1
|
Scott TA, Morris KV. Designer nucleases to treat malignant cancers driven by viral oncogenes. Virol J 2021; 18:18. [PMID: 33441159 PMCID: PMC7805041 DOI: 10.1186/s12985-021-01488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022] Open
Abstract
Viral oncogenic transformation of healthy cells into a malignant state is a well-established phenomenon but took decades from the discovery of tumor-associated viruses to their accepted and established roles in oncogenesis. Viruses cause ~ 15% of know cancers and represents a significant global health burden. Beyond simply causing cellular transformation into a malignant form, a number of these cancers are augmented by a subset of viral factors that significantly enhance the tumor phenotype and, in some cases, are locked in a state of oncogenic addiction, and substantial research has elucidated the mechanisms in these cancers providing a rationale for targeted inactivation of the viral components as a treatment strategy. In many of these virus-associated cancers, the prognosis remains extremely poor, and novel drug approaches are urgently needed. Unlike non-specific small-molecule drug screens or the broad-acting toxic effects of chemo- and radiation therapy, the age of designer nucleases permits a rational approach to inactivating disease-causing targets, allowing for permanent inactivation of viral elements to inhibit tumorigenesis with growing evidence to support their efficacy in this role. Although many challenges remain for the clinical application of designer nucleases towards viral oncogenes; the uniqueness and clear molecular mechanism of these targets, combined with the distinct advantages of specific and permanent inactivation by nucleases, argues for their development as next-generation treatments for this aggressive group of cancers.
Collapse
Affiliation(s)
- Tristan A Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Kevin V Morris
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| |
Collapse
|
2
|
Sumikawa T, Ohno S, Watanabe T, Yamamoto R, Yamano M, Mori T, Mori K, Tobimatsu T, Sera T. Site-Specific Integration by Recruitment of a Complex of ΦC31 Integrase and Donor DNA to a Target Site by Using a Tandem, Artificial Zinc-Finger Protein. Biochemistry 2018; 57:6868-6877. [PMID: 30462489 DOI: 10.1021/acs.biochem.8b00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To solve the problem of uncontrolled therapeutic gene integration, which is a critical drawback of retroviral vectors for gene therapy, the integration sites of exogenous genes should be precisely controlled not to perturb endogenous gene expression. To accomplish this, we explored the possibility of site-specific integration using two six-finger artificial zinc-finger proteins (AZPs) tandemly conjugated via a flexible peptide linker (designated "Tandem AZP"). A Tandem AZP in which two AZPs recognize specific 19 bp targets in a donor and acceptor DNA was expected to site-specifically recruit the donor DNA to the acceptor DNA. Thereafter, an exogenously added integrase was expected to integrate the donor DNA into a specific site in the acceptor DNA (as it might be in the human genome). We demonstrated in vitro that in the presence of Tandem AZP, ΦC31 integrase selectively integrated a donor plasmid into a target acceptor plasmid not only at 30 °C (the optimum temperature of the integrase) but also at 37 °C (for future application in humans). We expect that with further improvement of our current system, a combination of Tandem AZP with integrase/recombinase will enable site-specific integration in mammalian cells and provide safer gene therapy technology.
Collapse
Affiliation(s)
- Tatsuhiko Sumikawa
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan
| | - Serika Ohno
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan
| | - Takeharu Watanabe
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan
| | - Ryo Yamamoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan
| | - Miyu Yamano
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan
| | - Tomoaki Mori
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan
| | - Koichi Mori
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan
| | - Takamasa Tobimatsu
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan
| | - Takashi Sera
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology , Okayama University , Tsushima-Naka, Kita-ku , Okayama 700-8530 , Japan
| |
Collapse
|
3
|
Luo W, Wang J, Xu D, Bai H, Zhang Y, Zhang Y, Li X. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo. Int J Mol Med 2018; 41:2169-2176. [PMID: 29344646 DOI: 10.3892/ijmm.2018.3396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023] Open
Abstract
In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.
Collapse
Affiliation(s)
- Wei Luo
- Department of General Surgery, The Second Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junxia Wang
- Department of Neonatology, The Second Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dengfeng Xu
- Department of Ophthalmology, Chongqing General Hospital, Chongqing 400014, P.R. China
| | - Huili Bai
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yangli Zhang
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuhong Zhang
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaosong Li
- Department of Molecular Diagnostics, Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
4
|
Holub JM. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Drug Dev Res 2017; 78:268-282. [PMID: 28799168 DOI: 10.1002/ddr.21408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
5
|
Chin WX, Ang SK, Chu JJH. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies. Drug Discov Today 2017; 22:17-30. [DOI: 10.1016/j.drudis.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
|
6
|
Inhibition of DNA replication of human papillomavirus by using zinc finger-single-chain FokI dimer hybrid. Mol Biotechnol 2015; 56:731-7. [PMID: 24682726 DOI: 10.1007/s12033-014-9751-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Previously, we reported that an artificial zinc-finger protein (AZP)-staphylococcal nuclease (SNase) hybrid (designated AZP-SNase) inhibited DNA replication of human papillomavirus type 18 (HPV-18) in mammalian cells by binding to and cleaving a specific HPV-18 ori plasmid. Although the AZP-SNase did not show any side effects under the experimental conditions, the SNase is potentially able to cleave RNA as well as DNA. In the present study, to make AZP hybrid nucleases that cleave only viral DNA, we switched the SNase moiety in the AZP-SNase to the single-chain FokI dimer (scFokI) that we had developed previously. We demonstrated that transfection with a plasmid expressing the resulting hybrid nuclease (designated AZP-scFokI) inhibited HPV-18 DNA replication in transient replication assays using mammalian cells more efficiently than AZP-SNase. Then, by linker-mediated PCR analysis, we confirmed that AZP-scFokI cleaved an HPV-18 ori plasmid around its binding site in mammalian cells. Finally, a modified MTT assay revealed that AZP-scFokI did not show any significant cytotoxicity. Thus, the newly developed AZP-scFokI hybrid is expected to serve as a novel antiviral reagent for the neutralization of human DNA viruses with less fewer potential side effects.
Collapse
|
7
|
Kennedy EM, Cullen BR. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment. Virology 2015; 479-480:213-20. [PMID: 25759096 DOI: 10.1016/j.virol.2015.02.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/25/2015] [Accepted: 02/06/2015] [Indexed: 02/06/2023]
Abstract
CRISPR/Cas systems mediate bacterial adaptive immune responses that evolved to protect bacteria from bacteriophage and other horizontally transmitted genetic elements. Several CRISPR/Cas systems exist but the simplest variant, referred to as Type II, has a single effector DNA endonuclease, called Cas9, which is guided to its viral DNA target by two small RNAs, the crRNA and the tracrRNA. Initial efforts to adapt the CRISPR/Cas system for DNA editing in mammalian cells, which focused on the Cas9 protein from Streptococcus pyogenes (Spy), demonstrated that Spy Cas9 can be directed to DNA targets in mammalian cells by tracrRNA:crRNA fusion transcripts called single guide RNAs (sgRNA). Upon binding, Cas9 induces DNA cleavage leading to mutagenesis as a result of error prone non-homologous end joining (NHEJ). Recently, the Spy Cas9 system has been adapted for high throughput screening of genes in human cells for their relevance to a particular phenotype and, more generally, for the targeted inactivation of specific genes, in cell lines and in vivo in a number of model organisms. The latter aim seems likely to be greatly enhanced by the recent development of Cas9 proteins from bacterial species such as Neisseria meningitidis and Staphyloccus aureus that are small enough to be expressed using adeno-associated (AAV)-based vectors that can be readily prepared at very high titers. The evolving Cas9-based DNA editing systems therefore appear likely to not only impact virology by allowing researchers to screen for human genes that affect the replication of pathogenic human viruses of all types but also to derive clonal human cell lines that lack individual gene products that either facilitate or restrict viral replication. Moreover, high titer AAV-based vectors offer the possibility of directly targeting DNA viruses that infect discrete sites in the human body, such as herpes simplex virus and hepatitis B virus, with the hope that the entire population of viral DNA genomes might be destroyed. In conclusion, we believe that the continued rapid evolution of CRISPR/Cas technology will soon have a major, possibly revolutionary, impact on the field of virology.
Collapse
Affiliation(s)
- Edward M Kennedy
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
8
|
Chen W, Qian Y, Wu X, Sun Y, Wu X, Cheng X. Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif. Virus Genes 2014; 48:494-501. [PMID: 24474330 DOI: 10.1007/s11262-014-1041-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/16/2014] [Indexed: 11/26/2022]
Abstract
Geminiviridae consists of a large group of single-stranded DNA viruses that cause tremendous losses worldwide. Frequent mixed infection and high rates of recombination and mutation allow them to adapt rapidly to new hosts and overcome hosts' resistances. Therefore, an effective strategy able to confer plants with resistance against multiple begomoviruses is needed. In the present study, artificial zinc finger proteins were designed based on a conserved sequence motif of begomoviruses. DNA-binding affinities and specificities of these artificial zinc fingers were evaluated using electrophoretic mobility shift assay. Artificial zinc finger nuclease (AZFNs) were then constructed based on the ones with the highest DNA-binding affinities. In vitro digest and transient expression assay showed that these AZFNs can efficiently cleave the target sequence and inhibit the replication of different begomoviruses. These results suggest that artificial zinc finger protein technology may be used to achieve resistance against multiple begomoviruses.
Collapse
Affiliation(s)
- Wei Chen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
[Application of artificial DNA-binding proteins and artificial nucleases to prevention of virus infection: development of virus-resistant plants and protein-based anti-viral drugs]. Uirusu 2014; 64:147-54. [PMID: 26437837 DOI: 10.2222/jsv.64.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Various DNA viruses are known to cause severe infectious diseases in both plants and mammals, including humans. For many of these infectious diseases, we have yet to find an effective prevention or treatment. Therefore, new methodologies for the prevention of virus infections in both agricultural crops and humans have been vigorously sought for a long time. One attractive approach to the prevention is inhibition of virus replication. We first inhibited virus replication by blocking binding of a viral replication protein, which initiates virus replication, to its replication origin, with using an artificial DNA-binding protein. We demonstrated that this new methodology was very effective in plants and mammalian cells: especially, we created transgenic plants that were immune to a geminivirus. We also developed novel protein-based antiviral drugs by fusing a cell-penetrating peptide to an artificial DNA-binding protein. Furthermore, we successfully generated a more effective protein-based antiviral, which was one hundred thousand times more active than the antiviral chemical drug Cidofovia, by alternatively fusing an DNA-cleaving enzyme to an artificial DNA-binding protein. Since this artificial protein has little cytotoxicity, it is expected that it will be used as a new antiviral drug.
Collapse
|
10
|
Colombo J, Provazzi PJS, Calmon MF, Pires LC, Rodrigues NC, Petl P, Fossey MA, de Souza FP, Canduri F, Rahal P. Expression, purification and molecular analysis of the human ZNF706 protein. Biol Proced Online 2013; 15:10. [PMID: 24060497 PMCID: PMC3848911 DOI: 10.1186/1480-9222-15-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/14/2013] [Indexed: 01/14/2023] Open
Abstract
Background The ZNF706 gene encodes a protein that belongs to the zinc finger family of proteins and was found to be highly expressed in laryngeal cancer, making the structure and function of ZNF706 worthy of investigation. In this study, we expressed and purified recombinant human ZNF706 that was suitable for structural analysis in Escherichia coli BL21(DH3). Findings ZNF706 mRNA was extracted from a larynx tissue sample, and cDNA was ligated into a cloning vector using the TOPO method. ZNF706 protein was expressed according to the E. coli expression system procedures and was purified using a nickel-affinity column. The structural qualities of recombinant ZNF706 and quantification alpha, beta sheet, and other structures were obtained by spectroscopy of circular dichroism. ZNF706's structural modeling showed that it is composed of α-helices (28.3%), β-strands (19.4%), and turns (20.9%), in agreement with the spectral data from the dichroism analysis. Conclusions We used circular dichroism and molecular modeling to examine the structure of ZNF706. The results suggest that human recombinant ZNF706 keeps its secondary structures and is appropriate for functional and structural studies. The method of expressing ZNF706 protein used in this study can be used to direct various functional and structural studies that will contribute to the understanding of its function as well as its relationship with other biological molecules and its putative role in carcinogenesis.
Collapse
Affiliation(s)
- Jucimara Colombo
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | | | - Marilia Freitas Calmon
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Lilian Campos Pires
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Nathália Campos Rodrigues
- Institute of Chemistry of São Carlos, Department of Chemistry and Molecular Physics, University of São Paulo - USP, CEP: 13560-970, São Carlos /SP, Brazil
| | - Paulo Petl
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Marcelo Andrés Fossey
- Department of Physics, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Fátima Pereira de Souza
- Department of Physics, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| | - Fernanda Canduri
- Institute of Chemistry of São Carlos, Department of Chemistry and Molecular Physics, University of São Paulo - USP, CEP: 13560-970, São Carlos /SP, Brazil
| | - Paula Rahal
- Department of Biology, São Paulo State University - UNESP, CEP: 15054-000, São José do Rio Preto /SP, Brazil
| |
Collapse
|
11
|
Mino T, Mori T, Aoyama Y, Sera T. Gene- and protein-delivered zinc finger-staphylococcal nuclease hybrid for inhibition of DNA replication of human papillomavirus. PLoS One 2013; 8:e56633. [PMID: 23437192 PMCID: PMC3577882 DOI: 10.1371/journal.pone.0056633] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 01/11/2013] [Indexed: 12/28/2022] Open
Abstract
Previously, we reported that artificial zinc-finger proteins (AZPs) inhibited virus DNA replication in planta and in mammalian cells by blocking binding of a viral replication protein to its replication origin. However, the replication mechanisms of viruses of interest need to be disentangled for the application. To develop more widely applicable methods for antiviral therapy, we explored the feasibility of inhibition of HPV-18 replication as a model system by cleaving its viral genome. To this end, we fused the staphylococcal nuclease cleaving DNA as a monomer to an AZP that binds to the viral genome. The resulting hybrid nuclease (designated AZP–SNase) cleaved its target DNA plasmid efficiently and sequence-specifically in vitro. Then, we confirmed that transfection with a plasmid expressing AZP–SNase inhibited HPV-18 DNA replication in transient replication assays using mammalian cells. Linker-mediated PCR analysis revealed that the AZP–SNase cleaved an HPV-18 ori plasmid around its binding site. Finally, we demonstrated that the protein-delivered AZP–SNase inhibited HPV-18 DNA replication as well and did not show any significant cytotoxicity. Thus, both gene- and protein-delivered hybrid nucleases efficiently inhibited HPV-18 DNA replication, leading to development of a more universal antiviral therapy for human DNA viruses.
Collapse
Affiliation(s)
- Takashi Mino
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tomoaki Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yasuhiro Aoyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
| | - Takashi Sera
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
12
|
Wilson VG. Cell culture assay for transient replication of human and animal papillomaviruses. CURRENT PROTOCOLS IN MICROBIOLOGY 2012; Chapter 14:Unit14B.1. [PMID: 22307550 DOI: 10.1002/9780471729259.mc14b01s24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This unit contains protocols for evaluation of replication functionality of papillomavirus genomes or subgenomic fragments. Replication is measured after transient cotransfection of the genome (or subgenomic fragment) with expression vectors encoding the viral E1 and E2 proteins. Input DNA is methylated at the adenine of GATC sequences by propagation in E. coli. DNA that replicates in mammalian cells will lose the adenine methylation and become DpnI-resistant, while residual methylated input DNA will remain DpnI-sensitive. After transfection, DNA extraction, and DpnI digestion, replicated DNA can be detected by Southern blotting as a full-length plasmid, since it is resistant to digestion. This assay can be used to map the genomic location of a functional origin or to evaluate replication activity of mutations in either the origin DNA sequences or the E1 or E2 proteins.
Collapse
Affiliation(s)
- Van G Wilson
- Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
13
|
Olthof NC, Straetmans JMJAA, Snoeck R, Ramaekers FCS, Kremer B, Speel EJM. Next-generation treatment strategies for human papillomavirus-related head and neck squamous cell carcinoma: where do we go? Rev Med Virol 2011; 22:88-105. [PMID: 21984561 DOI: 10.1002/rmv.714] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/29/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022]
Abstract
Oncogenic human papillomavirus (HPV) is currently recognised as a major risk factor for the development of head and neck squamous cell carcinomas (HNSCC). HPV is mostly detected in tumours arising from the oropharynx and more specifically from the tonsil. HPV-related tumours display clinical and molecular characteristics that are distinct from HPV-unrelated tumours, which are generally induced by alcohol and tobacco abuse. Detection of biologically active HPV in HNSCC has prognostic relevance, which warrants the separate classification of HPV-induced tumours and is a prerequisite for further optimisation of treatment protocols for this distinct group. Current guidelines for the treatment of oropharyngeal squamous cell carcinoma (OPSCC) have not incorporated specific treatment modalities for HPV-related tumours. The development of such treatment options is still in a preclinical phase or in early clinical trials. Recent data on treatment response of OPSCC have been obtained by retrospectively analysing HPV-status and indicate that patients with HPV-related tumours show a favourable prognosis, independent of the type of treatment. These patients may benefit from de-intensified treatment, which should be assessed in prospective clinical trials. The development and future use of new antiviral and immunomodulatory therapeutics may be instrumental in this approach to improve survival rates and decrease disease-and-treatment-related morbidity. In this review we will focus on present therapeutic HPV-targeting strategies and discuss future directions for de-intensified treatment of HPV-positive HNSCC.
Collapse
Affiliation(s)
- Nadine C Olthof
- Departments of Otorhinolaryngology and Head and Neck Surgery, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Lauring AS, Jones JO, Andino R. Rationalizing the development of live attenuated virus vaccines. Nat Biotechnol 2010. [PMID: 20531338 DOI: 10.138/nbt.1635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design of vaccines against viral disease has evolved considerably over the past 50 years. Live attenuated viruses (LAVs)-those created by passaging a virus in cultured cells-have proven to be an effective means for preventing many viral diseases, including smallpox, polio, measles, mumps and yellow fever. Even so, empirical attenuation is unreliable in some cases and LAVs pose several safety issues. Although inactivated viruses and subunit vaccines alleviate many of these concerns, they have in general been less efficacious than their LAV counterparts. Advances in molecular virology--creating deleterious gene mutations, altering replication fidelity, deoptimizing codons and exerting control by microRNAs or zinc finger nucleases--are providing new ways of controlling viral replication and virulence and renewing interest in LAV vaccines. Whereas these rationally attenuated viruses may lead to a new generation of safer, more widely applicable LAV vaccines, each approach requires further testing before progression to human testing.
Collapse
Affiliation(s)
- Adam S Lauring
- Department of Medicine, University of California, San Francisco, California, USA.
| | | | | |
Collapse
|
15
|
Abstract
The design of vaccines against viral disease has evolved considerably over the past 50 years. Live attenuated viruses (LAVs)-those created by passaging a virus in cultured cells-have proven to be an effective means for preventing many viral diseases, including smallpox, polio, measles, mumps and yellow fever. Even so, empirical attenuation is unreliable in some cases and LAVs pose several safety issues. Although inactivated viruses and subunit vaccines alleviate many of these concerns, they have in general been less efficacious than their LAV counterparts. Advances in molecular virology--creating deleterious gene mutations, altering replication fidelity, deoptimizing codons and exerting control by microRNAs or zinc finger nucleases--are providing new ways of controlling viral replication and virulence and renewing interest in LAV vaccines. Whereas these rationally attenuated viruses may lead to a new generation of safer, more widely applicable LAV vaccines, each approach requires further testing before progression to human testing.
Collapse
Affiliation(s)
- Adam S Lauring
- Department of Medicine, University of California, San Francisco, California, USA.
| | | | | |
Collapse
|
16
|
Hypoxia-Specific Downregulation of Endogenous Human VEGF-A Gene by Hypoxia-Driven Expression of Artificial Transcription Factor. Mol Biotechnol 2010; 46:134-9. [DOI: 10.1007/s12033-010-9288-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Abstract
Currently available therapeutics for hepatitis B virus (HBV) infection have limited effectiveness in patients and often do not clear HBV from the liver due to the persistence of the stable, double-stranded (ds) DNA genome of HBV. By designing zinc finger proteins (ZFPs) to bind the dsDNA genome of a model virus, duck HBV (DHBV), we were able to inhibit viral transcription, and subsequently, viral protein and progeny production. This inhibition is likely due to competition for DNA binding sites between the ZFPs and transcription factors, and interference with read-through transcription by RNA polymerase across the ZFP-binding region. Taking into account some design considerations, this method of inhibiting viral transcription can be applied to other viral infections where viral dsDNA occurs.
Collapse
|
18
|
Mori T, Sasaki J, Kanamori T, Aoyama Y, Sera T. Hypoxia-specific upregulation of the endogenous human VEGF-A gene by hypoxia-driven expression of artificial transcription factor. Biochem Biophys Res Commun 2009; 390:845-8. [DOI: 10.1016/j.bbrc.2009.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 10/13/2009] [Indexed: 01/10/2023]
|
19
|
Sandwiched zinc-finger nucleases harboring a single-chain FokI dimer as a DNA-cleavage domain. Biochem Biophys Res Commun 2009; 390:694-7. [DOI: 10.1016/j.bbrc.2009.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 10/07/2009] [Indexed: 11/23/2022]
|
20
|
Sera T. Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 2009; 61:513-26. [PMID: 19394375 DOI: 10.1016/j.addr.2009.03.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 03/10/2009] [Indexed: 11/28/2022]
Abstract
Artificial transcription factors (ATFs) are potentially a powerful molecular tool to modulate endogenous target gene expression in living cells and organisms. To date, many DNA-binding molecules have been developed as the DNA-binding domains for ATFs. Among them, ATFs comprising Cys(2)His(2)-type zinc-finger proteins (ZFPs) as the DNA-binding domain have been extensively explored. The zinc-finger-based ATFs specifically recognize targeting sites in chromosomes and effectively up- and downregulate expression of their target genes not only in vitro, but also in vivo. In this review, after briefly introducing Cys(2)His(2)-type ZFPs, I will review the studies of endogenous human gene regulation by zinc-finger-based ATFs and other applications as well.
Collapse
Affiliation(s)
- Takashi Sera
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
21
|
Mino T, Aoyama Y, Sera T. Efficient double-stranded DNA cleavage by artificial zinc-finger nucleases composed of one zinc-finger protein and a single-chain FokI dimer. J Biotechnol 2009; 140:156-61. [DOI: 10.1016/j.jbiotec.2009.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/16/2008] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
|
22
|
Mineta Y, Okamoto T, Takenaka K, Doi N, Aoyama Y, Sera T. Enhanced Cleavage of Double-Stranded DNA by Artificial Zinc-Finger Nuclease Sandwiched between Two Zinc-Finger Proteins. Biochemistry 2008; 47:12257-9. [DOI: 10.1021/bi801800k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Mineta
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoyuki Okamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kosuke Takenaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Norio Doi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasuhiro Aoyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takashi Sera
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Negi S, Imanishi M, Matsumoto M, Sugiura Y. New redesigned zinc-finger proteins: design strategy and its application. Chemistry 2008; 14:3236-49. [PMID: 18236477 DOI: 10.1002/chem.200701320] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The design of DNA-binding proteins for the specific control of the gene expression is one of the big challenges for several research laboratories in the post-genomic era. An artificial transcription factor with the desired DNA binding specificity could work as a powerful tool and drug to regulate the target gene. The zinc-finger proteins, which typically contain many fingers linked in a tandem fashion, are some of the most intensively studied DNA-binding proteins. In particular, the Cys(2)His(2)-type zinc finger is one of the most common DNA-binding motifs in eukaryotes. A simple mode of DNA recognition by the Cys(2)His(2)-type zinc-finger domain provides an ideal framework for designing proteins with new functions. Our laboratory has utilized several design strategies to create new zinc-finger peptides/proteins by redesigning the Cys(2)His(2)-type zinc-finger motif. This review focuses on the aspects of design strategies, mainly from our recent results, for the creation of artificial zinc-finger proteins, and discusses the possible application of zinc-finger technology for gene regulation and gene therapy.
Collapse
Affiliation(s)
- Shigeru Negi
- Faculty of Pharmaceutical Sciences, Doshisha Women's University, Koudo, Kyotanabe-Shi, Japan.
| | | | | | | |
Collapse
|
24
|
Cell-permeable artificial zinc-finger proteins as potent antiviral drugs for human papillomaviruses. Arch Virol 2008; 153:1291-8. [PMID: 18521532 DOI: 10.1007/s00705-008-0125-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/19/2008] [Indexed: 10/22/2022]
Abstract
Human papillomavirus (HPV) is one of the important pharmaceutical targets because infection of the high-risk types causes invasive cervical cancer. However, effective antiviral drugs for HPV have not been developed so far. In the present study, we constructed cell-permeable artificial zinc-finger proteins (AZPs) by fusing an AZP previously generated for inhibition of HPV-18 DNA replication with a cell-penetrating peptide (CPP) as candidates for new antiviral drugs against HPV. We confirmed that these CPP-AZP fusions reduced the replication rate in transient replication assays when added to the culture medium. In particular, 250 nM CPP-AZP (designated AZP-R9) containing a 9-mer of arginine as the CPP reduced HPV-18 DNA replication to 3% of that of a control, and the 50% effective concentration (EC50) was <31 nM. Furthermore, a cytotoxicity assay revealed that the 50% inhibitory concentration (IC50) of AZP-R9 was >10 microM. Therefore, the selectivity index, defined as IC50/EC50, was >300, which is better than that of the antiviral cidofovir for HPVs. Thus, our results demonstrate that cell-permeable AZPs could serve as potent protein-based antiviral drugs.
Collapse
|
25
|
Horner SM, DiMaio D. The DNA binding domain of a papillomavirus E2 protein programs a chimeric nuclease to cleave integrated human papillomavirus DNA in HeLa cervical carcinoma cells. J Virol 2007; 81:6254-64. [PMID: 17392356 PMCID: PMC1900111 DOI: 10.1128/jvi.00232-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral DNA binding proteins that direct nucleases or other protein domains to viral DNA in lytically or latently infected cells may provide a novel approach to modulate viral gene expression or replication. Cervical carcinogenesis is initiated by high-risk human papillomavirus (HPV) infection, and viral DNA persists in the cancer cells. To test whether a DNA binding domain of a papillomavirus protein can direct a nuclease domain to cleave HPV DNA in cervical cancer cells, we fused the DNA binding domain of the bovine papillomavirus type 1 (BPV1) E2 protein to the catalytic domain of the FokI restriction endonuclease, generating a BPV1 E2-FokI chimeric nuclease (BEF). BEF introduced DNA double-strand breaks on both sides of an E2 binding site in vitro, whereas DNA binding or catalytic mutants of BEF did not. After expression of BEF in HeLa cervical carcinoma cells, we detected cleavage at E2 binding sites in the integrated HPV18 DNA in these cells and also at an E2 binding site in cellular DNA. BEF-expressing cells underwent senescence, which required the DNA binding activity of BEF, but not its nuclease activity. These results demonstrate that DNA binding domains of viral proteins can target effector molecules to cognate binding sites in virally infected cells.
Collapse
Affiliation(s)
- Stacy M Horner
- Yale University School of Medicine, Department of Genetics, 333 Cedar Street, SHM-141, New Haven, CT 06510, USA
| | | |
Collapse
|