1
|
Ullah I, Kamran M, Dunwell JM. Identification of a Novel Polerovirus in Cocoa ( Theobroma cacao) Germplasm and Development of Molecular Methods for Use in Diagnostics. Pathogens 2023; 12:1284. [PMID: 38003749 PMCID: PMC10674516 DOI: 10.3390/pathogens12111284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The cocoa crop (Theobroma cacao L.) is known to be a host for several badnaviruses, some of which cause severe disease, while others are asymptomatic. Recently, the first preliminary evidence has been published concerning the occurrence of a polerovirus in cacao. We report here the first near-complete genome sequence of cacao polerovirus (CaPV) by combining bioinformatic searches of cacao transcript databases, with cloning from the infected germplasm. The reported novel genome has all the genome features known for poleroviruses from other species. Pairwise identity analyses of RNA-dependent RNA polymerase and coat protein indicates < 60% similarity of CaPV with any reported poleroviruses; hence, we propose that the polerovirus isolate reported in this study is a novel polerovirus. The genome sequence information was also used to develop a multiplex RT-PCR assay, which was applied to screen a selected range of germplasms and to identify several infected clones. Although there is no evidence that this virus causes any severe disease, this new information, together with a robust diagnostic assay, are of strategic importance in developing protocols for the safe international transfer of cacao germplasms.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK;
| | - Muhammad Kamran
- Plant Pathology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan;
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK;
| |
Collapse
|
2
|
Miller WA, Lozier Z. Yellow Dwarf Viruses of Cereals: Taxonomy and Molecular Mechanisms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:121-141. [PMID: 35436423 DOI: 10.1146/annurev-phyto-121421-125135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yellow dwarf viruses are the most economically important and widespread viruses of cereal crops. Although they share common biological properties such as phloem limitation and obligate aphid transmission, the replication machinery and associated cis-acting signals of these viruses fall into two unrelated taxa represented by Barley yellow dwarf virus and Cereal yellow dwarf virus. Here, we explain the reclassification of these viruses based on their very different genomes. We also provide an overview of viral protein functions and their interactions with the host and vector, replication mechanisms of viral and satellite RNAs, and the complex gene expression strategies. Throughout, we point out key unanswered questions in virus evolution, structural biology, and genome function and replication that, when answered, may ultimately provide new tools for virus management.
Collapse
Affiliation(s)
- W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, USA
| | - Zachary Lozier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Sõmera M, Fargette D, Hébrard E, Sarmiento C, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Solemoviridae 2021. J Gen Virol 2021; 102. [PMID: 34951396 PMCID: PMC8744267 DOI: 10.1099/jgv.0.001707] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The family Solemoviridae includes viruses with icosahedral particles (26–34 nm in diameter) assembled on T=3 symmetry with a 4–6 kb positive-sense, monopartite, polycistronic RNA genome. Transmission of members of the genera Sobemovirus and Polemovirus occurs via mechanical wounding, vegetative propagation, insect vectors or abiotically through soil; members of the genera Polerovirus and Enamovirus are transmitted by specific aphids. Most solemoviruses have a narrow host range. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Solemoviridae, which is available at ictv.global/report/solemoviridae.
Collapse
Affiliation(s)
- Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Denis Fargette
- IRD, Cirad, Université Montpellier, IPME, Montpellier 34394, France
| | - Eugénie Hébrard
- IRD, Cirad, Université Montpellier, IPME, Montpellier 34394, France
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | | |
Collapse
|
4
|
LaTourrette K, Holste NM, Garcia-Ruiz H. Polerovirus genomic variation. Virus Evol 2021; 7:veab102. [PMID: 35299789 PMCID: PMC8923251 DOI: 10.1093/ve/veab102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/21/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Abstract
The polerovirus (family Solemoviridae, genus Polerovirus) genome consists of single-, positive-strand RNA organized in overlapping open reading frames (ORFs) that, in addition to others, code for protein 0 (P0, a gene silencing suppressor), a coat protein (CP, ORF3), and a read-through domain (ORF5) that is fused to the CP to form a CP-read-through (RT) protein. The genus Polerovirus contains twenty-six virus species that infect a wide variety of plants from cereals to cucurbits, to peppers. Poleroviruses are transmitted by a wide range of aphid species in the genera Rhopalosiphum, Stiobion, Aphis, and Myzus. Aphid transmission is mediated both by the CP and by the CP-RT. In viruses, mutational robustness and structural flexibility are necessary for maintaining functionality in genetically diverse sets of host plants and vectors. Under this scenario, within a virus genome, mutations preferentially accumulate in areas that are determinants of host adaptation or vector transmission. In this study, we profiled genomic variation in poleroviruses. Consistent with their multifunctional nature, single-nucleotide variation and selection analyses showed that ORFs coding for P0 and the read-through domain within the CP-RT are the most variable and contain the highest frequency of sites under positive selection. An order/disorder analysis showed that protein P0 is not disordered. In contrast, proteins CP-RT and virus protein genome-linked (VPg) contain areas of disorder. Disorder is a property of multifunctional proteins with multiple interaction partners. The results described here suggest that using contrasting mechanisms, P0, VPg, and CP-RT mediate adaptation to host plants and to vectors and are contributors to the broad host and vector range of poleroviruses. Profiling genetic variation across the polerovirus genome has practical applications in diagnostics, breeding for resistance, and identification of susceptibility genes and contributes to our understanding of virus interactions with their host, vectors, and environment.
Collapse
Affiliation(s)
- Katherine LaTourrette
- Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, 406 Plant Science Hall, Lincoln, NE 68583, USA
- Complex Biosystems Interdisciplinary Life Sciences Program, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, 2200 Vine Street, Lincoln, NE 68583, USA
| | - Natalie M Holste
- Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, 406 Plant Science Hall, Lincoln, NE 68583, USA
| | - Hernan Garcia-Ruiz
- Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68583, USA
- Department of Plant Pathology, University of Nebraska-Lincoln, 406 Plant Science Hall, Lincoln, NE 68583, USA
| |
Collapse
|
5
|
Nucleo-cytoplasmic shuttling of VPg encoded by Wheat yellow mosaic virus requires association with the coat protein. J Gen Virol 2013; 94:2790-2802. [DOI: 10.1099/vir.0.055830-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VPg (virus protein, genome-linked) is a multifunctional protein that plays important roles in viral multiplication in the cytoplasm. However, a number of VPgs encoded by plant viruses target the nucleus and this appears to be biologically significant. These VPgs may therefore be translocated between nuclear and cytoplasmic compartments during virus infection, but such nucleo-cytoplasmic transport has not been demonstrated. We report that VPg encoded by Wheat yellow mosaic virus (WYMV, genus Bymovirus, family Potyviridae) accumulated in both the nucleus and cytoplasm of infected cells, but localized exclusively in the nucleus when expressed alone in plants. Computational analyses predicted the presence of a nuclear localization signal (NLS) and a nuclear export signal (NES) in WYMV VPg. Mutational analyses showed that both the N-terminal and the NLS domains of VPg contribute to the efficiency of nuclear targeting. In vitro and in planta assays indicated that VPg interacts with WYMV coat protein (CP) and proteinase 1 (P1) proteins. Observation of VPg fused to a fluorescent protein and subcellular fractionation experiments showed that VPg was translocated to the cytoplasm when co-expressed with CP, but not with P1. Mutations in the NES domain or treatment with leptomycin B prevented VPg translocation to the cytoplasm when co-expressed with CP. Our results suggest that association with CP facilitates the nuclear export of VPg during WYMV infection.
Collapse
|
6
|
Krueger EN, Beckett RJ, Gray SM, Miller WA. The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses. Front Microbiol 2013; 4:205. [PMID: 23888156 PMCID: PMC3719023 DOI: 10.3389/fmicb.2013.00205] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/01/2013] [Indexed: 11/13/2022] Open
Abstract
The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All of these viruses are obligately aphid transmitted and phloem-limited. The first described YDVs (initially all called BYDV) were classified by their most efficient vector. One of these viruses, BYDV-RMV, is transmitted most efficiently by the corn leaf aphid, Rhopalosiphum maidis. Here we report the complete 5612 nucleotide sequence of the genomic RNA of a Montana isolate of BYDV-RMV (isolate RMV MTFE87, Genbank accession no. KC921392). The sequence revealed that BYDV-RMV is a polerovirus, but it is quite distantly related to the CYDVs or WYDV, which are very closely related to each other. Nor is BYDV-RMV closely related to any other particular polerovirus. Depending on the gene that is compared, different poleroviruses (none of them a YDV) share the most sequence similarity to BYDV-RMV. Because of its distant relationship to other YDVs, and because it commonly infects maize via its vector, R. maidis, we propose that BYDV-RMV be renamed Maize yellow dwarf virus-RMV (MYDV-RMV).
Collapse
Affiliation(s)
| | - Randy J. Beckett
- Plant Pathology and Microbiology Department, Iowa State UniversityAmes, IA, USA
| | - Stewart M. Gray
- USDA/ARS and Plant Pathology Department, Cornell UniversityIthaca, NY, USA
| | - W. Allen Miller
- Plant Pathology and Microbiology Department, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
7
|
Osman TAM, Olsthoorn RCL, Livieratos IC. In vitro template-dependent synthesis of Pepino mosaic virus positive- and negative-strand RNA by its RNA-dependent RNA polymerase. Virus Res 2012; 167:267-72. [PMID: 22617023 DOI: 10.1016/j.virusres.2012.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
Pepino mosaic virus (PepMV)-infected tomato plants were used to develop an in vitro template-dependent system for the study of viral RNA synthesis. Differential sedimentation and sucrose-gradient purification of PepMV-infected tomato extracts resulted in fractions containing a transcriptionally active membrane-bound RNA-dependent RNA polymerase (RdRp). In the presence of Mg(2+) ions, (32)P-labelled UTP and unlabelled ATP, CTP, GTP, the PepMV RdRp catalysed the conversion of endogenous RNA templates into single- and double-stranded (ds) genomic RNAs and three 3'-co-terminal subgenomic dsRNAs. Hybridisation experiments showed that the genomic ssRNA was labelled only in the plus strand, the genomic dsRNA mainly in the plus strand and the three subgenomic dsRNAs equally in both strands. Following removal of the endogenous templates from the membrane-bound complex, the purified template-dependent RdRp could specifically catalyse transcription of PepMV virion RNA, in vitro-synthesized full-length plus-strand RNA and the 3'-termini of both the plus- and minus-strand RNAs. Rabbit polyclonal antibodies against an immunogenic epitope of the PepMV RdRp (anti-RdRp) detected a protein of approximately 164kDa in the membrane-bound and template-dependent RdRp preparations and exclusively inhibited PepMV RNA synthesis when added to the template-dependent in vitro transcription system. The 300 nucleotides long 3'-terminal region of the PepMV genome, containing a stretch of at least 20 adenosine (A) residues, was an adequate exogenous RNA template for RdRp initiation of the minus-strand synthesis but higher transcription efficiency was observed as the number of A residues increased. This observation might indicate a role for the poly(A)-tail in the formation and stabilisation of secondary structure(s) essential for initiation of transcription. The template-dependent specific RdRp system described in this article will facilitate identification of RNA elements and host components required for PepMV RNA synthesis.
Collapse
Affiliation(s)
- Toba A M Osman
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepion, GR-73100 Chania, Crete, Greece.
| | | | | |
Collapse
|
8
|
Prasanth KR, Huang YW, Liou MR, Wang RYL, Hu CC, Tsai CH, Meng M, Lin NS, Hsu YH. Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of Bamboo mosaic virus and its associated satellite RNA. J Virol 2011; 85:8829-40. [PMID: 21715476 PMCID: PMC3165797 DOI: 10.1128/jvi.00556-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/21/2011] [Indexed: 01/24/2023] Open
Abstract
The identification of cellular proteins associated with virus replicase complexes is crucial to our understanding of virus-host interactions, influencing the host range, replication, and virulence of viruses. A previous in vitro study has demonstrated that partially purified Bamboo mosaic virus (BaMV) replicase complexes can be employed for the replication of both BaMV genomic and satellite BaMV (satBaMV) RNAs. In this study, we investigated the BaMV and satBaMV 3' untranslated region (UTR) binding proteins associated with these replicase complexes. Two cellular proteins with molecular masses of ∼35 and ∼55 kDa were specifically cross-linked with RNA elements, whereupon the ∼35-kDa protein was identified as the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Gel mobility shift assays confirmed the direct interaction of GAPDH with the 3' UTR sequences, and competition gel shift analysis revealed that GAPDH binds preferentially to the positive-strand BaMV and satBaMV RNAs over the negative-strand RNAs. It was observed that the GAPDH protein binds to the pseudoknot poly(A) tail of BaMV and stem-loop-C poly(A) tail of satBaMV 3' UTR RNAs. It is important to note that knockdown of GAPDH in Nicotiana benthamiana enhances the accumulation of BaMV and satBaMV RNA; conversely, transient overexpression of GAPDH reduces the accumulation of BaMV and satBaMV RNA. The recombinant GAPDH principally inhibits the synthesis of negative-strand RNA in exogenous RdRp assays. These observations support the contention that cytosolic GAPDH participates in the negative regulation of BaMV and satBaMV RNA replication.
Collapse
Affiliation(s)
- K. Reddisiva Prasanth
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ming-Ru Liou
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Robert Yung-Liang Wang
- Department of Biomedical Sciences and Research Center for Emerging Viral Infections, Chang Gung University, Tao Yuan 33302, Taiwan, Republic of China
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
9
|
Primer-independent initiation of RNA synthesis by SeMV recombinant RNA-dependent RNA polymerase. Virology 2010; 401:280-92. [DOI: 10.1016/j.virol.2010.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/16/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
|
10
|
Nickel H, Kawchuk L, Twyman RM, Zimmermann S, Junghans H, Winter S, Fischer R, Prüfer D. Plantibody-mediated inhibition of the Potato leafroll virus P1 protein reduces virus accumulation. Virus Res 2008; 136:140-5. [PMID: 18573562 DOI: 10.1016/j.virusres.2008.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 11/17/2022]
Abstract
The P1 protein of Potato leafroll virus (PLRV) is thought to play a major role in the replication cycle by promoting the maturation of the genome-linked virion protein VPg. To study the relevance of P1 and its autoproteolytic derivative P1-C25 in the viral life cycle, the V H and V L domains of monoclonal antibody mAbP1-1, raised against the C-terminus of P1, were used to develop a single chain variable fragment antibody scFvP1-1 for expression in plants. The transient expression of scFvP1-1 in tobacco (Nicotiana tabacum) strongly reduced virus accumulation, while transgenic potato (Solanum tuberosum) plants expressing scFvP1-1 showed high levels of resistance following PLRV inoculation by viruliferous aphids. This is the first report that conclusively demonstrates that a PLRV gene product is essential for the completion of the virus life cycle in vivo without genetic alteration of the viral genome. This is also the first time plantibody-mediated resistance has been demonstrated with a luteovirus.
Collapse
Affiliation(s)
- Holger Nickel
- Fraunhofer Institute for Molecular Biotechnology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Huang YW, Hu CC, Lin NS, Tsai CH, Hsu YH. In vitro replication of Bamboo mosaic virus satellite RNA. Virus Res 2008; 136:98-106. [PMID: 18538884 DOI: 10.1016/j.virusres.2008.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 04/13/2008] [Accepted: 04/28/2008] [Indexed: 01/17/2023]
Abstract
An in vitro system was applied to analyze the replication of a satellite RNA of Bamboo mosaic virus (BaMV), designated satBaMV RNA, using solubilized membrane-bound RNA-dependent RNA polymerase (RdRp) complexes isolated from BaMV-infected Nicotiana benthamiana. After removal of endogenous templates, the RdRp complexes of BaMV catalyzed RNA synthesis upon the addition of the full-length positive (+)- or negative (-)-strand satBaMV RNA transcripts used as templates. Both (+)- and (-)-satBaMV RNA products were detected when only the (+)-satBaMV RNA was used as a template in the in vitro RdRp assays, which further demonstrated the capability of the RdRp preparation to complete the replication cycles of satBaMV RNAs. In addition, use of 5' rapid amplification of cDNA ends and DNA sequencing showed that the BaMV RdRp preparation could specifically recognize the promoter sequences in the (-)-satBaMV RNA for accurate initiation of (+)-satBaMV RNA synthesis. The results suggested that the same enzyme complexes could be used for the replication of both BaMV genomic and satBaMV RNAs. The soluble and template-dependent RdRp could be further used in mechanistic studies, such as those analyzing the cis-elements and candidate host factors required for satBaMV RNA replication in vitro.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC
| | | | | | | | | |
Collapse
|