1
|
He S, Li W, Zhang R, Nan H, Song W, Xu X. Improving the production of baculovirus expression vector by overexpression of IE0/IE1 through tandem promoter. PLoS One 2025; 20:e0320182. [PMID: 40131961 PMCID: PMC11936250 DOI: 10.1371/journal.pone.0320182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/15/2025] [Indexed: 03/27/2025] Open
Abstract
The baculovirus expression vector system, known for its protein production in insect cells and has been criticized for its relatively low expression capacity. IE0/IE1, acknowledged vital early regulators of baculovirus, are indispensable for the virus proliferation and regulate the expression of various genes within the virus. Prior research has reported a substantial rise in exogenous gene expression upon overexpression of IE01. In this study, to mitigate the risk of generating defective viruses due to homologous recombination, we introduced an additional promoter in vivo within the viral genome, thus overexpressing IE0/IE1. The research outcomes demonstrate that the expression of exogenous proteins is notably enhanced without the homologous regions sequence for enhancement. In parallel, they still indicate that the upregulation of IE0/IE1 not only boosts viral titers but also enhances apoptosis within cellular populations. In sum, we successfully constructed a novel baculovirus expression vector that significantly enhances the expression of exogenous genes, presenting a new perspective for optimizing the baculovirus expression vector system.
Collapse
Affiliation(s)
- Sijun He
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Weining Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruirui Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Nan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wangcheng Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Sky Pet Biotechnology Co., Ltd, Xi’an, Shaanxi, China
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Zhao S, Kong X, Wu X. RNAi-based immunity in insects against baculoviruses and the strategies of baculoviruses involved in siRNA and miRNA pathways to weaken the defense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104116. [PMID: 33991532 DOI: 10.1016/j.dci.2021.104116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Protection against viral infection in hosts concerns diverse cellular and molecular mechanisms, among which RNA interference (RNAi) response is a vital one. Small interfering RNAs (siRNAs), microRNAs (miRNAs) and PIWI interacting RNAs (piRNAs) are primary categories of small RNAs involved in RNAi response, playing significant roles in restraining viral invasion. However, during a long-term coevolution, viruses have gained the ability to evade, avoid, or suppress antiviral immunity to ensure efficient replication and transmission. Baculoviruses are enveloped, insect-pathogenic viruses with double-stranded circular DNA genomes, which encode suppressors of siRNA pathway and miRNAs targeting immune-related genes to mask the antiviral activity of their hosts. This review summarized recent findings for the RNAi-based antiviral immunity in insects as well as the strategies that baculoviruses exploit to break the shield of host siRNA pathway, and hijack cellular miRNAs or encode their own miRNAs that regulate both viral and cellular gene expression to create a favorable environment for viral infection.
Collapse
Affiliation(s)
- Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiangshuo Kong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Shin HY, Choi H, Kim N, Park N, Kim H, Kim J, Kim YB. Unraveling the Genome-Wide Impact of Recombinant Baculovirus Infection in Mammalian Cells for Gene Delivery. Genes (Basel) 2020; 11:genes11111306. [PMID: 33158084 PMCID: PMC7694231 DOI: 10.3390/genes11111306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Baculovirus expression systems have been widely used to produce recombinant mammalian proteins owing to the lack of viral replication in vertebrates. Although several lines of evidence have demonstrated impacts of baculovirus infection in mammalian hosts, genome-wide effects have not been fully elucidated. Here, we provide comparative transcriptome profiles of baculovirus and host-immune response genes in recombinant baculovirus-infected mammalian and insect cells. Specifically, to decipher the impacts of baculovirus infection in mammalian cells, we conducted total RNA-seq on human 293TT cells and insect Sf9 cells infected with recombinant baculovirus. We found that baculovirus genes were rarely expressed under the control of baculoviral promoters in 293TT cells. Although some baculovirus early genes, such as PE38 and IE-01, showed limited expression in 293TT cells, baculoviral late genes were mostly silent. We also found modest induction of a small number of mammalian immune response genes associated with Toll-like receptors, cytokine signaling, and complement in baculovirus-infected 293TT cells. These comprehensive transcriptome data will contribute to improving recombinant baculovirus as tools for gene delivery, gene therapy, and vaccine development.
Collapse
Affiliation(s)
- Ha Youn Shin
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea; (H.Y.S.); (N.K.); (N.P.); (H.K.)
| | - Hanul Choi
- Department of Bio-Industrial Technologies, Konkuk University, Seoul 05029, Korea;
| | - Nahyun Kim
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea; (H.Y.S.); (N.K.); (N.P.); (H.K.)
| | - Nayoung Park
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea; (H.Y.S.); (N.K.); (N.P.); (H.K.)
| | - Heesun Kim
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea; (H.Y.S.); (N.K.); (N.P.); (H.K.)
| | - Jaebum Kim
- Department of Biomedical Science & Engineering, Konkuk University, Seoul 05029, Korea; (H.Y.S.); (N.K.); (N.P.); (H.K.)
- Correspondence: (J.K.); (Y.B.K.); Tel.: +82-2-450-0456 (J.K.); +82-2-450-4208 (Y.B.K.)
| | - Young Bong Kim
- Department of Bio-Industrial Technologies, Konkuk University, Seoul 05029, Korea;
- Correspondence: (J.K.); (Y.B.K.); Tel.: +82-2-450-0456 (J.K.); +82-2-450-4208 (Y.B.K.)
| |
Collapse
|
4
|
Inhibition of dicer activity in lepidopteran and dipteran cells by baculovirus-mediated expression of Flock House virus B2. Sci Rep 2019; 9:14494. [PMID: 31601846 PMCID: PMC6787241 DOI: 10.1038/s41598-019-50851-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022] Open
Abstract
Prior studies have suggested that insect DNA viruses are negatively affected by dicer-2-mediated RNA interference (RNAi). To examine this further, we utilized an in vitro assay to measure dicer activity in lepidopteran and dipteran cells, combined with baculoviruses expressing the RNAi suppressor B2 from Flock House virus or Aedes aegypti dicer-2 (Aedicer-2) using a constitutive heat shock promoter. Addition of cell lysates containing baculovirus-expressed B2 to lysates from dipteran (S2, Aag2) or lepidopteran (Sf9) cells inhibited endogenous dicer activity in a dose-dependent manner, while expression of Aedicer-2 restored siRNA production in Ae. albopictus C6/36 cells, which are dicer-2 defective. However, B2 expression from the constitutive heat shock promoter had no impact on baculovirus replication or virulence in cell lines or larvae that were either highly permissive (Trichoplusia ni) or less susceptible (Spodoptera frugiperda) to infection. We determined that this constitutive level of B2 expression had little to no ability to suppress dicer activity in cell lysates, but higher expression of B2, following heat shock treatment, inhibited dicer activity in all cells tested. Thus, we cannot rule out the possibility that optimized expression of B2 or other RNAi suppressors may increase baculovirus replication and expression of heterologous proteins by baculoviruses.
Collapse
|
5
|
[Anti-viral responses in insect cells]. Uirusu 2019; 69:47-60. [PMID: 32938894 DOI: 10.2222/jsv.69.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Kong M, Zuo H, Zhu F, Hu Z, Chen L, Yang Y, Lv P, Yao Q, Chen K. The interaction between baculoviruses and their insect hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:114-123. [PMID: 29408049 DOI: 10.1016/j.dci.2018.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Baculoviruses are double-stranded circular DNA viruses that infect arthropods via the midgut. Because of their superiority as eukaryotic expression systems and their importance as biopesticides, extensive research on the functions of baculovirus genes as well as on the host response to baculovirus infection has been carried out, including transcriptomic and proteomic analyses of the midgut. The morphological and cellular changes caused by baculovirus infection are also important to better understand the infection pathway. Thanks to these previous studies, we now have a clearer picture of the mechanisms of action of the virus and of host immunity. In this paper, we systematically reviewed studies on the interaction between baculoviruses and their insect hosts. By better understanding these interactions, baculoviruses can be developed for use as more efficient biopesticides to improve agricultural development in the future.
Collapse
Affiliation(s)
- Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huan Zuo
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Han Y, van Houte S, van Oers MM, Ros VID. Baculovirus PTP2 Functions as a Pro-Apoptotic Protein. Viruses 2018; 10:v10040181. [PMID: 29642442 PMCID: PMC5923475 DOI: 10.3390/v10040181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
The family Baculoviridae encompasses a large number of invertebrate viruses, mainly infecting caterpillars of the order Lepidoptera. The baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) induces physiological and behavioral changes in its host Spodoptera exigua, as well as immunological responses, which may affect virus transmission. Here we show that the SeMNPV-encoded protein tyrosine phosphatase 2 (PTP2) induces mild apoptosis in Spodoptera frugiperda (Sf) 21 cells upon transient expression. Transient expression of a catalytic-site mutant of ptp2 did not lead to apoptosis, indicating that the phosphatase activity of PTP2 is needed to induce apoptosis. We also found that the caspase level (indicator of apoptosis) was higher in cells transfected with the ptp2 gene than in cells transfected with the catalytic mutant. Adding a caspase inhibitor reduced the level of ptp2-induced apoptosis. Moreover, deletion of the ptp2 gene from the viral genome prevented the induction of apoptosis in S. exigua hemocytes. The virus titer and virulence indices (the viral infectivity and the time to death) were not affected by deletion of the ptp2 gene. However, the viral occlusion body yield from S. exigua larvae infected with the mutant virus lacking the ptp2 gene was much lower than the yield from larvae infected with the wild-type (WT) virus. We hypothesize that the observed pro-apoptotic effects of PTP2 are the result of PTP2-mediated immune suppression in larvae, which consequently leads to higher viral occlusion body yields.
Collapse
Affiliation(s)
- Yue Han
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Stineke van Houte
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
8
|
Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning. PLoS One 2016; 11:e0148578. [PMID: 26863132 PMCID: PMC4749218 DOI: 10.1371/journal.pone.0148578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/19/2016] [Indexed: 02/02/2023] Open
Abstract
Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and ultimately affect viral replication.
Collapse
|
9
|
Baculovirus Inhibitor-of-Apoptosis Op-IAP3 Blocks Apoptosis by Interaction with and Stabilization of a Host Insect Cellular IAP. J Virol 2015; 90:533-44. [PMID: 26491164 DOI: 10.1128/jvi.02320-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Baculovirus-encoded inhibitor of apoptosis (IAP) proteins likely evolved from their host cell IAP homologs, which function as critical regulators of cell death. Despite their striking relatedness to cellular IAPs, including the conservation of two baculovirus IAP repeat (BIR) domains and a C-terminal RING, viral IAPs use an unresolved mechanism to suppress apoptosis in insects. To define this mechanism, we investigated Op-IAP3, the prototypical IAP from baculovirus OpMNPV. We found that Op-IAP3 forms a stable complex with SfIAP, the native, short-lived IAP of host insect Spodoptera frugiperda. Long-lived Op-IAP3 prevented virus-induced SfIAP degradation, which normally causes caspase activation and apoptosis. In uninfected cells, Op-IAP3 also increased SfIAP steady-state levels and extended SfIAP's half-life. Conversely, SfIAP stabilization was lost or reversed in the presence of mutated Op-IAP3 that was engineered for reduced stability. Thus, Op-IAP3 stabilizes SfIAP and preserves its antiapoptotic function. In contrast to SfIAP, Op-IAP3 failed to bind or inhibit native Spodoptera caspases. Furthermore, BIR mutations that abrogate binding of well-conserved IAP antagonists did not affect Op-IAP3's capacity to prevent virus-induced apoptosis. Remarkably, Op-IAP3 also failed to prevent apoptosis when endogenous SfIAP was ablated by RNA silencing. Thus, Op-IAP3 requires SfIAP as a cofactor. Our findings suggest a new model wherein Op-IAP3 interacts directly with SfIAP to maintain its intracellular level, thereby suppressing virus-induced apoptosis indirectly. Consistent with this model, Op-IAP3 has evolved an intrinsic stability that may serve to repress signal-induced turnover and autoubiquitination when bound to its targeted cellular IAP. IMPORTANCE The IAPs were first discovered in baculoviruses because of their potency for preventing apoptosis. However, the antiapoptotic mechanism of viral IAPs in host insects has been elusive. We show here that the prototypical viral IAP, Op-IAP3, blocks apoptosis indirectly by associating with unstable, autoubiquitinating host IAP in such a way that cellular IAP levels and antiapoptotic activities are maintained. This mechanism explains Op-IAP3's requirement for native cellular IAP as a cofactor and the dispensability of caspase inhibition. Viral IAP-mediated preservation of the host IAP homolog capitalizes on normal IAP-IAP interactions and is likely the result of viral IAP evolution in which degron-mediated destabilization and ubiquitination potential have been reduced. This mechanism illustrates another novel means by which DNA viruses incorporate host death regulators that are modified for resistance to host regulatory controls for the purpose of suppressing host cell apoptosis and acquiring replication advantages.
Collapse
|
10
|
Nagamine T, Saito T, Osada H, Matsumoto S. Dissection of two modes of IE1 sub-nuclear localization in baculovirus-infected cells. Virus Res 2015; 208:120-8. [PMID: 26087403 DOI: 10.1016/j.virusres.2015.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 11/30/2022]
Abstract
Prior to viral DNA replication, baculovirus IE1 exhibits a focal distribution within the cell nucleus. During DNA replication, the IE1 foci apparently expand and develop into a virus replication center called the virogenic stroma (VS). In our search for chemical compounds capable of modulating Bombyx mori nucleopolyhedrovirus (BmNPV: a prototype of baculovirus) replication, we found an inhibitor (dBIQdO) of IE1 focus formation. VS formation, however, was not affected, suggesting that IE1 foci are not essential for VS formation and that IE1 possesses two independent mechanisms for sub-nuclear localization. In addition to inhibition of IE1 focus formation, dBIQdO also reduced viral titers following infection at a low MOI. Comparison of the effects of three chemicals, dBIQdO, aphidicolin and caffeine, on IE1 localization allowed us to detect a shift from focal distribution to VS localization, suggesting that IE1 foci are disassembled prior to VS formation.
Collapse
|
11
|
Ono C, Sato M, Taka H, Asano SI, Matsuura Y, Bando H. Tightly regulated expression of Autographa californica multicapsid nucleopolyhedrovirus immediate early genes emerges from their interactions and possible collective behaviors. PLoS One 2015; 10:e0119580. [PMID: 25816136 PMCID: PMC4376880 DOI: 10.1371/journal.pone.0119580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 01/29/2015] [Indexed: 11/18/2022] Open
Abstract
To infect their hosts, DNA viruses must successfully initiate the expression of viral genes that control subsequent viral gene expression and manipulate the host environment. Viral genes that are immediately expressed upon infection play critical roles in the early infection process. In this study, we investigated the expression and regulation of five canonical regulatory immediate-early (IE) genes of Autographa californica multicapsid nucleopolyhedrovirus: ie0, ie1, ie2, me53, and pe38. A systematic transient gene-expression analysis revealed that these IE genes are generally transactivators, suggesting the existence of a highly interactive regulatory network. A genetic analysis using gene knockout viruses demonstrated that the expression of these IE genes was tolerant to the single deletions of activator IE genes in the early stage of infection. A network graph analysis on the regulatory relationships observed in the transient expression analysis suggested that the robustness of IE gene expression is due to the organization of the IE gene regulatory network and how each IE gene is activated. However, some regulatory relationships detected by the genetic analysis were contradictory to those observed in the transient expression analysis, especially for IE0-mediated regulation. Statistical modeling, combined with genetic analysis using knockout alleles for ie0 and ie1, showed that the repressor function of ie0 was due to the interaction between ie0 and ie1, not ie0 itself. Taken together, these systematic approaches provided insight into the topology and nature of the IE gene regulatory network.
Collapse
Affiliation(s)
- Chikako Ono
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masanao Sato
- National Institute for Basic Biology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama, Myodaiji, Okazaki, Japan
| | - Hitomi Taka
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shin-ichiro Asano
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hisanori Bando
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
12
|
Gómez-Sebastián S, López-Vidal J, Escribano JM. Significant productivity improvement of the baculovirus expression vector system by engineering a novel expression cassette. PLoS One 2014; 9:e96562. [PMID: 24824596 PMCID: PMC4019511 DOI: 10.1371/journal.pone.0096562] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/08/2014] [Indexed: 12/21/2022] Open
Abstract
Here we describe the development of a baculovirus vector expression cassette containing rearranged baculovirus-derived genetic regulatory elements. This newly designed expression cassette conferred significant production improvements to the baculovirus expression vector system (BEVS), including prolonged cell integrity after infection, improved protein integrity, and around 4-fold increase in recombinant protein production yields in insect cells with respect to a standard baculovirus vector. The expression cassette consisted of a cDNA encoding for the baculovirus transactivation factors IE1 and IE0, expressed under the control of the polyhedrin promoter, and a homologous repeated transcription enhancer sequence operatively cis-linked to the p10 promoter or to chimeric promoters containing p10. The prolonged cell integrity observed in cells infected by baculoviruses harbouring the novel expression cassette reduced the characteristic proteolysis and aberrant forms frequently found in baculovirus-derived recombinant proteins. The new expression cassette developed here has the potential to significantly improve the productivity of the BEVS.
Collapse
Affiliation(s)
| | | | - José M. Escribano
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
13
|
Li XF, Yu H, Zhang CX, Chen H, Wang D. Helicoverpa armigera nucleopolyhedrovirus orf81 is a late gene involved in budded virus production. Arch Virol 2014; 159:2011-22. [PMID: 24623087 DOI: 10.1007/s00705-014-2034-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 02/22/2014] [Indexed: 10/25/2022]
Abstract
Helicoverpa armigera nucleopolyhedrovirus (HearNPV) orf81 (ha81) is a core gene that is highly conserved in all lepidopteran baculoviruses. Its homolog in the group I baculoviruses, ac93, has been shown to be essential for the nuclear egress of nucleocapsids, but its role in the group II HearNPV life cycle remains unknown. In this study, an ha81 mutant bacmid was constructed by homologous recombination to investigate the role of HA81 in the viral life cycle. Quantitative PCR analysis showed that viral DNA replication was unaffected in the absence of ha81. However, the budded virus production of the ha81-null virus was completely blocked. Transmission electron microscopic analysis showed that ha81 is required for the egress of nucleocapsids from the nucleus. Analysis of the time course of transcription and expression revealed that ha81 is a late gene. An immunofluorescence analysis showed that the protein mainly localizes in the cytoplasm. To understand whether the transcription of other genes is affected by the deletion of ha81, the transcription of several well-characterized viral genes was investigated in the ha81-knockout HearNPV mutant. No obvious changes were observed at the transcription level, except for the odv-e25 gene downstream from ha81. In conclusion, these data indicate that ha81 is a late gene that is critical for budded virus production but is involved in neither viral DNA replication nor gene transcription.
Collapse
Affiliation(s)
- Xiao-Feng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Ikeda M, Yamada H, Hamajima R, Kobayashi M. Baculovirus genes modulating intracellular innate antiviral immunity of lepidopteran insect cells. Virology 2013; 435:1-13. [DOI: 10.1016/j.virol.2012.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 12/11/2022]
|
16
|
Baculoviruses modulate a proapoptotic DNA damage response to promote virus multiplication. J Virol 2012; 86:13542-53. [PMID: 23035220 DOI: 10.1128/jvi.02246-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) initiates apoptosis in diverse insects through events triggered by virus DNA (vDNA) replication. To define the proapoptotic pathway and its role in antivirus defense, we investigated the link between the host's DNA damage response (DDR) and apoptosis. We report here that AcMNPV elicits a DDR in the model insect Drosophila melanogaster. Replication of vDNA activated DDR kinases, as evidenced by ATM-driven phosphorylation of the Drosophila histone H2AX homolog (H2Av), a critical regulator of the DDR. Ablation or inhibition of ATM repressed H2Av phosphorylation and blocked virus-induced apoptosis. The DDR kinase inhibitors caffeine and KU55933 also prevented virus-induced apoptosis in cells derived from the permissive AcMNPV host, Spodoptera frugiperda. This block occurred at a step upstream of virus-mediated depletion of the cellular inhibitor-of-apoptosis protein, an event that initiates apoptosis in Spodoptera and Drosophila. Thus, the DDR is a conserved, proapoptotic response to baculovirus infection. DDR inhibition also repressed vDNA replication and reduced virus yields 100,000-fold, demonstrating that the DDR contributes to virus production, despite its recognized antivirus role. In contrast to virus-induced phosphorylation of Drosophila H2Av, AcMNPV blocked phosphorylation of the Spodoptera H2AX homolog (SfH2AX). Remarkably, AcMNPV also suppressed SfH2AX phosphorylation following pharmacologically induced DNA damage. These findings indicate that AcMNPV alters canonical DDR signaling in permissive cells. We conclude that AcMNPV triggers a proapoptotic DDR that is subsequently modified, presumably to stimulate vDNA replication. Thus, manipulation of the DDR to facilitate multiplication is an evolutionarily conserved strategy among DNA viruses of insects and mammals.
Collapse
|
17
|
Roy P, Noad R. Use of bacterial artificial chromosomes in baculovirus research and recombinant protein expression: current trends and future perspectives. ISRN MICROBIOLOGY 2012; 2012:628797. [PMID: 23762754 PMCID: PMC3671692 DOI: 10.5402/2012/628797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022]
Abstract
The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome.
Collapse
Affiliation(s)
- Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | |
Collapse
|
18
|
Baculovirus infection triggers a shift from amino acid starvation-induced autophagy to apoptosis. PLoS One 2012; 7:e37457. [PMID: 22629397 PMCID: PMC3357434 DOI: 10.1371/journal.pone.0037457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. On the other hand, many pathogens have evolved mechanisms of inhibition of autophagy such as blockage of the formation of autophagosomes or the fusion of autophagosomes with lysosomes. Baculoviruses are important insect pathogens for pest control, and autophagy activity increases significantly during insect metamorphosis. However, it is not clear whether baculovirus infection has effects on the increased autophagy. In the present study, we investigated the effects of the Autographa californica nucleopolyhedrovirus (AcMNPV) infection on autophagy in SL-HP cell line from Spodoptera litura induced under amino acid deprivation. The results revealed that AcMNPV infection did not inhibit autophagy but triggered apoptosis under starvation pressure. In the early stage of infection under starvation, mitochondrial dysfunction was detected, suggesting the organelles might be involved in cell apoptosis. The semi-quantitative PCR assay revealed that the expression of both p35 and ie-1 genes of AcMNPV had no significant difference between the starved and unstarved SL-HP cells. The western blot analysis showed that no cleavage of endogenous Atg6 occurred during the process of apoptosis in SL-HP cells. These data demonstrated that some permissive insect cells may defend baculovirus infection via apoptosis under starvation and apoptosis is independent of the cleavage of Atg6 in SL-HP cells.
Collapse
|
19
|
Conserved structural motifs at the C-terminus of baculovirus protein IE0 are important for its functions in transactivation and supporting hr5-mediated DNA replication. Viruses 2012; 4:761-76. [PMID: 22754648 PMCID: PMC3386618 DOI: 10.3390/v4050761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/23/2012] [Accepted: 04/27/2012] [Indexed: 11/16/2022] Open
Abstract
IE0 and IE1 are transactivator proteins of the most studied baculovirus, the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). IE0 is a 72.6 kDa protein identical to IE1 with the exception of its 54 N-terminal amino acid residues. To gain some insight about important structural motifs of IE0, we expressed the protein and C‑terminal mutants of it under the control of the Drosophila heat shock promoter and studied the transactivation and replication functions of the transiently expressed proteins. IE0 was able to promote replication of a plasmid bearing the hr5 origin of replication of AcMNPV in transient transfections with a battery of eight plasmids expressing the AcMNPV genes dnapol, helicase, lef-1, lef-2, lef-3, p35, ie-2 and lef-7. IE0 transactivated expression of the baculovirus 39K promoter. Both functions of replication and transactivation were lost after introduction of selected mutations at the basic domain II and helix-loop-helix conserved structural motifs in the C-terminus of the protein. These IE0 mutants were unable to translocate to the cell nucleus. Our results point out the important role of some structural conserved motifs to the proper functioning of IE0.
Collapse
|
20
|
A conserved N-terminal domain mediates required DNA replication activities and phosphorylation of the transcriptional activator IE1 of Autographa californica multicapsid nucleopolyhedrovirus. J Virol 2012; 86:6575-85. [PMID: 22496221 DOI: 10.1128/jvi.00373-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IE1 is the principal transcriptional regulator of the baculoviruses. Like multifunctional transcription factors of other large DNA viruses, IE1 is an essential, site-specific DNA-binding phosphoprotein that activates virus gene expression and promotes genome replication. To define the poorly understood mechanisms by which IE1 achieves its diverse functions, we identified IE1 domains that contribute to productive infection of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), the baculovirus prototype. Site-directed mutagenesis revealed that the N-terminal 23 residues of IE1 are required for origin-specific DNA replication and AcMNPV propagation, but not for DNA-binding-dependent transcriptional activation. Within this defined replication domain, we identified an invariant TPXR/H motif that resembles a consensus cyclin-dependent kinase phosphorylation site. Amino acid substitutions of potential phosphorylation sites within or near this motif caused loss of IE1-mediated DNA replication activity. Remarkably, substitution of the single threonine (residue 15) within the TPXR/H motif caused complete loss of AcMNPV multiplication. The replication domain was required for IE1 phosphorylation. It was also sufficient for conferring phosphorylation of a heterologous protein. Importantly, IE1 hyperphosphorylation coincided exclusively with AcMNPV DNA replication. The temporal regulation of IE1 phosphorylation and the essential nature of the TPXR/H motif suggest that phosphorylation critically alters and possibly activates DNA replication activity of IE1 during infection. The striking conservation of the TPXR/H motif among IE1 proteins further suggests that this molecular switch may be a common mechanism by which the alphabaculoviruses coordinate DNA replication and gene expression by using a single regulator.
Collapse
|
21
|
Suganuma I, Ushiyama T, Yamada H, Iwamoto A, Kobayashi M, Ikeda M. Cloning and characterization of a dronc homologue in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:909-921. [PMID: 21911060 DOI: 10.1016/j.ibmb.2011.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/25/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
We cloned and characterized a novel Bombyx mori homologue (bm-dronc) of Drosophila melanogaster dronc (dm-dronc), which could encode a polypeptide of 438 amino acid residues. Bm-Dronc shares relatively low amino acid sequence identities of 25% and 26% with Dm-Dronc and Aedes aegypti Dronc (Aa-Dronc), respectively. Bm-Dronc has the sequence QACRG surrounding the catalytic site (C), which is consistent with the QAC(R/Q/G)(G/E) consensus sequence in most caspases but distinct from the sequences PFCRG and SICRG of Dm-Dronc and Aa-Dronc, respectively. Bm-Dronc possesses a long N-terminal prodomain containing a caspase recruitment domain (CARD), a p20 domain and a p10 domain, exhibiting cleavage activities on synthetic substrates Ac-VDVAD-AMC, Ac-IETD-AMC and Ac-LEHD-AMC, which are preferred by human initiator caspases-2, -8 and -9, respectively. Bm-Dronc transiently expressed in insect cells and Escherichia coli cells underwent spontaneous cleavage and caused apoptosis and stimulation of caspase-3-like protease activity in various lepidopteran cell lines, but not in the dipteran cell line D. melanogaster S2. The apoptosis and the stimulation of caspase-3-like protease activity induced by Bm-Dronc overexpression were abrogated upon transfection with either a double-stranded RNA against bm-dronc or a plasmid expressing functional anti-apoptotic protein Hycu-IAP3 encoded by the baculovirus Hyphantria cunea multiple nucleopolyhedrovirus (MNPV). Apoptosis induction in BM-N cells by infection with a p35-defective Autographa californica MNPV or exposure to actinomycin D and UV promoted the cleavage of Bm-Dronc. These results indicate that Bm-Dronc serves as the initiator caspase responsible for the induction of caspase-dependent apoptosis.
Collapse
Affiliation(s)
- Ikue Suganuma
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Active depletion of host cell inhibitor-of-apoptosis proteins triggers apoptosis upon baculovirus DNA replication. J Virol 2011; 85:8348-58. [PMID: 21653668 DOI: 10.1128/jvi.00667-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apoptosis is an important antivirus defense by virtue of its impact on virus multiplication and pathogenesis. To define molecular mechanisms by which viruses are detected and the apoptotic response is initiated, we examined the antiviral role of host inhibitor-of-apoptosis (IAP) proteins in insect cells. We report here that the principal IAPs, DIAP1 and SfIAP, of the model insects Drosophila melanogaster and Spodoptera frugiperda, respectively, are rapidly depleted and thereby inactivated upon infection with the apoptosis-inducing baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Virus-induced loss of these host IAPs triggered caspase activation and apoptotic death. Elevation of IAP levels by ectopic expression repressed caspase activation. Loss of host IAP in both species was triggered by AcMNPV DNA replication. By using selected inhibitors, we found that virus-induced IAP depletion was mediated in part by the proteasome but not by caspase cleavage. Consistent with this conclusion, mutagenic disruption of the SfIAP RING motif, which acts as an E3 ubiquitin ligase, stabilized SfIAP during infection. Importantly, SfIAP was also stabilized upon the removal of its 99-residue N-terminal leader, which serves as a critical determinant of IAP turnover. These data indicated that a host pathway initiated by virus DNA replication and acting through instability motifs embedded within IAP triggers IAP depletion and thereby causes apoptosis. Taken together, the results of our study suggest that host modulation of cellular IAP levels is a conserved mechanism by which insects mount an apoptotic antiviral response. Thus, host IAPs may function as critical sentinels of virus invasion in insects.
Collapse
|
23
|
Heliothis zea nudivirus 1 gene hhi1 induces apoptosis which is blocked by the Hz-iap2 gene and a noncoding gene, pag1. J Virol 2011; 85:6856-66. [PMID: 21543471 DOI: 10.1128/jvi.01843-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Heliothis zea nudivirus 1 (HzNV-1 or Hz-1 virus), previously regarded as a nonoccluded baculovirus, recently has been placed in the Nudivirus genus. This virus generates HzNV-1 HindIII-I 1 (hhi1) and many other transcripts during productive viral infection; during latent viral infection, however, persistency-associated gene 1 (pag1) is the only gene expressed. In this report, we used transient expression assays to show that hhi1 can trigger strong apoptosis in transfected cells, which can be blocked, at least partially, by the inhibitor of apoptosis genes Autographa californica iap2 (Ac-iap2) and H. zea iap2 (Hz-iap2). In addition to these two genes, unexpectedly, pag1, which encodes a noncoding RNA with no detectable protein product, was found to efficiently suppress hhi1-induced apoptosis. The assay of pro-Sf-caspase-1 processing by hhi1 transfection did not detect the small P12 subunit at any of the time intervals tested, suggesting that hhi1 of HzNV-1 induces apoptosis through alternative caspase pathways.
Collapse
|
24
|
Baculoviruses deficient in ie1 gene function abrogate viral gene expression in transduced mammalian cells. Virology 2010; 406:293-301. [PMID: 20705310 DOI: 10.1016/j.virol.2010.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/04/2010] [Accepted: 07/13/2010] [Indexed: 11/21/2022]
Abstract
One of the newest niches for baculoviruses-based technologies is their use as vectors for mammalian cell transduction and gene therapy applications. However, an outstanding safety issue related to such use is the residual expression of viral genes in infected mammalian cells. Here we show that infectious baculoviruses lacking the major transcriptional regulator, IE1, can be produced in insect host cells stably transformed with IE1 expression constructs lacking targets of homologous recombination that could promote the generation of wt-like revertants. Such ie1-deficient baculoviruses are unable to direct viral gene transcription to any appreciable degree and do not replicate in normal insect host cells. Most importantly, the residual viral gene expression, which occurs in mammalian cells infected with wt baculoviruses is reduced 10 to 100 fold in cells infected with ie1-deficient baculoviruses. Thus, ie1-deficient baculoviruses offer enhanced safety features to baculovirus-based vector systems destined for use in gene therapy applications.
Collapse
|
25
|
Cohen DPA, Marek M, Davies BG, Vlak JM, van Oers MM. Encyclopedia of Autographa californica nucleopolyhedrovirus genes. Virol Sin 2009. [DOI: 10.1007/s12250-009-3059-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
26
|
Baculovirus DNA replication-specific expression factors trigger apoptosis and shutoff of host protein synthesis during infection. J Virol 2009; 83:11123-32. [PMID: 19706708 DOI: 10.1128/jvi.01199-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Apoptosis is an important antivirus defense. To define the poorly understood pathways by which invertebrates respond to viruses by inducing apoptosis, we have identified replication events that trigger apoptosis in baculovirus-infected cells. We used RNA silencing to ablate factors required for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Transfection with double-stranded RNA (dsRNA) complementary to the AcMNPV late expression factors (lefs) that are designated as replicative lefs (lef-1, lef-2, lef-3, lef-11, p143, dnapol, and ie-1/ie-0) blocked virus DNA synthesis and late gene expression in permissive Spodoptera frugiperda cells. dsRNAs specific to designated nonreplicative lefs (lef-8, lef-9, p47, and pp31) blocked late gene expression without affecting virus DNA replication. Thus, both classes of lefs functioned during infection as defined. Silencing the replicative lefs prevented AcMNPV-induced apoptosis of Spodoptera cells, whereas silencing the nonreplicative lefs did not. Thus, the activity of replicative lefs or virus DNA replication is sufficient to trigger apoptosis. Confirming this conclusion, AcMNPV-induced apoptosis was suppressed by silencing the replicative lefs in cells from a divergent species, Drosophila melanogaster. Silencing replicative but not nonreplicative lefs also abrogated AcMNPV-induced shutdown of host protein synthesis, suggesting that virus DNA replication triggers inhibition of host biosynthetic processes and that apoptosis and translational arrest are linked. Our findings suggest that baculovirus DNA replication triggers a host cell response similar to the DNA damage response in vertebrates, which causes translational arrest and apoptosis. Pathways for detecting virus invasion and triggering apoptosis may therefore be conserved between insects and mammals.
Collapse
|
27
|
|
28
|
Chikhalya A, Luu DD, Carrera M, De La Cruz A, Torres M, Martinez EN, Chen T, Stephens KD, Haas-Stapleton EJ. Pathogenesis of Autographa californica multiple nucleopolyhedrovirus in fifth-instar Anticarsia gemmatalis larvae. J Gen Virol 2009; 90:2023-2032. [PMID: 19423548 DOI: 10.1099/vir.0.011718-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated infection and pathogenesis of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Anticarsia gemmatalis (velvetbean caterpillar) larvae using a lacZ recombinant virus (AcMNPV-hsp70/lacZ) to track the temporal progression of infection in the midgut intestine and haemocoel. A. gemmatalis was highly resistant to fatal infection by occlusion bodies (OBs; LD(50)>5.5 x 10(5) OB) and budded virus (BV; LD(50)>3 x 10(5) BV) administered via oral and systemic routes, respectively. Orally administered occlusion-derived virus (ODV) efficiently attached and fused to midgut cells; however, high levels of infection-induced apoptosis limited infection in the midgut. Transcriptional analysis of AcMNPV genes expressed in the midgut of OB-inoculated A. gemmatalis larvae showed high levels of mRNA encoding the major capsid protein VP39 in the absence of immediate-early transactivator 1 (ie-1) expression. In the midgut, virus was efficiently transferred from infected midgut epithelial cells to nearby tracheolar cells and circulating haemocytes to initiate systemic infection in the haemocoel. However, haemocoelic BV did not efficiently disseminate infection and only cuticular epidermal cells displayed high levels of viral infection. Flow cytometry analysis of haemocytes isolated from BV-inoculated A. gemmatalis larvae showed low-level expression of the BV envelope protein GP64 on the cell surface, suggesting that A. gemmatalis haemocytes have a limited capacity for amplifying virus. These results show that AcMNPV is not an effective biological control agent for limiting crop damage caused by A. gemmatalis larvae.
Collapse
Affiliation(s)
- Aniska Chikhalya
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Dee Dee Luu
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Maggie Carrera
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Alisa De La Cruz
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Marianne Torres
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Elisa N Martinez
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Tiffany Chen
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Kimberly D Stephens
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| | - Eric J Haas-Stapleton
- Department of Biological Sciences, California State University, 1250 Bellflower Road, Long Beach, CA 90840, USA
| |
Collapse
|