7-218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/08/2010] [Indexed: 01/23/2023] Open
Abstract
Background Adeno-associated virus type 2 (AAV2) preferentially integrates its DNA at a ~2 kb region of human chromosome 19, designated AAVS1 (also known as MBS85). Integration at AAVS1 requires the AAV2 replication (Rep) proteins and a DNA sequence within AAVS1 containing a 16 bp Rep recognition sequence (RRS) and closely spaced Rep nicking site (also referred to as a terminal resolution site, or trs). The AAV2 genome is flanked by inverted terminal repeats (ITRs). Each ITR contains an RRS and closely spaced trs, but the sequences differ from those in AAVS1. These ITR sequences are required for replication and packaging. Results In this study we demonstrate that the AAVS1 RRS and trs can function in AAV2 replication, packaging and integration by replacing a 61 bp region of the AAV2 ITR with a 49 bp segment of AAVS1 DNA. Modifying one or both ITRs did not have a large effect on the overall virus titers. These modifications did not detectably affect integration at AAVS1, as measured by semi-quantitative nested PCR assays. Sequencing of integration junctions shows the joining of the modified ITRs to AAVS1 sequences. Conclusions The ability of these AAVS1 sequences to substitute for the AAV2 RRS and trs provides indirect evidence that the stable secondary structure encompassing the trs is part of the AAV2 packaging signal.
Collapse
Affiliation(s)
- Victor J McAlister
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
38
|
Nieminen M, Tuuri T, Savilahti H. Genetic recombination pathways and their application for genome modification of human embryonic stem cells. Exp Cell Res 2010; 316:2578-86. [PMID: 20542027 DOI: 10.1016/j.yexcr.2010.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/31/2010] [Accepted: 06/06/2010] [Indexed: 12/24/2022]
Abstract
Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens.
Collapse
Affiliation(s)
- Mikko Nieminen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | | | | |
Collapse
|
39
|
Differential effects of DNA double-strand break repair pathways on single-strand and self-complementary adeno-associated virus vector genomes. J Virol 2010; 84:8673-82. [PMID: 20538857 DOI: 10.1128/jvi.00641-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The linear DNA genomes of recombinant adeno-associated virus (rAAV) gene delivery vectors are acted upon by multiple DNA repair and recombination pathways upon release into the host nucleus, resulting in circularization, concatemer formation, or chromosomal integration. We have compared the fates of single-strand rAAV (ssAAV) and self-complementary AAV (scAAV) genomes in cell lines deficient in each of three signaling factors, ATM, ATR, and DNA-PK(CS), orchestrating major DNA double-strand break (DSB) repair pathways. In cells deficient in ATM, transduction as scored by green fluorescent protein (GFP) expression is increased relative to that in wild-type (wt) cells by 2.6-fold for ssAAV and 6.6-fold for scAAV vectors, arguing against a mechanism related to second-strand synthesis. The augmented transduction is not reflected in Southern blots of nuclear vector DNA, suggesting that interactions with ATM lead to silencing in normal cells. The additional functional genomes in ATM(-/-) cells remain linear, and the number of circularized genomes is not affected by the mutation, consistent with compartmentalization of genomes into different DNA repair pathways. A similar effect is observed in ATR-deficient cells but is specific for ssAAV vector. Conversely, a large decrease in transduction is observed in cells deficient in DNA-PK(CS), which is involved in DSB repair by nonhomologous end joining rather than homologous recombination. The mutations also have differential effects on chromosomal integration of ssAAV versus scAAV vector genomes. Integration of ssAAV was specifically reduced in ATM(-/-) cells, while scAAV integration was more profoundly inhibited in DNA-PK(CS)(-/-) cells. Taken together, the results suggest that productive rAAV genome circularization is mediated primarily by nonhomologous end joining.
Collapse
|