1
|
Yang F, Wei N, Cai S, Liu J, Lan Q, Zhang H, Shang L, Zheng B, Wang M, Liu Y, Zhang L, Fei C, Tong W, Liu C, Kuang E, Tong G, Gu F. Genome-wide CRISPR screens identify CLC-2 as a drug target for anti-herpesvirus therapy: tackling herpesvirus drug resistance. SCIENCE CHINA. LIFE SCIENCES 2025; 68:515-526. [PMID: 39428427 DOI: 10.1007/s11427-023-2627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/23/2024] [Indexed: 10/22/2024]
Abstract
The emergence of drug resistance to virus (i.e., acyclovir (ACV) to herpesviruses) has been termed one of the common clinical issues, emphasizing the discovery of new antiviral agents. To address it, a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening was performed in mouse haploid embryonic stem cells infected with pseudorabies virus (PRV), an α-herpesvirus causing human and pig diseases. The results demonstrated that type 2 voltage-gated chloride channels (CLC-2) encoded by one of the identified genes, CLCN2, is a potential drug target for anti-herpesvirus therapy. CLC-2 inhibitors, omeprazole (OME) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), can efficiently inhibit infection of multiple herpesviruses in cellulo (i.e., PRV, HSV and EBV), and effectively treat murine herpes simplex encephalitis (HSE). Additionally, DIDS was found to inhibit HSV-1 replication by blocking the PI3K/Akt pathway. Most importantly, both DIDS and OME were able to inhibit ACV-resistant HSV-1 strain infection. The study's findings suggest that targeting host-cell factors such as CLC-2 may be a promising approach to tackling herpesvirus drug resistance. The discovery of CLC-2 as a potential drug target for anti-herpesvirus therapy provides a new direction for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Fayu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Nan Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Shuo Cai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Qingping Lan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Bo Zheng
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China.
| |
Collapse
|
2
|
Cryo-EM structure of the plant nitrate transporter AtCLCa reveals characteristics of the anion-binding site and the ATP-binding pocket. J Biol Chem 2022; 299:102833. [PMID: 36581207 PMCID: PMC9898749 DOI: 10.1016/j.jbc.2022.102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022] Open
Abstract
Nitrate is one of the major nitrogen sources for most plants. Chloride channel (CLC) proteins mediate the transport and vacuole storage of nitrate in plants, but the structural basis of nitrate transport by plant CLC proteins remains unknown. Here, we solved the cryo-EM structure of ATP-bound Arabidopsis thaliana CLCa (AtCLCa) at 2.8 Å resolution. Structural comparison between nitrate-selective AtCLCa and chloride-selective CLC-7 reveals key differences in the central anion-binding site. We observed that the central nitrate is shifted by ∼1.4 Å from chloride, which is likely caused by a weaker interaction between the anion and Pro160; the side chains of aromatic residues around the central binding site are rearranged to accommodate the larger nitrate. Additionally, we identified the ATP-binding pocket of AtCLCa to be located between the cytosolic cystathionine β-synthase domains and the N-terminus. The N-terminus may mediate the ATP inhibition of AtCLCa by interacting with both ATP and the pore-forming transmembrane helix. Together, our studies provide insights into the nitrate selectivity and ATP regulation of plant CLCs.
Collapse
|
3
|
Subba A, Tomar S, Pareek A, Singla-Pareek SL. The chloride channels: Silently serving the plants. PHYSIOLOGIA PLANTARUM 2021; 171:688-702. [PMID: 33034380 DOI: 10.1111/ppl.13240] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 05/12/2023]
Abstract
Chloride channels (CLCs), member of anion transporting proteins, are present ubiquitously in all life forms. Diverging from its name, the CLC family includes both channel and exchanger (proton-coupled) proteins; nevertheless, they share conserved structural organization. They are engaged in diverse indispensable functions such as acid and fluoride tolerance in prokaryotes to muscle stabilization, transepithelial transport, and neuronal development in mammals. Mutations in genes encoding CLCs lead to several physiological disorders in different organisms, including severe diseases in humans. Even in plants, loss of CLC protein function severely impairs various cellular processes critical for normal growth and development. These proteins sequester Cl- into the vacuole, thus, making them an attractive target for improving salinity tolerance in plants caused by high abundance of salts, primarily NaCl. Besides, some CLCs are involved in NO3 - transport and storage function in plants, thus, influencing their nitrogen use efficiency. However, despite their high significance, not many studies have been carried out in plants. Here, we have attempted to concisely highlight the basic structure of CLC proteins and critical residues essential for their function and classification. We also present the diverse functions of CLCs in plants from their first cloning back in 1996 to the knowledge acquired as of now. We stress the need for carrying out more in-depth studies on CLCs in plants, for they may have future applications towards crop improvement.
Collapse
Affiliation(s)
- Ashish Subba
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Surabhi Tomar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
5
|
Müller M, Slivinski N, Todd EJAA, Khalid H, Li R, Karwatka M, Merits A, Mankouri J, Tuplin A. Chikungunya virus requires cellular chloride channels for efficient genome replication. PLoS Negl Trop Dis 2019; 13:e0007703. [PMID: 31483794 PMCID: PMC6746389 DOI: 10.1371/journal.pntd.0007703] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/16/2019] [Accepted: 08/13/2019] [Indexed: 02/05/2023] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedes spp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV lifecycle is poorly understood and specific antiviral therapeutics or vaccines are lacking. In this study, we investigated the role of host-cell chloride (Cl-) channels on CHIKV replication.We demonstrate that specific pharmacological Cl- channel inhibitors significantly inhibit CHIKV replication in a dose-dependent manner, suggesting that Cl-channels are pro-viral factors in human cells. Further analysis of the effect of the inhibitors on CHIKV attachment, entry, viral protein expression and replicon replication demonstrated that Cl- channels are specifically required for efficient CHIKV genome replication. This was conserved in mosquito cells, where CHIKV replication and genome copy number was significantly reduced following Cl- channel inhibition. siRNA silencing identified chloride intracellular channels 1 and 4 (CLIC1 and CLIC4, respectively) as required for efficient CHIKV replication and protein affinity chromatography showed low levels of CLIC1 in complex with CHIKV nsP3, an essential component of the viral replication machinery. In summary, for the first time we demonstrate that efficient replication of the CHIKV genome depends on cellular Cl- channels, in both human and mosquito cells and identifies CLIC1 and CLIC4 as agonists of CHIKV replication in human cells. We observe a modest interaction, either direct or indirect, between CLIC1 and nsP3 and hypothesize that CLIC1 may play a role in the formation/maintenance of CHIKV replication complexes. These findings advance our molecular understanding of CHIKV replication and identify potential druggable targets for the treatment and prevention of CHIKV mediated disease.
Collapse
Affiliation(s)
- Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Natalie Slivinski
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eleanor J. A. A. Todd
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Henna Khalid
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Raymond Li
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Magdalena Karwatka
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Sun H, Shen L, Qin Y, Liu X, Hao K, Li Y, Wang J, Yang J, Wang F. CLC-Nt1 affects Potato Virus Y infection via regulation of endoplasmic reticulum luminal Ph. THE NEW PHYTOLOGIST 2018; 220:539-552. [PMID: 30022473 DOI: 10.1111/nph.15310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Chloride channel (CLC) proteins are important anion transporters conserved in organisms ranging from bacteria and yeast to plants and animals. According to sequence comparison, some plant CLCs are predicted to function as Cl- /H+ antiporters, but not Cl- channels. However, no direct evidence was provided to verify the role of these plant CLCs in regulating the pH of the intracellular compartment. We identified tobacco CLC-Nt1 interacting with the Potato virus Y (PVY) 6K2 protein. To investigate its physiological function, homologous genes of CLC-Nt1 in Nicotiana benthamiana were knocked out using the CRISPR/Cas9 system. Complementation experiments were subsequently performed by expression of wild-type or point-mutated CLC-Nt1 in knockout mutants. The data presented herein demonstrate that CLC-Nt1 is localized at endoplasmic reticulum (ER). Using a pH-sensitive fluorescent protein (pHluorin), we found that loss of CLC-Nt1 function resulted in a decreased ER luminal pH. Secreted GFP (secGFP) was retained mostly in ER in knockout mutants, indicating that CLC-Nt1 is also involved in protein secretion. PVY infection induced a rise in ER luminal pH, which was dependent on functional CLC-Nt1. By contrast, loss of CLC-Nt1 function inhibited PVY intracellular replication and systemic infection. We propose that PVY alters ER luminal pH for infection in a CLC-Nt1-dependent manner.
Collapse
Affiliation(s)
- Hangjun Sun
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yuanxia Qin
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaowei Liu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kaiqiang Hao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jie Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| |
Collapse
|
7
|
Wei P, Wang L, Liu A, Yu B, Lam HM. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean. FRONTIERS IN PLANT SCIENCE 2016; 7:1082. [PMID: 27504114 PMCID: PMC4959425 DOI: 10.3389/fpls.2016.01082] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/08/2016] [Indexed: 05/19/2023]
Abstract
The family of chloride channel proteins that mediate Cl(-) transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl(-) homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl(-)), on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl(-)/H(+) antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl(-) accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl(-) in their roots and transferred less Cl(-) to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl), enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl(-) stress.
Collapse
Affiliation(s)
- Peipei Wei
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Longchao Wang
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Ailin Liu
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Bingjun Yu
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Hon-Ming Lam
- Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
8
|
Imura Y, Molho M, Chuang C, Nagy PD. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants. Virology 2015; 484:265-275. [DOI: 10.1016/j.virol.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/10/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
|
9
|
Schlecht U, Suresh S, Xu W, Aparicio AM, Chu A, Proctor MJ, Davis RW, Scharfe C, St Onge RP. A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system. BMC Genomics 2014; 15:263. [PMID: 24708151 PMCID: PMC4023593 DOI: 10.1186/1471-2164-15-263] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 03/10/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. RESULTS We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu's positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson's disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. CONCLUSIONS A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert P St Onge
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 855 S California Avenue, Palo Alto, CA 94304, USA.
| |
Collapse
|
10
|
Zheng K, Chen M, Xiang Y, Ma K, Jin F, Wang X, Wang X, Wang S, Wang Y. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB. Biochem Biophys Res Commun 2014; 446:990-6. [PMID: 24657267 DOI: 10.1016/j.bbrc.2014.03.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 11/26/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.
Collapse
Affiliation(s)
- Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Maoyun Chen
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of pharmacy, Jinan University, Guangzhou, China
| | - Yangfei Xiang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Kaiqi Ma
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of pharmacy, Jinan University, Guangzhou, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoyan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Shaoxiang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Palukaitis P, Groen SC, Carr JP. The Rumsfeld paradox: some of the things we know that we don't know about plant virus infection. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:513-9. [PMID: 23820310 DOI: 10.1016/j.pbi.2013.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 05/06/2023]
Abstract
Plant-infecting viruses cause significant crop losses around the world and the majority of emerging threats to crop production have a viral etiology. Significant progress has been made and continues to be made in understanding how viruses induce disease and overcome some forms of resistance-particularly resistance based on RNA silencing. However, it is still not clear how other antiviral mechanisms work, how viruses manage to exploit their hosts so successfully, or how viruses affect the interactions of susceptible plants with other organisms and if this is advantageous to the virus, the host, or both. In this article we explore these questions.
Collapse
Affiliation(s)
- Peter Palukaitis
- Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, Republic of Korea
| | | | | |
Collapse
|