1
|
Exogenous Rubella Virus Capsid Proteins Enhance Virus Genome Replication. Pathogens 2022; 11:pathogens11060683. [PMID: 35745537 PMCID: PMC9228353 DOI: 10.3390/pathogens11060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Enhanced replication of rubella virus (RuV) and replicons by de novo synthesized viral structural proteins has been previously described. Such enhancement can occur by viral capsid proteins (CP) alone in trans. It is not clear whether the CP in the virus particles, i.e., the exogenous CP, modulate viral genome replication. In this study, we found that exogenous RuV CP also enhanced viral genome replication, either when used to package replicons or when mixed with RNA during transfection. We demonstrated that CP does not affect the translation efficiency from genomic (gRNA) or subgenomic RNA (sgRNA), the intracellular distribution of the non-structural proteins (NSP), or sgRNA synthesis. Significantly active RNA replication was observed in transfections supplemented with recombinant CP (rCP), which was supported by accumulated genomic negative-strand RNA. rCP was found to restore replication of a few mutants in NSP but failed to fully restore replicons known to have defects in the positive-strand RNA synthesis. By monitoring the amount of RuV RNA following transfection, we found that all RuV replicon RNAs were well-retained in the presence of rCP within 24 h of post-transfection, compared to non-RuV RNA. These results suggest that the exogenous RuV CP increases efficiency of early viral genome replication by modulating the stage(s) prior to and/or at the initiation of negative-strand RNA synthesis, possibly through a general mechanism such as protecting viral RNA.
Collapse
|
2
|
Rousso I, Deshpande A. Applications of Atomic Force Microscopy in HIV-1 Research. Viruses 2022; 14:v14030648. [PMID: 35337055 PMCID: PMC8955997 DOI: 10.3390/v14030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Obtaining an understanding of the mechanism underlying the interrelations between the structure and function of HIV-1 is of pivotal importance. In previous decades, this mechanism was addressed extensively in a variety of studies using conventional approaches. More recently, atomic force microscopy, which is a relatively new technique with unique capabilities, has been utilized to study HIV-1 biology. Atomic force microscopy can generate high-resolution images at the nanometer-scale and analyze the mechanical properties of individual HIV-1 virions, virus components (e.g., capsids), and infected live cells under near-physiological environments. This review describes the working principles and various imaging and analysis modes of atomic force microscopy, and elaborates on its distinctive contributions to HIV-1 research in areas such as mechanobiology and the physics of infection.
Collapse
|
3
|
Souza M, Machado J, da Silva J, Ramos L, Nogueira L, Ribeiro P, Dias D, Santos J, Santos JC, Nóbrega Y, Souza A, Freitas S, da Paz MC, Felipe M, Torres F, Galdino A. Rational design and evaluation of the recombinant multiepitope protein for serodiagnosis of rubella. Curr Pharm Biotechnol 2021; 23:1094-1100. [PMID: 34493182 DOI: 10.2174/1389201022666210907170921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rubella is an infection caused by rubella virus (RV) and is generally regarded as a mild childhood disease. The disease continues to be of public health importance mainly because when the infection is acquired during early pregnancy it often results in fetal abnormalities, which are classified as congenital rubella syndrome (CRS). An accurate diagnosis for rubella is thus of pivotal importance for proper treatment. OBJECTIVE To produce a recombinant multiepitope protein (rMERUB) for the diagnosis of rubella, based on conserved immunodominant epitopes of glycoprotein E1 and E2. METHODS A synthetic gene was designed and cloned into vector pET21a with a 6xHis tag at the C-terminal for affinity purification and overexpressed in Escherichia coli cells. Biophysical analysis of rMERUB was performed by circular dichroism. Biological activity was assessed using an in-house ELISA assay. RESULTS Expression in Escherichia coli showed a ~22 kDa protein that was purified and used to perform structural assays and an IgG ELISA. Structural analyses reveal rMERUB has a β leaf pattern that promotes the exposure of epitopes, thus allowing antibody recognition. Evaluation of 33 samples (22=positive; 11=negative) was performed using in-house ELISA and this was compared with a commercial kit. The sensitivity was 100% (95% CI: 85-100) and specificity 90.91% (95% CI: 62-99). Excellent agreement (Kappa index = 0.9) was obtained between ELISA assays. CONCLUSIONS The careful choice of epitopes and the high epitope density, coupled with simple-step purification, pinpoints rMERUB as a promising alternative for rubella diagnosis, with potential for the development of a diagnostic kit.
Collapse
Affiliation(s)
- Marilen Souza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Juliana Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Jonatas da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Luana Ramos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Lais Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Patrícia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Daniel Dias
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Josiane Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - José Carlos Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Yanna Nóbrega
- Laboratório de Doenças Imunogenéticase Crônico-degenerativas, Faculdade de Saúde, Departamento de Ciências Farmacêuticas, Universidade de Brasília. Brazil
| | - Amanda Souza
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília. Brazil
| | - Sonia Freitas
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília. Brazil
| | - Mariana Campos da Paz
- Laboratório de Nanobiotecnologia & Biativos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, Divinópolis, MG, 35501-296. Brazil
| | - Maria Felipe
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Fernando Torres
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Alexsandro Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| |
Collapse
|
4
|
The Capsid Protein of Rubella Virus Antagonizes RNA Interference in Mammalian Cells. Viruses 2021; 13:v13020154. [PMID: 33494454 PMCID: PMC7910915 DOI: 10.3390/v13020154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Rubella virus (RuV) is the infectious agent of a series of birth defect diseases termed congenital rubella syndrome, which is a major public health concern all around the world. RNA interference (RNAi) is a crucial antiviral defense mechanism in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs) to evade antiviral RNAi response. However, there is little knowledge about whether and how RuV antagonizes RNAi. In this study, we identified that the RuV capsid protein is a potent VSR that can efficiently suppress shRNA- and siRNA-induced RNAi in mammalian cells. Moreover, the VSR activity of the RuV capsid is dependent on its dimerization and double-stranded RNA (dsRNA)-binding activity. In addition, ectopic expression of the RuV capsid can effectively rescue the replication defect of a VSR-deficient virus or replicon, implying that the RuV capsid can act as a VSR in the context of viral infection. Together, our findings uncover that RuV encodes a VSR to evade antiviral RNAi response, which expands our understanding of RuV–host interaction and sheds light on the potential therapeutic target against RuV.
Collapse
|
5
|
Schwarz ER. Consequences of perinatal infections with rubella, measles, and mumps. Curr Opin Virol 2017; 27:71-77. [DOI: 10.1016/j.coviro.2017.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 01/14/2023]
|
6
|
Coat Protein Regulation by CK2, CPIP, HSP70, and CHIP Is Required for Potato Virus A Replication and Coat Protein Accumulation. J Virol 2017; 91:JVI.01316-16. [PMID: 27852853 DOI: 10.1128/jvi.01316-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023] Open
Abstract
We demonstrate here that both coat protein (CP) phosphorylation by protein kinase CK2 and a chaperone system formed by two heat shock proteins, CP-interacting protein (CPIP) and heat shock protein 70 (HSP70), are essential for potato virus A (PVA; genus Potyvirus) replication and that all these host proteins have the capacity to contribute to the level of PVA CP accumulation. An E3 ubiquitin ligase called carboxyl terminus Hsc70-interacting protein (CHIP), which may participate in the CPIP-HSP70-mediated CP degradation, is also needed for robust PVA gene expression. Residue Thr243 within the CK2 consensus sequence of PVA CP was found to be essential for viral replication and to regulate CP protein stability. Substitution of Thr243 either with a phosphorylation-mimicking Asp (CPADA) or with a phosphorylation-deficient Ala (CPAAA) residue in CP expressed from viral RNA limited PVA gene expression to the level of nonreplicating PVA. We found that both the CPAAA mutant and CK2 silencing inhibited, whereas CPADA mutant and overexpression of CK2 increased, PVA translation. From our previous studies, we know that phosphorylation reduces the RNA binding capacity of PVA CP and an excess of CP fully blocks viral RNA translation. Together, these findings suggest that binding by nonphosphorylated PVA CP represses viral RNA translation, involving further CP phosphorylation and CPIP-HSP70 chaperone activities as prerequisites for PVA replication. We propose that this mechanism contributes to shifting potyvirus RNA from translation to replication. IMPORTANCE Host protein kinase CK2, two host chaperones, CPIP and HSP70, and viral coat protein (CP) phosphorylation at Thr243 are needed for potato virus A (PVA) replication. Our results show that nonphosphorylated CP blocks viral translation, likely via binding to viral RNA. We propose that this translational block is needed to allow time and space for the formation of potyviral replication complex around the 3' end of viral RNA. Progression into replication involves CP regulation by both CK2 phosphorylation and chaperones CPIP and HSP70.
Collapse
|
7
|
Phosphorylation of the Brome Mosaic Virus Capsid Regulates the Timing of Viral Infection. J Virol 2016; 90:7748-60. [PMID: 27334588 DOI: 10.1128/jvi.00833-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The four brome mosaic virus (BMV) RNAs (RNA1 to RNA4) are encapsidated in three distinct virions that have different disassembly rates in infection. The mechanism for the differential release of BMV RNAs from virions is unknown, since 180 copies of the same coat protein (CP) encapsidate each of the BMV genomic RNAs. Using mass spectrometry, we found that the BMV CP contains a complex pattern of posttranslational modifications. Treatment with phosphatase was found to not significantly affect the stability of the virions containing RNA1 but significantly impacted the stability of the virions that encapsidated BMV RNA2 and RNA3/4. Cryo-electron microscopy reconstruction revealed dramatic structural changes in the capsid and the encapsidated RNA. A phosphomimetic mutation in the flexible N-terminal arm of the CP increased BMV RNA replication and virion production. The degree of phosphorylation modulated the interaction of CP with the encapsidated RNA and the release of three of the BMV RNAs. UV cross-linking and immunoprecipitation methods coupled to high-throughput sequencing experiments showed that phosphorylation of the BMV CP can impact binding to RNAs in the virions, including sequences that contain regulatory motifs for BMV RNA gene expression and replication. Phosphatase-treated virions affected the timing of CP expression and viral RNA replication in plants. The degree of phosphorylation decreased when the plant hosts were grown at an elevated temperature. These results show that phosphorylation of the capsid modulates BMV infection. IMPORTANCE How icosahedral viruses regulate the release of viral RNA into the host is not well understood. The selective release of viral RNA can regulate the timing of replication and gene expression. Brome mosaic virus (BMV) is an RNA virus, and its three genomic RNAs are encapsidated in separate virions. Through proteomic, structural, and biochemical analyses, this work shows that posttranslational modifications, specifically, phosphorylation, on the capsid protein regulate the capsid-RNA interaction and the stability of the virions and affect viral gene expression. Mutational analysis confirmed that changes in modification affected virion stability and the timing of viral infection. The mechanism for modification of the virion has striking parallels to the mechanism of regulation of chromatin packaging by nucleosomes.
Collapse
|
8
|
Phosphorylation of Single Stranded RNA Virus Proteins and Potential for Novel Therapeutic Strategies. Viruses 2015; 7:5257-73. [PMID: 26473910 PMCID: PMC4632380 DOI: 10.3390/v7102872] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022] Open
Abstract
Post translational modification of proteins is a critical requirement that regulates function. Among the diverse kinds of protein post translational modifications, phosphorylation plays essential roles in protein folding, protein:protein interactions, signal transduction, intracellular localization, transcription regulation, cell cycle progression, survival and apoptosis. Protein phosphorylation is also essential for many intracellular pathogens to establish a productive infection cycle. Preservation of protein phosphorylation moieties in pathogens in a manner that mirrors the host components underscores the co-evolutionary trajectory of pathogens and hosts, and sheds light on how successful pathogens have usurped, either in part or as a whole, the host enzymatic machinery. Phosphorylation of viral proteins for many acute RNA viruses including Flaviviruses and Alphaviruses has been demonstrated to be critical for protein functionality. This review focuses on phosphorylation modifications that have been documented to occur on viral proteins with emphasis on acutely infectious, single stranded RNA viruses. The review additionally explores the possibility of repurposing Food and Drug Administration (FDA) approved inhibitors as antivirals for the treatment of acute RNA viral infections.
Collapse
|
9
|
Short self-interacting N-terminal region of rubella virus capsid protein is essential for cooperative actions of capsid and nonstructural p150 proteins. J Virol 2014; 88:11187-98. [PMID: 25056903 DOI: 10.1128/jvi.01758-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Nucleocapsid formation is a primary function of the rubella virus capsid protein, which also promotes viral RNA synthesis via an unknown mechanism. The present study demonstrates that in infected cells, the capsid protein is associated with the nonstructural p150 protein via the short self-interacting N-terminal region of the capsid protein. Mutational analyses indicated that hydrophobic amino acids in this N-terminal region are essential for its N-terminal self-interaction, which is critical for the capsid-p150 association. An analysis based on a subgenomic replicon system demonstrated that the self-interacting N-terminal region of the capsid protein plays a key role in promoting viral gene expression. Analyses using a virus-like particle (VLP) system also showed that the self-interacting N-terminal region of the capsid protein is not essential for VLP production but is critical for VLP infectivity. These results demonstrate that the close cooperative actions of the capsid protein and p150 require the short self-interacting N-terminal region of the capsid protein during the life cycle of the rubella virus. IMPORTANCE The capsid protein of rubella virus promotes viral RNA replication via an unknown mechanism. This protein interacts with the nonstructural protein p150, but the importance of this interaction is unclear. In this study, we demonstrate that the short N-terminal region of the capsid protein forms a homo-oligomer that is critical for the capsid-p150 interaction. These interactions are required for the viral-gene-expression-promoting activity of the capsid protein, allowing efficient viral growth. These findings provide information about the mechanisms underlying the regulation of rubella virus RNA replication via the cooperative actions of the capsid protein and p150.
Collapse
|
10
|
Willows S, Ilkow CS, Hobman TC. Phosphorylation and membrane association of the Rubella virus capsid protein is important for its anti-apoptotic function. Cell Microbiol 2014; 16:1201-10. [PMID: 24456140 PMCID: PMC7162283 DOI: 10.1111/cmi.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 12/17/2022]
Abstract
Rubella virus (RV), a member of Togaviridae, is an important human pathogen that can cause severe defects in the developing fetus. Compared to other togaviruses, RV replicates very slowly suggesting that it must employ effective mechanisms to delay the innate immune response. A recent study by our laboratory revealed that the capsid protein of RV is a potent inhibitor of apoptosis. A primary mechanism by which RV capsid interferes with programmed cell death appears to be through interaction with the pro‐apoptotic Bcl‐2 family member Bax. In the present study, we report that the capsid protein also blocks IRF3‐dependent apoptosis induced by the double‐strand RNA mimic polyinosinic‐polycytidylic acid. In addition, analyses of cis‐acting elements revealed that phosphorylation and membrane association are important for its anti‐apoptotic function. Finally, the observation that hypo‐phosphorylated capsid binds Bax just as well as wild‐type capsid protein suggests that interaction with this pro‐apoptotic host protein in and of itself is not sufficient to block programmed cell death. This provides additional evidence that this viral protein inhibits apoptosis through multiple mechanisms.
Collapse
Affiliation(s)
- Steven Willows
- Department of Cell Biology, University of Alberta, 5-14 Medical Sciences Building, Edmonton, Canada, T6G 2H7
| | | | | |
Collapse
|
11
|
Schumacher J, Ramljak S, Asif AR, Schaffrath M, Zischler H, Herlyn H. Evolutionary conservation of mammalian sperm proteins associates with overall, not tyrosine, phosphorylation in human spermatozoa. J Proteome Res 2013; 12:5370-82. [PMID: 23919900 DOI: 10.1021/pr400228c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated possible associations between sequence evolution of mammalian sperm proteins and their phosphorylation status in humans. As a reference, spermatozoa from three normozoospermic men were analyzed combining two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry. We identified 99 sperm proteins (thereof 42 newly described) and determined the phosphorylation status for most of them. Sequence evolution was studied across six mammalian species using nonsynonymous/synonymous rate ratios (dN/dS) and amino acid distances. Site-specific purifying selection was assessed employing average ratios of evolutionary rates at phosphorylated versus nonphosphorylated amino acids (α). According to our data, mammalian sperm proteins do not show statistically significant sequence conservation difference, no matter if the human ortholog is a phosphoprotein with or without tyrosine (Y) phosphorylation. In contrast, overall phosphorylation of human sperm proteins, i.e., phosphorylation at serine (S), threonine (T), and/or Y residues, associates with above-average conservation of sequences. Complementary investigations suggest that numerous protein-protein interactants constrain sequence evolution of sperm phosphoproteins. Although our findings reject a special relevance of Y phosphorylation for sperm functioning, they still indicate that overall phosphorylation substantially contributes to proper functioning of sperm proteins. Hence, phosphorylated sperm proteins might be considered as prime candidates for diagnosis and treatment of reduced male fertility.
Collapse
Affiliation(s)
- Julia Schumacher
- Institute of Anthropology, University Mainz , Anselm-Franz-von-Bentzel-Weg 7, Mainz 55128, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Hernández S, Venegas M, Brahm J, Villanueva RA. The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism. Infect Agent Cancer 2012; 7:27. [PMID: 23079056 PMCID: PMC3533737 DOI: 10.1186/1750-9378-7-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/20/2012] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED BACKGROUND Hepatitis B virus (HBV) encodes an oncogenic factor, HBx, which is a multifunctional protein that can induce dysfunctional regulation of signaling pathways, transcription, and cell cycle progression, among other processes, through interactions with target host factors. The subcellular localization of HBx is both cytoplasmic and nuclear. This dynamic distribution of HBx could be essential to the multiple roles of the protein at different stages during HBV infection. Transactivational functions of HBx may be exerted both in the nucleus, via interaction with host DNA-binding proteins, and in the cytoplasm, via signaling pathways. Although there have been many studies describing different pathways altered by HBx, and its innumerable binding partners, the molecular mechanism that regulates its different roles has been difficult to elucidate. METHODS In the current study, we took a bioinformatics approach to investigate whether the viral protein HBx might be regulated via phosphorylation by an evolutionarily conserved mechanism. RESULTS We found that the phylogenetically conserved residues Ser25 and Ser41 (both within the negative regulatory domain), and Thr81 (in the transactivation domain) are predicted to be phosphorylated. By molecular 3D modeling of HBx, we further show these residues are all predicted to be exposed on the surface of the protein, making them easily accesible to these types of modifications. Furthermore, we have also identified Yin Yang sites that might have the potential to be phosphorylated and O-β-GlcNAc interplay at the same residues. CONCLUSIONS Thus, we propose that the different roles of HBx displayed in different subcellular locations might be regulated by an evolutionarily conserved mechanism of posttranslational modification, via phosphorylation.
Collapse
Affiliation(s)
- Sergio Hernández
- Laboratorio de Virus Hepatitis, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda. República 217, 3er piso, Santiago 8370146, Chile
| | - Mauricio Venegas
- Sección de Gastroenterología, Departamento de Medicina, Hospital Clínico Universidad de Chile, Avda. Santos Dumont 999, Independencia, Santiago 8340457, Chile
| | - Javier Brahm
- Sección de Gastroenterología, Departamento de Medicina, Hospital Clínico Universidad de Chile, Avda. Santos Dumont 999, Independencia, Santiago 8340457, Chile
| | - Rodrigo A Villanueva
- Laboratorio de Virus Hepatitis, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda. República 217, 3er piso, Santiago 8370146, Chile
| |
Collapse
|
13
|
Keating JA, Striker R. Phosphorylation events during viral infections provide potential therapeutic targets. Rev Med Virol 2011; 22:166-81. [PMID: 22113983 PMCID: PMC3334462 DOI: 10.1002/rmv.722] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 01/21/2023]
Abstract
For many medically relevant viruses, there is now considerable evidence that both viral and cellular kinases play important roles in viral infection. Ultimately, these kinases, and the cellular signaling pathways that they exploit, may serve as therapeutic targets for treating patients. Currently, small molecule inhibitors of kinases are under investigation as therapy for herpes viral infections. Additionally, a number of cellular or host-directed tyrosine kinase inhibitors that have been previously FDA approved for cancer treatment are under study in animal models and clinical trials, as they have shown promise for the treatment of various viral infections as well. This review will highlight the wide range of viral proteins phosphorylated by viral and cellular kinases, and the potential for variability of kinase recognition sites within viral substrates to impact phosphorylation and kinase prediction. Research studying kinase-targeting prophylactic and therapeutic treatments for a number of viral infections will also be discussed.
Collapse
Affiliation(s)
- Julie A Keating
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
14
|
Claus C, Tzeng WP, Liebert UG, Frey TK. Rubella virus-like replicon particles: analysis of encapsidation determinants and non-structural roles of capsid protein in early post-entry replication. J Gen Virol 2011; 93:516-525. [PMID: 22113006 DOI: 10.1099/vir.0.038984-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rubella virus (RUBV) contains a plus-strand RNA genome with two ORFs, one encoding the non-structural replicase proteins (NS-ORF) and the second encoding the virion structural proteins (SP-ORF). This study describes development and use of a trans-encapsidation system for the assembly of infectious RUBV-like replicon particles (VRPs) containing RUBV replicons (self replicating genomes with the SP-ORF replaced with a reporter gene). First, this system was used to map signals within the RUBV genome that mediate packaging of viral RNA. Mutations within a proposed packaging signal did not significantly affect relative packaging efficiency. The insertion of various fragments derived from the RUBV genome into Sindbis virus replicons revealed that there are several regions within the RUBV genome capable of enhancing encapsidation of heterologous replicon RNAs. Secondly, the trans-encapsidation system was used to analyse the effect of alterations within the capsid protein (CP) on release of VRPs and subsequent initiation of replication in newly infected cells. Deletion of the N-terminal eight amino acids of the CP reduced VRP titre significantly, which could be partially complemented by native CP provided in trans, indicating that this mutation affected an entry or post-entry event in the replication cycle. To test this hypothesis, the trans-encapsidation system was used to demonstrate the rescue of a lethal deletion within P150, one of the virus replicase proteins, by CP contained within the virus particle. This novel finding substantiated the functional role of CP in early post-entry replication.
Collapse
Affiliation(s)
- Claudia Claus
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - Wen-Pin Tzeng
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - U G Liebert
- Institute of Virology, University of Leipzig, Leipzig, Germany
| | - Teryl K Frey
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
15
|
Ilkow CS, Willows SD, Hobman TC. Rubella virus capsid protein: a small protein with big functions. Future Microbiol 2010; 5:571-84. [PMID: 20353299 DOI: 10.2217/fmb.10.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Virus replication occurs in the midst of a life or death struggle between the virus and the infected host cell. To limit virus replication, host cells can activate a number of antiviral pathways, the most drastic of which is programmed cell death. Whereas large DNA viruses have the luxury of encoding accessory proteins whose main function is to interfere with host cell defences, the genomes of RNA viruses are not large enough to encode proteins of this type. Recent studies have revealed that proteins encoded by RNA viruses often play multiple roles in the battles between viruses and host cells. In this article, we discuss the many functions of the rubella virus capsid protein. This protein has well-defined roles in virus assembly, but recent research suggests that it also functions to modulate virus replication and block host cell defences.
Collapse
Affiliation(s)
- Carolina S Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | | | | |
Collapse
|
16
|
Abstract
The rubella virus (RV) capsid is an RNA-binding protein that functions in nucleocapsid assembly at the Golgi complex, the site of virus budding. In addition to its role in virus assembly, pools of capsid associate with mitochondria, a localization that is not consistent with virus assembly. Here we examined the interaction of capsid with mitochondria and showed that this viral protein inhibits the import and processing of mitochondrial precursor proteins in vitro. Moreover, RV-infected cells were found to contain lower intramitochondrial levels of matrix protein p32. In addition to inhibiting the translocation of substrates into mammalian mitochondria, capsid efficiently blocked import into yeast mitochondria, thereby suggesting that it acts by targeting a highly conserved component of the translocation apparatus. Finally, mutation of a cluster of five arginine residues in the amino terminus of capsid, though not interfering with its binding to mitochondria, abrogated its ability to block protein import into mitochondria. This is the first report of a viral protein that affects the import of proteins into mitochondria.
Collapse
|
17
|
Wu CH, Yeh SH, Tsay YG, Shieh YH, Kao CL, Chen YS, Wang SH, Kuo TJ, Chen DS, Chen PJ. Glycogen synthase kinase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication. J Biol Chem 2008; 284:5229-39. [PMID: 19106108 PMCID: PMC8011290 DOI: 10.1074/jbc.m805747200] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coronavirus (CoV) nucleocapsid (N) protein is a highly phosphorylated protein required for viral replication, but whether its phosphorylation and the related kinases are involved in the viral life cycle is unknown. We found the severe acute respiratory syndrome CoV N protein to be an appropriate system to address this issue. Using high resolution PAGE analysis, this protein could be separated into phosphorylated and unphosphorylated isoforms. Mass spectrometric analysis and deletion mapping showed that the major phosphorylation sites were located at the central serine-arginine (SR)-rich motif that contains several glycogen synthase kinase (GSK)-3 substrate consensus sequences. GSK-3-specific inhibitor treatment dephosphorylated the N protein, and this could be recovered by the constitutively active GSK-3 kinase. Immunoprecipitation brought down both N and GSK-3 proteins in the same complex, and the N protein could be phosphorylated directly at its SR-rich motif by GSK-3 using an in vitro kinase assay. Mutation of the two priming sites critical for GSK-3 phosphorylation in the SR-rich motif abolished N protein phosphorylation. Finally, GSK-3 inhibitor was found to reduce N phosphorylation in the severe acute respiratory syndrome CoV-infected VeroE6 cells and decrease the viral titer and cytopathic effects. The effect of GSK-3 inhibitor was reproduced in another coronavirus, the neurotropic JHM strain of mouse hepatitis virus. Our results indicate that GSK-3 is critical for CoV N protein phosphorylation and suggest that it plays a role in regulating the viral life cycle. This study, thus, provides new avenues to further investigate the specific role of N protein phosphorylation in CoV replication.
Collapse
Affiliation(s)
- Chia-Hsin Wu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rubella virus capsid protein interacts with poly(a)-binding protein and inhibits translation. J Virol 2008; 82:4284-94. [PMID: 18305028 DOI: 10.1128/jvi.02732-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During virus assembly, the capsid proteins of RNA viruses bind to genomic RNA to form nucleocapsids. However, it is now evident that capsid proteins have additional functions that are unrelated to nucleocapsid formation. Specifically, their interactions with cellular proteins may influence signaling pathways or other events that affect virus replication. Here we report that the rubella virus (RV) capsid protein binds to poly(A)-binding protein (PABP), a host cell protein that enhances translational efficiency by circularizing mRNAs. Infection of cells with RV resulted in marked increases in the levels of PABP, much of which colocalized with capsid in the cytoplasm. Mapping studies revealed that capsid binds to the C-terminal half of PABP, which interestingly is the region that interacts with other translation regulators, including PABP-interacting protein 1 (Paip1) and Paip2. The addition of capsid to in vitro translation reaction mixtures inhibited protein synthesis in a dose-dependent manner; however, the capsid block was alleviated by excess PABP, indicating that inhibition of translation occurs through a stoichiometric mechanism. To our knowledge, this is the first report of a viral protein that inhibits protein translation by sequestration of PABP. We hypothesize that capsid-dependent inhibition of translation may facilitate the switch from viral translation to packaging RNA into nucleocapsids.
Collapse
|