1
|
Gonzalez J, Stoll K, DeSmet M, Androphy EJ. A conserved cysteine in the DNA-binding domain of MmuPV1 E2 is required for replication in vivo. J Virol 2025; 99:e0142324. [PMID: 39665560 PMCID: PMC11784461 DOI: 10.1128/jvi.01423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
The papillomavirus (PV) E2 protein is highly conserved, consisting of an N-terminal transactivation domain linked to a C-terminal DNA binding and dimerization domain (DBD) by a flexible hinge region. The E2 DBD exhibits a helix-turn-helix structure that dimerizes into a beta barrel prior to binding DNA; the first helix, α1, is responsible for recognition of the palindromic E2 binding site. The DNA recognition helix consists of a tract of basic amino acids with a highly conserved central cysteine residue. Previous mutational analysis studies on this conserved cysteine have found that it is not required for viral replication or DNA binding. To investigate the function of this conserved cysteine in vitro and in vivo, we generated point mutations in MmuPV1 E2 at cysteine 307. We report here that this cysteine in the DNA recognition helix is required for transient viral replication and transactivation of proximal promoters, but C307 point mutants are still capable of enhancing the activation of distant upstream promoters in vitro. MmuPV1 genomes with the C307 mutation failed to produce warts when injected into mice, suggesting that the DNA recognition cysteine is required for viral replication in vivo. IMPORTANCE Papillomaviruses are the etiological agents of cancers of the oropharynx and anogenital tract. Understanding the mechanisms underlying PV pathogenesis is complicated by the strict species tropism displayed by the virus. The research presented here is significant because it links in vitro and in vivo models investigating the role of a conserved cysteine in the MmuPV1 E2 protein. This work elucidates the molecular mechanisms that regulate PV transcription and DNA replication and how these contribute to disease progression.
Collapse
Affiliation(s)
- Jessica Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kennedy Stoll
- Indiana University School of Medicine, Terre Haute, Indiana, USA
| | - Marsha DeSmet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elliot J. Androphy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Gonzalez J, DeSmet M, Androphy EJ. A Conserved Di-Lysine Motif in the E2 Transactivation Domain Regulates MmuPV1 Replication and Disease Progression. Pathogens 2025; 14:84. [PMID: 39861045 PMCID: PMC11768324 DOI: 10.3390/pathogens14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31. This motif is similarly conserved in the E2 of the murine papillomavirus, MmuPV1. Using site-directed mutagenesis, we show that the first lysine (K) residue within the motif, K112, is absolutely required for E2-mediated transcription and transient replication in vitro. Furthermore, mutation of the second lysine residue, K113, to the potential acetyl-lysine mimic glutamine (Q) abrogated E2 transcription and decreased transient replication in vitro, while the acetylation defective arginine (R) mutant remained functional. Both K113 mutants were able to induce wart formation in vivo, though disease progression appeared to be delayed in the K113Q group. These findings suggest that acetylation of K113 may act as a mechanism for repressing MmuPV1 E2 activity.
Collapse
Affiliation(s)
- Jessica Gonzalez
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.D.)
| | - Marsha DeSmet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.D.)
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elliot J. Androphy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.D.)
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
DeSmet M, Kanginakudru S, Jose L, Xie F, Gilson T, Androphy EJ. Papillomavirus E2 protein is regulated by specific fibroblast growth factor receptors. Virology 2018; 521:62-68. [PMID: 29885490 DOI: 10.1016/j.virol.2018.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 02/01/2023]
Abstract
The papillomavirus (PV) E2 protein activates transcription and replication by recruiting cellular proteins and the E1 DNA helicase to their binding sites in the viral genome. We recently demonstrated that phosphorylation of tyrosine 102 in the bovine papillomavirus (BPV-1) E2 protein restricts these activities and that fibroblast growth factor receptor-3 (FGFR3) tyrosine kinase binds PV E2. Expression of FGFR3 decreased viral replication with both wild-type and the phenylalanine substitution at position 102, inferring that another kinase targets Y102. Here we tested FGFR- 1, -2 and -4 for association with PV E2 proteins. FGFR2 but not FGFR1 or FGFR4 co-immunoprecipitated with BPV-1 E2. We found that FGFR2 suppressed replication but did not depend on phosphorylation of BPV-1 Y102. HPV-16 and -31 E2 interacted with FGFR1, -2, and -4. These results imply that the expression and activity of FGF receptors in epithelial cells can regulate the function of E2 in viral replication.
Collapse
Affiliation(s)
- Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Leny Jose
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fang Xie
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Dermatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Timra Gilson
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Sankovski E, Abroi A, Ustav M, Ustav M. Nuclear myosin 1 associates with papillomavirus E2 regulatory protein and influences viral replication. Virology 2018; 514:142-155. [PMID: 29179037 DOI: 10.1016/j.virol.2017.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022]
Abstract
Nuclear myosin 1c (NM1) associates with RNA polymerases and is a partner in the chromatin remodeling complex B-WICH. This complex, which also contains WSTF and SNF2h proteins, is involved in transcriptional regulation. We report herein that papillomavirus protein E2 binds to NM1 and co-precipitates with the WSTF and SNF2h proteins. Our data suggest that E2 associates with the cellular B-WICH complex through binding to NM1. E2 and NM1 associate via their N-terminal domains and this interaction is ATP dependent. The cellular multifunctional protein Brd4 and beta-actin are also present in the NM1-E2 complex. NM1 downregulation by siRNA increases the replication of the BPV1 and HPV5 genomes but does not affect HPV18 genome replication. These results suggest that the B-WICH complex may play a role in the papillomavirus life cycle through NM1 and E2 protein interaction.
Collapse
Affiliation(s)
- Eve Sankovski
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Aare Abroi
- Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia; Icosagen Cell Factory OÜ, Eerika tee 1, Õssu küla, Ülenurme vald, 61713 Tartumaa, Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia; Icosagen Cell Factory OÜ, Eerika tee 1, Õssu küla, Ülenurme vald, 61713 Tartumaa, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
5
|
Phosphorylation of the Bovine Papillomavirus E2 Protein on Tyrosine Regulates Its Transcription and Replication Functions. J Virol 2017; 91:JVI.01854-16. [PMID: 27807239 DOI: 10.1128/jvi.01854-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/30/2016] [Indexed: 12/21/2022] Open
Abstract
Papillomaviruses are small, double-stranded DNA viruses that encode the E2 protein, which controls transcription, replication, and genome maintenance in infected cells. Posttranslational modifications (PTMs) affecting E2 function and stability have been demonstrated for multiple types of papillomaviruses. Here we describe the first phosphorylation event involving a conserved tyrosine (Y) in the bovine papillomavirus 1 (BPV-1) E2 protein at amino acid 102. While its phosphodeficient phenylalanine (F) mutant activated both transcription and replication in luciferase reporter assays, a mutant that may act as a phosphomimetic, with a Y102-to-glutamate (E) mutation, lost both activities. The E2 Y102F protein interacted with cellular E2-binding factors and the viral helicase E1; however, in contrast, the Y102E mutant associated with only a subset and was unable to bind to E1. While the Y102F mutant fully supported transient viral DNA replication, BPV genomes encoding this mutation as well as Y102E were not maintained as stable episomes in murine C127 cells. These data imply that phosphorylation at Y102 disrupts the helical fold of the N-terminal region of E2 and its interaction with key cellular and viral proteins. We hypothesize that the resulting inhibition of viral transcription and replication in basal epithelial cells prevents the development of a lytic infection. IMPORTANCE Papillomaviruses (PVs) are small, double-stranded DNA viruses that are responsible for cervical, oropharyngeal, and various genitourinary cancers. Although vaccines against the major oncogenic human PVs are available, there is no effective treatment for existing infections. One approach to better understand the viral replicative cycle, and potential therapies to target it, is to examine the posttranslational modification of viral proteins and its effect on function. Here we have discovered that the bovine papillomavirus 1 (BPV-1) transcription and replication regulator E2 is phosphorylated at residue Y102. While a phosphodeficient mutant at this site was fully functional, a phosphomimetic mutant displayed impaired transcription and replication activity as well as a lack of an association with certain E2-binding proteins. This study highlights the influence of posttranslational modifications on viral protein function and provides additional insight into the complex interplay between papillomaviruses and their hosts.
Collapse
|
6
|
Helfer CM, Yan J, You J. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation. Viruses 2014; 6:3228-49. [PMID: 25140737 PMCID: PMC4147693 DOI: 10.3390/v6083228] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/03/2014] [Accepted: 08/12/2014] [Indexed: 12/17/2022] Open
Abstract
The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription activation, is important for E2’s transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP) analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2’s interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+), a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV) life cycle.
Collapse
Affiliation(s)
- Christine M Helfer
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Junpeng Yan
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Jianxin You
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Helfer CM, Wang R, You J. Analysis of the papillomavirus E2 and bromodomain protein Brd4 interaction using bimolecular fluorescence complementation. PLoS One 2013; 8:e77994. [PMID: 24205059 PMCID: PMC3808292 DOI: 10.1371/journal.pone.0077994] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/14/2013] [Indexed: 11/19/2022] Open
Abstract
The human papillomavirus (HPV) vaccines effectively protect against new infections of up to four HPV subtypes. However, these vaccines are not protective against many other clinically relevant HPV subtypes and are ineffective at treating established HPV infections. There is therefore a significant need for antiviral treatments for persistent HPV infections. A promising anti-HPV drug target is the interaction between the HPV E2 protein and cellular bromodomain-containing protein 4 (Brd4) since this protein complex mediates several processes important for the viral life cycle including viral genome maintenance, replication, and transcription. Using bimolecular fluorescence complementation (BiFC) technology, we demonstrate the E2 and Brd4 interaction on both interphase chromatin and mitotic chromosomes throughout mitosis. The E2-Brd4 BiFC was significantly diminished by mutating the Brd4 binding sites in E2 or by a dominant negative inhibitor of the E2-Brd4 interaction, demonstrating the potential of BiFC for identifying inhibitors of this important virus-host interaction. Importantly, when Brd4 was released from chromatin using the bromodomain inhibitor JQ1(+), the E2-Brd4 interacting complex relocated into foci that no longer associate with mitotic chromosomes, pointing to JQ1(+) as a promising antiviral inhibitor of HPV genome maintenance during HPV persistent infection.
Collapse
Affiliation(s)
- Christine M. Helfer
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ranran Wang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jianxin You
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J Virol 2013; 87:3871-84. [PMID: 23365439 DOI: 10.1128/jvi.03068-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of the human papillomavirus (HPV) DNA genome relies on viral factors E1 and E2 and the cellular replication machinery. Bromodomain-containing protein 4 (Brd4) interacts with viral E2 protein to mediate papillomavirus (PV) genome maintenance and viral transcription. However, the functional role of Brd4 in the HPV life cycle remains to be clearly defined. In this study, we provide the first look into the E2-Brd4 interaction in the presence of other important viral factors, such as the HPV16 E1 protein and the viral genome. We show that Brd4 is recruited to actively replicating HPV16 origin foci together with HPV16 E1, E2, and a number of the cellular replication factors: replication protein A70 (RPA70), replication factor C1 (RFC1), and DNA polymerase δ. Mutagenesis disrupting the E2-Brd4 interaction abolishes the formation of the HPV16 replication complex and impairs HPV16 DNA replication in cells. Brd4 was further demonstrated to be necessary for HPV16 viral DNA replication using a cell-free replication system in which depletion of Brd4 by small interfering RNA (siRNA) silencing leads to impaired HPV16 viral DNA replication and recombinant Brd4 protein is able to rescue viral DNA replication. In addition, releasing endogenous Brd4 from cellular chromatin by using the bromodomain inhibitor JQ1(+) enhances HPV16 DNA replication, demonstrating that the role of Brd4 in HPV DNA replication could be uncoupled from its function in chromatin-associated transcriptional regulation and cell cycle control. Our study reveals a new role for Brd4 in HPV genome replication, providing novel insights into understanding the life cycle of this oncogenic DNA virus.
Collapse
|
10
|
Abstract
The p300, CBP, and pCAF lysine acetyltransferase (KAT) proteins have been reported to physically interact with bovine (BPV) and human (HPV) papillomavirus E2 proteins. While overexpression of these KAT proteins enhances E2-dependent transcription, the mechanism has not been determined. Using RNA interference (RNAi) to deplete these factors, we demonstrated that E2 transcriptional activity requires physiological levels of p300, CBP, and pCAF. Each protein appears to have a unique function in E2-dependent transcription, since overexpression of one KAT failed to compensate for RNAi knockdown of another KAT. Using an in vitro acetylation assay, we identified highly conserved lysines that are targeted by p300 for acetylation. The conservative changes of lysines at positions 111 and 112 to arginine were of particular interest. The K111R and the K111R/K112R mutants showed reduced transcriptional activity that was not responsive to p300 overexpression, while the K112R mutant retained activity. p300 and CBP were detected at the viral promoter; however, pCAF was not. We propose a model by which E2 transcriptional activity is controlled by p300-mediated acetylation of lysine 111. This model represents a novel mechanism regulating papillomavirus gene expression.
Collapse
|
11
|
Ranneberg-Nilsen T, Rollag H, Slettebakk R, Backe PH, Olsen Ø, Luna L, Bjørås M. The chromatin remodeling factor SMARCB1 forms a complex with human cytomegalovirus proteins UL114 and UL44. PLoS One 2012; 7:e34119. [PMID: 22479537 PMCID: PMC3313996 DOI: 10.1371/journal.pone.0034119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/22/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) uracil DNA glycosylase, UL114, is required for efficient viral DNA replication. Presumably, UL114 functions as a structural partner to other factors of the DNA-replication machinery and not as a DNA repair protein. UL114 binds UL44 (HCMV processivity factor) and UL54 (HCMV-DNA-polymerase). In the present study we have searched for cellular partners of UL114. METHODOLOGY/PRINCIPAL FINDINGS In a yeast two-hybrid screen SMARCB1, a factor of the SWI/SNF chromatin remodeling complex, was found to be an interacting partner of UL114. This interaction was confirmed in vitro by co-immunoprecipitation and pull-down. Immunofluorescence microscopy revealed that SMARCB1 along with BRG-1, BAF170 and BAF155, which are the core SWI/SNF components required for efficient chromatin remodeling, were present in virus replication foci 24-48 hours post infection (hpi). Furthermore a direct interaction was also demonstrated for SMARCB1 and UL44. CONCLUSIONS/SIGNIFICANCE The core SWI/SNF factors required for efficient chromatin remodeling are present in the HCMV replication foci throughout infection. The proteins UL44 and UL114 interact with SMARCB1 and may participate in the recruitment of the SWI/SNF complex to the chromatinized virus DNA. Thus, the presence of the SWI/SNF chromatin remodeling complex in replication foci and its association with UL114 and with UL44 might imply its involvement in different DNA transactions.
Collapse
Affiliation(s)
- Toril Ranneberg-Nilsen
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Halvor Rollag
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Ragnhild Slettebakk
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Paul Hoff Backe
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Øyvind Olsen
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Luisa Luna
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| |
Collapse
|
12
|
Chang SW, Lu PY, Guo JH, Tsai TC, Tsao YP, Chen SL. NRIP enhances HPV gene expression via interaction with either GR or E2. Virology 2011; 423:38-48. [PMID: 22177699 DOI: 10.1016/j.virol.2011.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/27/2011] [Accepted: 11/21/2011] [Indexed: 11/28/2022]
Abstract
We previously identified a gene, nuclear receptor-interaction protein (NRIP), which functions as a transcription cofactor in glucocorticoid receptor (GR) and human papillomavirus E2 (HPV E2)-driven gene expression. Here, we comprehensively evaluated the role of NRIP in HPV-16 gene expression. NRIP acts as a transcription cofactor to enhance GR-regulated HPV-16 gene expression in the presence of hormone. NRIP also can form complex with E2 that caused NRIP-induced HPV gene expression via E2-binding sites in a hormone-independent manner. Furthermore, NRIP can associate with GR and E2 to form tri-protein complex to activate HPV gene expression via GRE, not the E2-binding site, in a hormone-dependent manner. These results indicate that NRIP and GR are viral E2-binding proteins and that NRIP regulates HPV gene expression via GRE and/or E2 binding site in the HPV promoter in a hormone-dependent or independent manner, respectively.
Collapse
Affiliation(s)
- Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Alfonso R, Lutz T, Rodriguez A, Chavez JP, Rodriguez P, Gutierrez S, Nieto A. CHD6 chromatin remodeler is a negative modulator of influenza virus replication that relocates to inactive chromatin upon infection. Cell Microbiol 2011; 13:1894-906. [PMID: 21899694 DOI: 10.1111/j.1462-5822.2011.01679.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influenza virus establishes close functional and structural connections with the nucleus of the infected cell. Thus, viral ribonucleoproteins (RNPs) are closely bound to chromatin components and the main constituent of viral RNPs, the nucleoprotein (NP) protein, interacts with histone tails. Using a yeast two-hybrid screening, we previously found that the PA influenza virus polymerase subunit interacts with the CHD6 protein, a member of the CHD family of chromatin remodelers. Here we show that CHD6 also interacts with the viral polymerase complex and colocalizes with viral RNPs in the infected cells. To study the relationships between RNPs, chromatin and CHD6, we have analysed whether NP and CHD6 binds to peptides representing trimethylated lysines of histone 3 tails that mark transcriptionally active or inactive chromatin. Upon infection, NP binds to marks of repressed chromatin and, interestingly an important recruitment of CHD6 to these heterochromatin marks occurs in this situation. Silencing experiments indicate that CHD6 acts as a negative modulator of influenza virus replication. Hence, the CHD6 association with inactive chromatin could be part of a process where the influenza virus triggers modifications of chromatin-associated proteins that could contribute to the pathogenic events used by the virus to induce host cell shut-off.
Collapse
Affiliation(s)
- Roberto Alfonso
- Centro Nacional de Biotecnología. Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Bose K, Meinke G, Bohm A, Baleja JD. Design and characterization of an enhanced repressor of human papillomavirus E2 protein. FASEB J 2011; 25:2354-61. [PMID: 21482558 PMCID: PMC3114532 DOI: 10.1096/fj.10-176461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 03/17/2011] [Indexed: 01/11/2023]
Abstract
Papillomaviruses are causative agents of cervical and anogenital cancers. The viral E2 protein mediates viral DNA replication and transactivation of viral oncogenes and thus represents a specific target for therapeutic intervention. Short forms of E2, E2R, contain only the C-terminal dimerization domain, and repress the normal function of E2 due to formation of an inactive heterodimer. Using structure-guided design, we replaced conserved residues at the dimer interface to design a heterodimer with increased stability. One E2R mutant in which histidine was replaced by a glutamate residue showed preferential heterodimer formation in vitro, as well as an increase in plasticity at the interface, as a result of histidine-glutamate pair formation, as observed spectroscopically and in the crystal structure, determined to 2.2-Å resolution. In addition, the enhanced E2R showed greater repression of transcription from E2-responsive reporter plasmids in mammalian cell culture. Recent advances in protein delivery into the cell raise the possibility of using exogenously added proteins as therapeutic agents. More generally, this approach may be used to target the subunit interfaces of any multisubunit protein having a similar mechanism of action.
Collapse
Affiliation(s)
- Kakoli Bose
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA; and
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Gretchen Meinke
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA; and
| | - Andrew Bohm
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA; and
| | - James D. Baleja
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA; and
| |
Collapse
|
15
|
Chang SW, Tsao YP, Lin CY, Chen SL. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol 2011; 85:6750-63. [PMID: 21543494 PMCID: PMC3126500 DOI: 10.1128/jvi.02453-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 04/25/2011] [Indexed: 11/20/2022] Open
Abstract
Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression.
Collapse
Affiliation(s)
- Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Chia-Yi Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
16
|
King LE, Dornan ES, Donaldson MM, Morgan IM. Human papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 via a direct protein-protein interaction. Virology 2011; 414:26-33. [PMID: 21458836 DOI: 10.1016/j.virol.2011.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/13/2010] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Human papillomavirus 16 E1 and E2 interact with cellular factors to replicate the viral genome. E2 forms homodimers and binds to 12 bp palindromic sequences adjacent to the viral origin and recruits E1 to the origin. E1 forms a di-hexameric helicase complex that replicates the viral genome. This manuscript demonstrates that E1 stabilises the E2 protein, increasing the half life in both C33a and 293 T cells respectively. This stabilisation requires a direct protein--protein interaction. In addition, the E1 protein enhances E2 transcription function in a manner that suggests the E1 protein itself can contribute to transcriptional regulation not simply by E2 stabilisation but by direct stimulation of transcription. This activation of E2 transcription is again dependent upon an interaction with E1. Overall the results suggest that in the viral life cycle, co-expression of E1 with E2 can increase E2 stability and enhance E2 function.
Collapse
Affiliation(s)
- Lauren E King
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | | | | | | |
Collapse
|
17
|
Bellanger S, Tan CL, Xue YZ, Teissier S, Thierry F. Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression. Am J Cancer Res 2011; 1:373-389. [PMID: 21968515 PMCID: PMC3180061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/23/2011] [Indexed: 05/31/2023] Open
Abstract
The papillomavirus (PV) E2 proteins have been shown to exert many functions in the viral cycle including pivotal roles in transcriptional regulation and in viral DNA replication. Besides these historical roles, which rely on their aptitude to bind to specific DNA sequences, E2 has also been shown to modulate the host cells through direct protein interactions mainly through its amino terminal transactivation domain. We will describe here some of these new functions of E2 and their potential implication in the HPV-induced carcinogenesis. More particularly we will focus on E2-mediated modulation of the host cell cycle and consequences to cell transformation. In all, the HPV E2 proteins exhibit complex functions independent of transcription that can modulate the host cells in concert with the viral vegetative cycle and which could be involved in early carcinogenesis.
Collapse
Affiliation(s)
- Sophie Bellanger
- Institute of Medical Biology 8A Biochemical Grove, #06-06 Immunos, 138648, Singapore
| | | | | | | | | |
Collapse
|
18
|
Alternative splicing of human papillomavirus type-16 E6/E6* early mRNA is coupled to EGF signaling via Erk1/2 activation. Proc Natl Acad Sci U S A 2010; 107:7006-11. [PMID: 20351270 DOI: 10.1073/pnas.1002620107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain types of human papillomaviruses (HPVs) are etiologically linked to cervical cancer. Their transforming capacity is encoded by a polycistronic premRNA, where alternative splicing leads to the translation of functional distinct proteins such as E6, E6*, and E7. Here we show that splicing of HPV16 E6/E7 ORF cassette is regulated by the epidermal growth factor (EGF) pathway. The presence of EGF was coupled to preferential E6 expression, whereas depletion of EGF, or treatment with EGF receptor (EGFR) neutralizing antibodies or the EGFR inhibitor tyrphostin AG1478, resulted in E6 exon exclusion in favor of E6*. As a consequence, increased p53 levels and enhanced translation of E7 with a subsequent reduction of the retinoblastoma protein pRb could be discerned. E6 exon exclusion upon EGF depletion was independent from promoter usage, mRNA stability, or selective mRNA transport. Time-course experiments and incubation with cycloheximide demonstrated that E6 alternative splicing is a direct and reversible effect of EGF signal transduction, not depending on de novo protein synthesis. Within this process, Erk1/2-kinase activation was the critical event for E6 exon inclusion, mediated by the upstream MAP kinase MEK1/2. Moreover, siRNA knockdown experiments revealed an involvement of splicing factors hnRNPA1 and hnRNPA2 in E6 exon exclusion, whereas the splicing factors Brm and Sam68 were found to promote E6 exon inclusion. Because there is a natural gradient of EGF and EGF receptor expression in the stratified epithelium, it is reasonable to assume that EGF modulates E6/E7 splicing during the viral life cycle and transformation.
Collapse
|
19
|
You J. Papillomavirus interaction with cellular chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:192-9. [PMID: 19786128 DOI: 10.1016/j.bbagrm.2009.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 11/26/2022]
Abstract
High-risk human papillomavirus (HPV) infection is the primary risk factor for cervical cancer. HPVs establish persistent infection by maintaining their genomes as extrachromosomal elements (episomes) that replicate along with host DNA in infected cells. The productive life cycle of HPV is intimately tied to the differentiation program of host squamous epithelium. This review examines the involvement of host chromatin in multiple aspects of the papillomavirus life cycle and the malignant progression of infected host cells. Papillomavirus utilizes host mitotic chromosomes as vehicles for transmitting its genetic materials across the cell cycle. By hitchhiking on host mitotic chromosomes, the virus ensures accurate segregation of the replicated viral episomes to the daughter cells during host cell division. This strategy allows persistent maintenance of the viral episome in the infected cells. In the meantime, the virus subverts the host chromatin-remodeling factors to promote viral transcription and efficient propagation of viral genomes. By associating with the host chromatin, papillomavirus redirects the normal cellular control of chromatin to create a cellular environment conducive to both its own survival and malignant progression of host cells. Comprehensive understanding of HPV-host chromatin interaction will offer new insights into the HPV life cycle as well as chromatin regulation. This virus-host interaction will also provide a paradigm for investigating other episomal DNA tumor viruses that share a similar mechanism for interacting with host chromatin.
Collapse
Affiliation(s)
- Jianxin You
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Tax1BP1 interacts with papillomavirus E2 and regulates E2-dependent transcription and stability. J Virol 2008; 83:2274-84. [PMID: 19109394 DOI: 10.1128/jvi.01791-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The papillomavirus E2 proteins regulate viral replication, gene transcription, and genome maintenance by interacting with other viral and host proteins. From a yeast two-hybrid screen, we identified the cellular protein Tax1BP1 as a novel binding partner of human papillomavirus type 18 (HPV18) E2. Tax1BP1 also interacts with the HPV16 and bovine papillomavirus type 1 (BPV1) E2 proteins, with the C-terminal region of Tax1BP1 interacting with the N-terminal transactivation domain of BPV1 E2. Tax1BP1 complexes with p300 and acts synergistically as a coactivator with p300 to enhance E2-dependent transcription. Using chromatin immunoprecipitation assays, we show that Tax1BP1 and E2 localize to the long control region on the BPV1 genome. Tax1BP1 was recently reported to bind ubiquitin and to function as an essential component of an A20 ubiquitin-editing complex. We demonstrate that Tax1BP1 plays a role in the regulation of the steady-state level of E2 by preventing its proteasomal degradation. These studies provide new insights into the regulation of E2 functions.
Collapse
|
21
|
Katsuma S, Fujii T, Kawaoka S, Shimada T. Bombyx mori nucleopolyhedrovirus SNF2 global transactivator homologue (Bm33) enhances viral pathogenicity in B. mori larvae. J Gen Virol 2008; 89:3039-3046. [DOI: 10.1099/vir.0.2008/004887-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SNF2 global transactivator gene homologue (Bm33) of Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the genes exclusive to group I NPVs, but its function remains unknown. This study describes the characterization of Bm33. Transcriptional analysis suggested that Bm33 is an early gene, as its transcript was observed at 4 h post-infection in BmNPV-infected BmN cells. To examine the role of Bm33 during BmNPV infection, a Bm33 deletion mutant (BmORF33D) was constructed and its infectivity was characterized in BmN cells and B. mori larvae. BmORF33D did not have any obvious defects in the production of budded viruses (BVs) or occlusion bodies (OBs) in BmN cells compared with wild-type BmNPV. Larval bioassays revealed that deletion of Bm33 did not reduce virus infectivity. However, BmORF33D took approximately 10–15 h longer than wild-type BmNPV to kill B. mori larvae when tested by either BV injection or OB ingestion. These results suggest that Bm33 is not essential for virus growth in vitro or in vivo, but that it accelerates the time of death of B. mori larvae.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsuguru Fujii
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinpei Kawaoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
22
|
The Mdm2 ubiquitin ligase enhances transcriptional activity of human papillomavirus E2. J Virol 2008; 83:1538-43. [PMID: 19004934 DOI: 10.1128/jvi.01551-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of human papillomavirus (HPV) gene expression by the E2 protein is a critical feature of the viral life cycle. Previous studies have shown an important role in transcription for the ubiquitin-proteasome pathway, but its role in HPV gene expression has not been addressed. We now show that HPV E2 requires an active proteasome for its optimal transcriptional activator function. This involves an interaction with the Mdm2 ubiquitin ligase, which together with E2 acts synergistically to activate the HPV type 16 promoter. We also show that HPV E2 recruits Mdm2 onto HPV promoter sequences, providing an explanation for this cooperative activity.
Collapse
|