1
|
Fu B, Ma H, Liu D. Pioneer Transcription Factors: The First Domino in Zygotic Genome Activation. Biomolecules 2024; 14:720. [PMID: 38927123 PMCID: PMC11202083 DOI: 10.3390/biom14060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Zygotic genome activation (ZGA) is a pivotal event in mammalian embryogenesis, marking the transition from maternal to zygotic control of development. During the ZGA process that is characterized by the intricate cascade of gene expression, who tipped the first domino in a meticulously arranged sequence is a subject of paramount interest. Recently, Dux, Obox and Nr5a2 were identified as pioneer transcription factors that reside at the top of transcriptional hierarchy. Through co-option of retrotransposon elements as hubs for transcriptional activation, these pioneer transcription factors rewire the gene regulatory network, thus initiating ZGA. In this review, we provide a snapshot of the mechanisms underlying the functions of these pioneer transcription factors. We propose that ZGA is the starting point where the embryo's own genome begins to influence development trajectory, therefore in-depth dissecting the functions of pioneer transcription factors during ZGA will form a cornerstone of our understanding for early embryonic development, which will pave the way for advancing our grasp of mammalian developmental biology and optimizing in vitro production (IVP) techniques.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
2
|
Granados A, Zamperoni M, Rapone R, Moulin M, Boyarchuk E, Bouyioukos C, Del Maestro L, Joliot V, Negroni E, Mohamed M, Piquet S, Bigot A, Le Grand F, Albini S, Ait-Si-Ali S. SETDB1 modulates the TGFβ response in Duchenne muscular dystrophy myotubes. SCIENCE ADVANCES 2024; 10:eadj8042. [PMID: 38691608 PMCID: PMC11062573 DOI: 10.1126/sciadv.adj8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Overactivation of the transforming growth factor-β (TGFβ) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFβ induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFβ signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFβ target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFβ-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.
Collapse
Affiliation(s)
- Alice Granados
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maeva Zamperoni
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Roberta Rapone
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maryline Moulin
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Ekaterina Boyarchuk
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Costas Bouyioukos
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Laurence Del Maestro
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Véronique Joliot
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Sandra Piquet
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Fabien Le Grand
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Institut NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle (PGNM) Unit, 69008 Lyon, France
| | - Sonia Albini
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| |
Collapse
|
3
|
Padi2/3 Deficiency Alters the Epigenomic Landscape and Causes Premature Differentiation of Mouse Trophoblast Stem Cells. Cells 2022; 11:cells11162466. [PMID: 36010543 PMCID: PMC9406452 DOI: 10.3390/cells11162466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Histone citrullination is a relatively poorly studied epigenetic modification that involves the irreversible conversion of arginine residues into citrulline. It is conferred by a small family of enzymes known as protein arginine deiminases (PADIs). PADI function supports the pluripotent state of embryonic stem cells, but in other contexts, also promotes efficient cellular differentiation. In the current study, we sought to gain deeper insights into the possible roles of PADIs in mouse trophoblast stem cells (TSCs). We show that Padi2 and Padi3 are the most highly expressed PADI family members in TSCs and are rapidly down-regulated upon differentiation. Padi2/3 double knockout (DKO) TSCs express lower levels of stem cell transcription factors CDX2 and SOX2 and are prone to differentiate into extremely large trophoblast giant cells, an effect that may be mediated by centrosome duplication defects. Interestingly, Padi2/3 DKO TSCs display alterations to their epigenomic landscape, with fewer H3K9me3-marked chromocentric foci and globally reduced 5-methylcytosine levels. DNA methylation profiling identifies that this effect is specifically evident at CpG islands of critical trophoblast genes, such as Gata3, Peg3, Socs3 and Hand1. As a consequence of the hypomethylated state, these factors are up-regulated in Padi2/3 DKO TSCs, driving their premature differentiation. Our data uncover a critical epigenetic role for PADI2/3 in safeguarding the stem cell state of TSCs by modulating the DNA methylation landscape to restrict precocious trophoblast differentiation.
Collapse
|
4
|
Integrated multi-omics reveal polycomb repressive complex 2 restricts human trophoblast induction. Nat Cell Biol 2022; 24:858-871. [PMID: 35697783 PMCID: PMC9203278 DOI: 10.1038/s41556-022-00932-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/05/2022] [Indexed: 12/19/2022]
Abstract
Human naive pluripotent stem cells have unrestricted lineage potential. Underpinning this property, naive cells are thought to lack chromatin-based lineage barriers. However, this assumption has not been tested. Here we define the chromatin-associated proteome, histone post-translational modifications and transcriptome of human naive and primed pluripotent stem cells. Our integrated analysis reveals differences in the relative abundance and activities of distinct chromatin modules. We identify a strong enrichment of polycomb repressive complex 2 (PRC2)-associated H3K27me3 in the chromatin of naive pluripotent stem cells and H3K27me3 enrichment at promoters of lineage-determining genes, including trophoblast regulators. PRC2 activity acts as a chromatin barrier restricting the differentiation of naive cells towards the trophoblast lineage, whereas inhibition of PRC2 promotes trophoblast-fate induction and cavity formation in human blastoids. Together, our results establish that human naive pluripotent stem cells are not epigenetically unrestricted, but instead possess chromatin mechanisms that oppose the induction of alternative cell fates. Two side-by-side papers report that H3K27me3 deposited by polycomb repressive complex 2 represents an epigenetic barrier that restricts naive human pluripotent cell differentiation into alternative lineages including trophoblasts.
Collapse
|
5
|
Giménez-Orenga K, Oltra E. Human Endogenous Retrovirus as Therapeutic Targets in Neurologic Disease. Pharmaceuticals (Basel) 2021; 14:495. [PMID: 34073730 PMCID: PMC8225122 DOI: 10.3390/ph14060495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancient retroviral DNA sequences established into germline. They contain regulatory elements and encoded proteins few of which may provide benefits to hosts when co-opted as cellular genes. Their tight regulation is mainly achieved by epigenetic mechanisms, which can be altered by environmental factors, e.g., viral infections, leading to HERV activation. The aberrant expression of HERVs associates with neurological diseases, such as multiple sclerosis (MS) or amyotrophic lateral sclerosis (ALS), inflammatory processes and neurodegeneration. This review summarizes the recent advances on the epigenetic mechanisms controlling HERV expression and the pathogenic effects triggered by HERV de-repression. This article ends by describing new, promising therapies, targeting HERV elements, one of which, temelimab, has completed phase II trials with encouraging results in treating MS. The information gathered here may turn helpful in the design of new strategies to unveil epigenetic failures behind HERV-triggered diseases, opening new possibilities for druggable targets and/or for extending the use of temelimab to treat other associated diseases.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Elisa Oltra
- School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
6
|
Laufer BI, Gomez JA, Jianu JM, LaSalle JM. Stable DNMT3L overexpression in SH-SY5Y neurons recreates a facet of the genome-wide Down syndrome DNA methylation signature. Epigenetics Chromatin 2021; 14:13. [PMID: 33750431 PMCID: PMC7942011 DOI: 10.1186/s13072-021-00387-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00387-7.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA. .,Genome Center, University of California, Davis, CA, 95616, USA. .,MIND Institute, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Yang CY, Lu RJH, Lee MK, Hsiao FSH, Yen YP, Cheng CC, Hsu PS, Tsai YT, Chen SK, Liu IH, Chen PY, Lin SP. Transcriptome Analysis of Dnmt3l Knock-Out Mice Derived Multipotent Mesenchymal Stem/Stromal Cells During Osteogenic Differentiation. Front Cell Dev Biol 2021; 9:615098. [PMID: 33718357 PMCID: PMC7947861 DOI: 10.3389/fcell.2021.615098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSCs) exhibit great potential for cell-based therapy. Proper epigenomic signatures in MSCs are important for the maintenance and the subsequent differentiation potential. The DNA methyltransferase 3-like (DNMT3L) that was mainly expressed in the embryonic stem (ES) cells and the developing germ cells plays an important role in shaping the epigenetic landscape. Here, we report the reduced colony forming ability and impaired in vitro osteogenesis in Dnmt3l-knockout-mice-derived MSCs (Dnmt3l KO MSCs). By comparing the transcriptome between undifferentiated Dnmt3l KO MSCs and the MSCs from the wild-type littermates, some of the differentially regulated genes (DEGs) were found to be associated with bone-morphology-related phenotypes. On the third day of osteogenic induction, differentiating Dnmt3l KO MSCs were enriched for genes associated with nucleosome structure, peptide binding and extracellular matrix modulation. Differentially expressed transposable elements in many subfamilies reflected the change of corresponding regional epigenomic signatures. Interestingly, DNMT3L protein is not expressed in cultured MSCs. Therefore, the observed defects in Dnmt3l KO MSCs are unlikely a direct effect from missing DNMT3L in this cell type; instead, we hypothesized them as an outcome of the pre-deposited epigenetic signatures from the DNMT3L-expressing progenitors. We observed that 24 out of the 107 upregulated DEGs in Dnmt3l KO MSCs were hypermethylated in their gene bodies of DNMT3L knock-down ES cells. Among these 24 genes, some were associated with skeletal development or homeostasis. However, we did not observe reduced bone development, or reduced bone density through aging in vivo. The stronger phenotype in vitro suggested the involvement of potential spreading and amplification of the pre-deposited epigenetic defects over passages, and the contribution of oxidative stress during in vitro culture. We demonstrated that transient deficiency of epigenetic co-factor in ES cells or progenitor cells caused compromised property in differentiating cells much later. In order to facilitate safer practice in cell-based therapy, we suggest more in-depth examination shall be implemented for cells before transplantation, even on the epigenetic level, to avoid long-term risk afterward.
Collapse
Affiliation(s)
- Chih-Yi Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Rita Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Department of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Ming-Kang Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Felix Shih-Hsian Hsiao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Ya-Ping Yen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Chun Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shih-Kuo Chen
- Department of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Qin L, Qiao C, Sheen V, Wang Y, Lu J. DNMT3L promotes neural differentiation by enhancing STAT1 and STAT3 phosphorylation independent of DNA methylation. Prog Neurobiol 2021; 201:102028. [PMID: 33636226 DOI: 10.1016/j.pneurobio.2021.102028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 01/13/2023]
Abstract
Previously, we reported global hypermethylation in DS might be attributed to the overexpression of HSA21 gene DNMT3L, which can enhance DNMT3A and DNMT3B activities in DNA methylation. To test this hypothesis, we compared the DNA methylation and RNA expression profiles of early-differentiated human neuroprogenitors with and without DNMT3L overexpression. We found DNMT3L overexpression only moderately increased the DNA methylation of limited genes, yet significantly altered global RNA expression of genes involved in neural differentiation. We further found that DNMT3L bound STAT1 or STAT3, and increased its phosphorylation and nuclear translocation, which in turn activated the expression of transcription factors including HES3, ASCL1, NEUROD2 and NEUROG2 and CDK inhibitor CDKN1A, which promoted cell cycle exit and neural differentiation. This phenomenon was also confirmed in Dnmt3l conditional knockin mice, which could be rescued by STAT1 and STAT3 phosphorylation inhibitors (Fludarabine and SH-4-54) but not DNA methylation inhibitor (Decitabine). These results suggest that DNMT3L play an important role during neurodevelopment independent of DNA methylation, which may contribute to the abnormal phenotypes observed in Down syndrome cortex.
Collapse
Affiliation(s)
- Lin Qin
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, 110122, China; Department of Obstetrics & Gynecology, Shenyang Women & Children's Hospital, Shenyang, Liaoning Province, 110121, China.
| | - Chong Qiao
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| | - Yu Wang
- Department of Obstetrics & Gynecology, Shenyang Women & Children's Hospital, Shenyang, Liaoning Province, 110121, China.
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
9
|
Posttranscriptional regulation of human endogenous retroviruses by RNA-binding motif protein 4, RBM4. Proc Natl Acad Sci U S A 2020; 117:26520-26530. [PMID: 33020268 DOI: 10.1073/pnas.2005237117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human genome encodes for over 1,500 RNA-binding proteins (RBPs), which coordinate regulatory events on RNA transcripts. Most studies of RBPs have concentrated on their action on host protein-encoding mRNAs, which constitute a minority of the transcriptome. A widely neglected subset of our transcriptome derives from integrated retroviral elements, termed endogenous retroviruses (ERVs), that comprise ∼8% of the human genome. Some ERVs have been shown to be transcribed under physiological and pathological conditions, suggesting that sophisticated regulatory mechanisms to coordinate and prevent their ectopic expression exist. However, it is unknown how broadly RBPs and ERV transcripts directly interact to provide a posttranscriptional layer of regulation. Here, we implemented a computational pipeline to determine the correlation of expression between individual RBPs and ERVs from single-cell or bulk RNA-sequencing data. One of our top candidates for an RBP negatively regulating ERV expression was RNA-binding motif protein 4 (RBM4). We used photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation to demonstrate that RBM4 indeed bound ERV transcripts at CGG consensus elements. Loss of RBM4 resulted in an elevated transcript level of bound ERVs of the HERV-K and -H families, as well as increased expression of HERV-K envelope protein. We pinpointed RBM4 regulation of HERV-K to a CGG-containing element that is conserved in the LTRs of HERV-K-10, -K-11, and -K-20, and validated the functionality of this site using reporter assays. In summary, we systematically identified RBPs that may regulate ERV function and demonstrate a role for RBM4 in controlling ERV expression.
Collapse
|
10
|
Colwell M, Wanner NM, Drown C, Drown M, Dolinoy DC, Faulk C. Paradoxical whole genome DNA methylation dynamics of 5'aza-deoxycytidine in chronic low-dose exposure in mice. Epigenetics 2020; 16:209-227. [PMID: 32619143 DOI: 10.1080/15592294.2020.1790951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Decitabine (5-aza-2'deoxycytidine; DAC) is a DNA methyltransferase inhibitor used to hypomethylate the epigenome. Current dosing regimens of DAC for use in mice vary widely and their hypomethylating ability has not been robustly characterized, despite reliable results of hypomethylation of the epigenome with cell lines in vitro and tissue specificity in vivo. We investigated the effects on the DNA methylome and gene expression within mice exposed to chronic low doses of DAC ranging from 0 to 0.35 mg/kg over a period of 7 weeks without causing toxicity. Our dose paradigm resulted in no cytotoxic effects within target tissues, although testes weight and sperm concentration significantly reduced as dose increased (p-value <0.05). By whole genome bisulphite sequencing (WGBS), we identify tissue and dose-specific differentially methylated CpGs (DMCs) and regions (DMRs) in testes and liver. Testes methylation is more sensitive to DAC exposure when compared to liver, cortex, and hippocampus. Gene expression was dysregulated in testes and liver, targeting non-specific pathways as dose increases. Together our data suggest DNA methylation and gene expression are disrupted by in vivo DAC treatment in a non-uniform manner contrary to expectations, and that no dose level or regimen is sufficient to cause systemic hypomethylation in whole mice.
Collapse
Affiliation(s)
- Mathia Colwell
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Scientists , St. Paul, MN, USA
| | - Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine , St. Paul, MN, USA
| | - Chelsea Drown
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Scientists , St. Paul, MN, USA
| | - Melissa Drown
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Scientists , St. Paul, MN, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan , Ann Arbor, MI, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Scientists , St. Paul, MN, USA
| |
Collapse
|
11
|
Yu YCY, Hui TZ, Kao TH, Liao HF, Yang CY, Hou CC, Hsieh HT, Chang JY, Tsai YT, Pinskaya M, Yang KC, Chen YR, Morillon A, Tsai MH, Lin SP. Transient DNMT3L Expression Reinforces Chromatin Surveillance to Halt Senescence Progression in Mouse Embryonic Fibroblast. Front Cell Dev Biol 2020; 8:103. [PMID: 32195249 PMCID: PMC7064442 DOI: 10.3389/fcell.2020.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/07/2020] [Indexed: 01/10/2023] Open
Abstract
Global heterochromatin reduction, which is one of the hallmarks of senescent cells, is associated with reduced transposable element repression and increased risk of chromatin instability. To ensure genomic integrity, the irreparable cells in a population exit permanently from the cell cycle, and this process is termed "senescence." However, senescence only blocks the expansion of unwanted cells, and the aberrant chromatin of senescent cells remains unstable. Serendipitously, we found that the transient ectopic expression of a repressive epigenetic modulator, DNA methyltransferase 3-like (DNMT3L) was sufficient to delay the premature senescence progression of late-passage mouse embryonic fibroblasts (MEFs) associated with a tightened global chromatin structure. DNMT3L induces more repressive H3K9 methylation on endogenous retroviruses and downregulates the derepressed transposons in aging MEFs. In addition, we found that a pulse of ectopic DNMT3L resulted in the reestablishment of H3K27me3 on polycomb repressive complex 2 (PRC2)-target genes that were derepressed in old MEFs. We demonstrated that ectopic DNMT3L interacted with PRC2 in MEFs. Our data also suggested that ectopic DNMT3L might guide PRC2 to redress deregulated chromatin regions in cells undergoing senescence. This study might lead to an epigenetic reinforcement strategy for overcoming aging-associated epimutation and senescence.
Collapse
Affiliation(s)
- Yoyo Chih-Yun Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tony Zk Hui
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Tzu-Hao Kao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Hung-Fu Liao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Yi Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chia-Chun Hou
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ting Hsieh
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Marina Pinskaya
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Kai-Chien Yang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, Paris, France
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Veland N, Lu Y, Hardikar S, Gaddis S, Zeng Y, Liu B, Estecio MR, Takata Y, Lin K, Tomida MW, Shen J, Saha D, Gowher H, Zhao H, Chen T. DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Res 2019; 47:152-167. [PMID: 30321403 PMCID: PMC6326784 DOI: 10.1093/nar/gky947] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
DNMT3L (DNMT3-like), a member of the DNMT3 family, has no DNA methyltransferase activity but regulates de novo DNA methylation. While biochemical studies show that DNMT3L is capable of interacting with both DNMT3A and DNMT3B and stimulating their enzymatic activities, genetic evidence suggests that DNMT3L is essential for DNMT3A-mediated de novo methylation in germ cells but is dispensable for de novo methylation during embryogenesis, which is mainly mediated by DNMT3B. How DNMT3L regulates DNA methylation and what determines its functional specificity are not well understood. Here we show that DNMT3L-deficient mouse embryonic stem cells (mESCs) exhibit downregulation of DNMT3A, especially DNMT3A2, the predominant DNMT3A isoform in mESCs. DNA methylation analysis of DNMT3L-deficient mESCs reveals hypomethylation at many DNMT3A target regions. These results confirm that DNMT3L is a positive regulator of DNA methylation, contrary to a previous report that, in mESCs, DNMT3L regulates DNA methylation positively or negatively, depending on genomic regions. Mechanistically, DNMT3L forms a complex with DNMT3A2 and prevents DNMT3A2 from being degraded. Restoring the DNMT3A protein level in DNMT3L-deficient mESCs partially recovers DNA methylation. Thus, our work uncovers a role for DNMT3L in maintaining DNMT3A stability, which contributes to the effect of DNMT3L on DNMT3A-dependent DNA methylation.
Collapse
Affiliation(s)
- Nicolas Veland
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Sally Gaddis
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mary W Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Debapriya Saha
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
13
|
Tie CHC, Rowe HM. Epigenetic control of retrotransposons in adult tissues: implications for immune regulation. Curr Opin Virol 2017; 25:28-33. [DOI: 10.1016/j.coviro.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/26/2017] [Accepted: 06/19/2017] [Indexed: 12/29/2022]
|
14
|
Bire S, Casteret S, Piégu B, Beauclair L, Moiré N, Arensbuger P, Bigot Y. Mariner Transposons Contain a Silencer: Possible Role of the Polycomb Repressive Complex 2. PLoS Genet 2016; 12:e1005902. [PMID: 26939020 PMCID: PMC4777549 DOI: 10.1371/journal.pgen.1005902] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/05/2016] [Indexed: 12/31/2022] Open
Abstract
Transposable elements are driving forces for establishing genetic innovations such as transcriptional regulatory networks in eukaryotic genomes. Here, we describe a silencer situated in the last 300 bp of the Mos1 transposase open reading frame (ORF) which functions in vertebrate and arthropod cells. Functional silencers are also found at similar locations within three other animal mariner elements, i.e. IS630-Tc1-mariner (ITm) DD34D elements, Himar1, Hsmar1 and Mcmar1. These silencers are able to impact eukaryotic promoters monitoring strong, moderate or low expression as well as those of mariner elements located upstream of the transposase ORF. We report that the silencing involves at least two transcription factors (TFs) that are conserved within animal species, NFAT-5 and Alx1. These cooperatively act with YY1 to trigger the silencing activity. Four other housekeeping transcription factors (TFs), neuron restrictive silencer factor (NRSF), GAGA factor (GAF) and GTGT factor (GTF), were also found to have binding sites within mariner silencers but their impact in modulating the silencer activity remains to be further specified. Interestingly, an NRSF binding site was found to overlap a 30 bp motif coding a highly conserved PHxxYSPDLAPxD peptide in mariner transposases. We also present experimental evidence that silencing is mainly achieved by co-opting the host Polycomb Repressive Complex 2 pathway. However, we observe that when PRC2 is impaired another host silencing pathway potentially takes over to maintain weak silencer activity. Mariner silencers harbour features of Polycomb Response Elements, which are probably a way for mariner elements to self-repress their transcription and mobility in somatic and germinal cells when the required TFs are expressed. At the evolutionary scale, mariner elements, through their exaptation, might have been a source of silencers playing a role in the chromatin configuration in eukaryotic genomes. Transposons are mobile DNA sequences that have long co-evolved with the genome of their hosts. Consequently, they are involved in the generation of mutations, as well as the creation of genes and regulatory networks. Controlling the transposon activity, and consequently its negative effects on both the host soma and germ line, is a challenge for the survival of both the host and the transposon. To silence transposons, hosts often use defence mechanisms involving DNA methylation and RNA interference pathways. Here we show that mariner transposons can self-regulate their activity by using a silencer element located in their DNA sequence. The silencer element interferes with host housekeeping protein transcription factors involved in the polycomb silencing pathways. As the regulation of chromatin configuration by polycomb is an important regulator of animal development, our findings open the possibility that mariner silencers might have been exapted during animal evolution to participate in certain regulation pathways of their hosts. Since some of the TFs involved in mariner silencer activity play a role at different stages of nervous system development and neuron differentiation, it might be possible that mariner transposons can be active during some steps of cell differentiation. Interestingly, mariner transposons (i.e. IS630-Tc1-mariner (ITm) DD34D transposons) have so far only been found in genomes of animals having a nervous system.
Collapse
Affiliation(s)
- Solenne Bire
- PRC, UMR INRA-CNRS 7247, PRC, Nouzilly, France
- Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | | | | | | | - Peter Arensbuger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, United States of America
| | - Yves Bigot
- PRC, UMR INRA-CNRS 7247, PRC, Nouzilly, France
- * E-mail:
| |
Collapse
|
15
|
Garazha A, Ivanova A, Suntsova M, Malakhova G, Roumiantsev S, Zhavoronkov A, Buzdin A. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome. Cell Cycle 2016; 14:1476-84. [PMID: 25853282 PMCID: PMC4612461 DOI: 10.1080/15384101.2015.1022696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of “domestication” of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci.
Collapse
Affiliation(s)
- Andrew Garazha
- a Group for Genomic Regulation of Cell Signaling Systems ; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry ; Moscow , Russia
| | | | | | | | | | | | | |
Collapse
|
16
|
Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci Bull (Beijing) 2015; 60:1722-1733. [PMID: 26543668 PMCID: PMC4624819 DOI: 10.1007/s11434-015-0905-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/18/2015] [Indexed: 12/19/2022]
Abstract
Transposable elements (TEs) are mobile genomic sequences of DNA capable of autonomous and non-autonomous duplication. TEs have been highly successful, and nearly half of the human genome now consists of various families of TEs. Originally thought to be non-functional, these elements have been co-opted by animal genomes to perform a variety of physiological functions ranging from TE-derived proteins acting directly in normal biological functions, to innovations in transcription factor logic and influence on epigenetic control of gene expression. During embryonic development, when the genome is epigenetically reprogrammed and DNA-demethylated, TEs are released from repression and show embryonic stage-specific expression, and in human and mouse embryos, intact TE-derived endogenous viral particles can even be detected. A similar process occurs during the reprogramming of somatic cells to pluripotent cells: When the somatic DNA is demethylated, TEs are released from repression. In embryonic stem cells (ESCs), where DNA is hypomethylated, an elaborate system of epigenetic control is employed to suppress TEs, a system that often overlaps with normal epigenetic control of ESC gene expression. Finally, many long non-coding RNAs (lncRNAs) involved in normal ESC function and those assisting or impairing reprogramming contain multiple TEs in their RNA. These TEs may act as regulatory units to recruit RNA-binding proteins and epigenetic modifiers. This review covers how TEs are interlinked with the epigenetic machinery and lncRNAs, and how these links influence each other to modulate aspects of ESCs, embryogenesis, and somatic cell reprogramming.
Collapse
|
17
|
Suntsova M, Garazha A, Ivanova A, Kaminsky D, Zhavoronkov A, Buzdin A. Molecular functions of human endogenous retroviruses in health and disease. Cell Mol Life Sci 2015; 72:3653-75. [PMID: 26082181 PMCID: PMC11113533 DOI: 10.1007/s00018-015-1947-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022]
Abstract
Human endogenous retroviruses (HERVs) and related genetic elements form 504 distinct families and occupy ~8% of human genome. Recent success of high-throughput experimental technologies facilitated understanding functional impact of HERVs for molecular machinery of human cells. HERVs encode active retroviral proteins, which may exert important physiological functions in the body, but also may be involved in the progression of cancer and numerous human autoimmune, neurological and infectious diseases. The spectrum of related malignancies includes, but not limits to, multiple sclerosis, psoriasis, lupus, schizophrenia, multiple cancer types and HIV. In addition, HERVs regulate expression of the neighboring host genes and modify genomic regulatory landscape, e.g., by providing regulatory modules like transcription factor binding sites (TFBS). Indeed, recent bioinformatic profiling identified ~110,000 regulatory active HERV elements, which formed at least ~320,000 human TFBS. These and other peculiarities of HERVs might have played an important role in human evolution and speciation. In this paper, we focus on the current progress in understanding of normal and pathological molecular niches of HERVs, on their implications in human evolution, normal physiology and disease. We also review the available databases dealing with various aspects of HERV genetics.
Collapse
Affiliation(s)
- Maria Suntsova
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.
| | - Andrew Garazha
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.
| | - Alena Ivanova
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
| | - Dmitry Kaminsky
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
| | - Alex Zhavoronkov
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
- Department of Translational and Regenerative Medicine, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow, 141700, Russia.
| | - Anton Buzdin
- Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, 1, Akademika Kurchatova sq., Moscow, 123182, Russia.
| |
Collapse
|
18
|
Liao HF, Mo CF, Wu SC, Cheng DH, Yu CY, Chang KW, Kao TH, Lu CW, Pinskaya M, Morillon A, Lin SS, Cheng WTK, Bourc'his D, Bestor T, Sung LY, Lin SP. Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction 2015; 150:245-56. [PMID: 26159833 DOI: 10.1530/rep-15-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/09/2015] [Indexed: 12/18/2022]
Abstract
Nuclear transfer (NT) is a technique used to investigate the development and reprogramming potential of a single cell. DNA methyltransferase-3-like, which has been characterized as a repressive transcriptional regulator, is expressed in naturally fertilized egg and morula/blastocyst at pre-implantation stages. In this study, we demonstrate that the use of Dnmt3l-knockout (Dnmt3l-KO) donor cells in combination with Trichostatin A treatment improved the developmental efficiency and quality of the cloned embryos. Compared with the WT group, Dnmt3l-KO donor cell-derived cloned embryos exhibited increased cell numbers as well as restricted OCT4 expression in the inner cell mass (ICM) and silencing of transposable elements at the blastocyst stage. In addition, our results indicate that zygotic Dnmt3l is dispensable for cloned embryo development at pre-implantation stages. In Dnmt3l-KO mouse embryonic fibroblasts, we observed reduced nuclear localization of HDAC1, increased levels of the active histone mark H3K27ac and decreased accumulation of the repressive histone marks H3K27me3 and H3K9me3, suggesting that Dnmt3l-KO donor cells may offer a more permissive epigenetic state that is beneficial for NT reprogramming.
Collapse
Affiliation(s)
- Hung-Fu Liao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chu-Fan Mo
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shinn-Chih Wu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Dai-Han Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chih-Yun Yu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Kai-Wei Chang
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Tzu-Hao Kao
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Chia-Wei Lu
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Marina Pinskaya
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Antonin Morillon
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shih-Shun Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| | - Winston T K Cheng
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Déborah Bourc'his
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Timothy Bestor
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Li-Ying Sung
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan
| | - Shau-Ping Lin
- Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, Taichung 407, TaiwanINSERM U934/CNRS UMR3215Institut Curie, 75005 Paris, FranceDepartment of Genetics and DevelopmentCollege of Physicians and Surgeons of Columbia University, New York, New York 10032, USAAgricultural Biotechnology Research CenterAcademia Sinica, Taipei 115, TaiwanCenter for Systems BiologyResearch Center for Developmental Biology and Regenerative MedicineNational Taiwan University, Taipei 106, Taiwan Institute of BiotechnologyDepartment of Animal Science and TechnologyGenome and Systems Biology Degree ProgramNational Taiwan University, Taipei 106, TaiwanGenome and Systems Biology Degree ProgramAcademia Sinica, Taipei, TaiwanInstitut CurieCNRS UMR3244, Université Pierre et Marie Curie, 75248 Paris Cedex 05, FranceDepartment of Animal Science and BiotechnologyTunghai University, T
| |
Collapse
|
19
|
Robbez-Masson L, Rowe HM. Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology 2015; 12:45. [PMID: 26021318 PMCID: PMC4448215 DOI: 10.1186/s12977-015-0173-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/07/2015] [Indexed: 01/20/2023] Open
Abstract
Over half of our genome is composed of retrotransposons, which are mobile elements that can readily amplify their copy number by replicating through an RNA intermediate. Most of these elements are no longer mobile but still contain regulatory sequences that can serve as promoters, enhancers or repressors for cellular genes. Despite dominating our genetic content, little is known about the precise functions of retrotransposons, which include both endogenous retroviruses (ERVs) and non-LTR elements like long interspersed nuclear element 1 (LINE-1). However, a few recent cutting-edge publications have illustrated how retrotransposons shape species-specific stem cell gene expression by two opposing mechanisms, involving their recruitment of stem cell-enriched transcription factors (TFs): firstly, they can activate expression of genes linked to naïve pluripotency, and secondly, they can induce repression of proximal genes. The paradox that different retrotransposons are active or silent in embryonic stem cells (ESCs) can be explained by differences between retrotransposon families, between individual copies within the same family, and between subpopulations of ESCs. Since they have coevolved with their host genomes, some of them have been co-opted to perform species-specific beneficial functions, while others have been implicated in genetic disease. In this review, we will discuss retrotransposon functions in ESCs, focusing on recent mechanistic advances of how HERV-H has been adopted to preserve human naïve pluripotency and how particular LINE-1, SVA and ERV family members recruit species-specific transcriptional repressors. This review highlights the fine balance between activation and repression of retrotransposons that exists to harness their ability to drive evolution, while minimizing the risk they pose to genome integrity.
Collapse
Affiliation(s)
- Luisa Robbez-Masson
- Division of Infection and Immunity, Medical Research Council Centre for Medical Molecular Virology, University College London, 90 Gower Street, London, WC1E 6BT, UK.
| | - Helen M Rowe
- Division of Infection and Immunity, Medical Research Council Centre for Medical Molecular Virology, University College London, 90 Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|