1
|
Chen Q, Li X, Quan L, Zhou R, Liu X, Cheng L, Sarid R, Kuang E. FoxK1 and FoxK2 cooperate with ORF45 to promote late lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2024; 98:e0077924. [PMID: 39494902 PMCID: PMC11650984 DOI: 10.1128/jvi.00779-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Lytic replication is essential for persistent infection of Kaposi's sarcoma-associated herpesvirus (KSHV) and the pathogenesis of related diseases, and many cellular pathways are hijacked by KSHV proteins to initiate and control the lytic replication of this virus. However, the mechanism involved in KSHV lytic replication from the early to the late phases remains largely undetermined. We previously revealed that KSHV open reading frame 45 (ORF45) plays important roles in late transcription and translation. In the present study, we revealed that the Forkhead box proteins FoxK1 and FoxK2 are ORF45-binding proteins and are essential for KSHV lytic gene expression and virion production, and that depletion of FoxK1 or FoxK2 significantly suppresses the expression of many late viral genes. FoxK1 and FoxK2 directly bind to the promoters of several late viral genes, ORF45 augments the promoter binding and transcriptional activity of FoxK1 and FoxK2, and then FoxK1 or FoxK2 cooperates with ORF45 to promote late viral gene expression. Our findings suggest that ORF45 interacts with FoxK1 and FoxK2 and promotes their occupancy on a cluster of late viral promoters and their subsequent transcriptional activity; consequently, FoxK1 and FoxK2 promote late viral gene expression to facilitate KSHV lytic replication.IMPORTANCEThe forkhead box proteins FoxK1 and FoxK2 can act as transcriptional inhibitors or activators to regulate several important processes, including aerobic glycolysis, metabolism, autophagy, and antiviral responses. However, the subversion and functions of FoxK1 and FoxK2 during KSHV infection and the pathogenesis of related diseases remain unknown. Here, we revealed that ORF45 binds to FoxK1 and FoxK2 and increases their transcriptional activity during KSHV lytic replication; consequently, FoxK1 and FoxK2 bind to late viral promoters and cooperate with ORF45 to promote late lytic gene expression. Our findings reveal two new ORF45 partners and a new function of ORF45 in which it utilizes FoxK1 and FoxK2 to promote transcription during late KSHV lytic replication.
Collapse
Affiliation(s)
- Qingyang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, China
| | - Li Quan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rihong Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiangpeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lu Cheng
- School of Life Science, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ronit Sarid
- School of Graduate Studies, The Mina and Everard Goodman Faculty of Life Sciences & Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Palmer M, Leo A, Atyeo N, Tomacari C, Nguyen X, Papp B. Conserved linear motif within the immediate early protein ORF45 promotes its engagement with KSHV lytic cycle-promoting forkhead transcription factors, FOXK1 and FOXK2. J Virol 2024; 98:e0088624. [PMID: 39287387 PMCID: PMC11494905 DOI: 10.1128/jvi.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that can cause several cancers, such as Kaposi sarcoma and primary effusion lymphoma (PEL). We and others have recently demonstrated that Forkhead box (FOX) transcription factors can be dysregulated by KSHV, and they can affect KSHV infection. Herein, we focus on dissecting the role of two FOXK subfamily members, FOXK1 and FOXK2, in the KSHV life cycle. FOXK proteins are key host regulators of cellular functions, yet their role in KSHV infection remains unknown. Here, we demonstrated that both FOXK proteins are essential for efficient KSHV lytic reactivation in PEL cells. FOXK1 and FOXK2 are unique as they are the only FOX proteins that contain a Forkhead-associated (FHA) domain. The FHA domain is a specialized protein binding domain that recognizes a short linear serine/threonine-rich (S/T) motif. Through an unbiased motif survey, we found that KSHV viral protein ORF45 and its gammaherpesvirus homologs contain a putative FHA-binding motif. ORF45 is an immediate early tegument protein, vital for lytic reactivation and virus production. We demonstrated that ORF45 uses its novel conserved motif to interact with the FHA domain containing FOXK factors in the nucleus of infected cells. A single-point mutation of the conserved threonine residue in the motif within ORF45 abolished the ORF45-FOXK1/2 interaction. Our data indicates that FOXK proteins interact with ORF45 homologs encoded by murine gammaherpesvirus 68 (MHV68) and Rhesus macaque rhadinovirus (RRV), and that the FHA domains of FOXK proteins are sufficient for their interactions, highlighting a conserved mechanism.IMPORTANCEThe dysregulation of Forkhead transcription factors contributes to many different human diseases, including cancers, but their impact on herpesvirus lifecycle and pathogenesis is less understood. Our study uncovers a critical pro-lytic function of the FOXK subfamily and its requirement for KSHV lytic reactivation in PEL. We found that FOXK proteins bind to a key immediate early KSHV protein ORF45 using its novel short linear S/T motif. Notably, even though ORF45 homologs in gammaherpesviruses are highly diverse, we identified a similar S/T short linear motif in ORF45 homologs and also showed an evolutionary conserved interaction between FOXK proteins and ORF45 homologs of MHV68 and RRV. Our study provides a basis for future studies in animal models to evaluate the role of FOXK proteins and the impact of their interactions with ORF45 in gammaherpesvirus infection and pathogenesis. Targeting these interactions could allow a novel way to limit gammaherpesvirus infections.
Collapse
Affiliation(s)
- Marley Palmer
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Alessandro Leo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Natalie Atyeo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Christiana Tomacari
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Xuan Nguyen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Informatics Institute, University of Florida, Gainesville, Florida, USA
- Center for Orphaned Autoimmune Disorders, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Zhang Y, Guo W, Zhan Z, Bai O. Carcinogenic mechanisms of virus-associated lymphoma. Front Immunol 2024; 15:1361009. [PMID: 38482011 PMCID: PMC10932979 DOI: 10.3389/fimmu.2024.1361009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/12/2024] [Indexed: 04/17/2024] Open
Abstract
The development of lymphoma is a complex multistep process that integrates numerous experimental findings and clinical data that have not yet yielded a definitive explanation. Studies of oncogenic viruses can help to deepen insight into the pathogenesis of lymphoma, and identifying associations between lymphoma and viruses that are established and unidentified should lead to cellular and pharmacologically targeted antiviral strategies for treating malignant lymphoma. This review focuses on the pathogenesis of lymphomas associated with hepatitis B and C, Epstein-Barr, and human immunodeficiency viruses as well as Kaposi sarcoma-associated herpesvirus to clarify the current status of basic information and recent advances in the development of virus-associated lymphomas.
Collapse
Affiliation(s)
| | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Lari A, Glaunsinger BA. Murine Gammaherpesvirus 68 ORF45 Stimulates B2 Retrotransposon and Pre-tRNA Activation in a Manner Dependent on Mitogen-Activated Protein Kinase (MAPK) Signaling. Microbiol Spectr 2023; 11:e0017223. [PMID: 36752632 PMCID: PMC10100704 DOI: 10.1128/spectrum.00172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/09/2023] Open
Abstract
RNA polymerase III (RNAPIII) transcribes a variety of noncoding RNAs, including tRNA (tRNA) and the B2 family of short interspersed nuclear elements (SINEs). B2 SINEs are noncoding retrotransposons that possess tRNA-like promoters and are normally silenced in healthy somatic tissue. Infection with the murine gammaherpesvirus MHV68 induces transcription of both SINEs and tRNAs, in part through the activity of the viral protein kinase ORF36. Here, we identify the conserved MHV68 tegument protein ORF45 as an additional activator of these RNAPIII loci. MHV68 ORF45 and ORF36 form a complex, resulting in an additive induction RNAPIII and increased ORF45 expression. ORF45-induced RNAPIII transcription is dependent on its activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway, which in turn increases the abundance of the RNAPIII transcription factor Brf1. Other viral and nonviral activators of MAPK/ERK signaling also increase the levels of Brf1 protein, B2 SINE RNA, and tRNA, suggesting that this is a common strategy to increase RNAPIII activity. IMPORTANCE Gammaherpesviral infection alters the gene expression landscape of a host cell, including through the induction of noncoding RNAs transcribed by RNA polymerase III (RNAPIII). Among these are a class of repetitive genes known as retrotransposons, which are normally silenced elements and can copy and spread throughout the genome, and transfer RNAs (tRNAs), which are fundamental components of protein translation machinery. How these loci are activated during infection is not well understood. Here, we identify ORF45 from the model murine gammaherpesvirus MHV68 as a novel activator of RNAPIII transcription. To do so, it engages the MAPK/ERK signaling pathway, which is a central regulator of cellular response to environmental stimuli. Activation of this pathway leads to the upregulation of a key factor required for RNAPIII activity, Brf1. These findings expand our understanding of the regulation and dysregulation of RNAPIII transcription and highlight how viral cooption of key signaling pathways can impact host gene expression.
Collapse
Affiliation(s)
- Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Howard Hughes Medical Institute, Berkeley, California, USA
| |
Collapse
|
5
|
The ORF45 Protein of Kaposi's Sarcoma-Associated Herpesvirus and Its Critical Role in the Viral Life Cycle. Viruses 2022; 14:v14092010. [PMID: 36146816 PMCID: PMC9506158 DOI: 10.3390/v14092010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) protein ORF45 is a virion-associated tegument protein that is unique to the gammaherpesvirus family. Generation of KSHV ORF45-knockout mutants and their subsequent functional analyses have permitted a better understanding of ORF45 and its context-specific and vital role in the KSHV lytic cycle. ORF45 is a multifaceted protein that promotes infection at both the early and late phases of the viral life cycle. As an immediate-early protein, ORF45 is expressed within hours of KSHV lytic reactivation and plays an essential role in promoting the lytic cycle, using multiple mechanisms, including inhibition of the host interferon response. As a tegument protein, ORF45 is necessary for the proper targeting of the viral capsid for envelopment and release, affecting the late stage of the viral life cycle. A growing list of ORF45 interaction partners have been identified, with one of the most well-characterized being the association of ORF45 with the host extracellular-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) signaling cascade. In this review, we describe ORF45 expression kinetics, as well as the host and viral interaction partners of ORF45 and the significance of these interactions in KSHV biology. Finally, we discuss the role of ORF45 homologs in gammaherpesvirus infections.
Collapse
|
6
|
Alexa A, Sok P, Gross F, Albert K, Kobori E, Póti ÁL, Gógl G, Bento I, Kuang E, Taylor SS, Zhu F, Ciliberto A, Reményi A. A non-catalytic herpesviral protein reconfigures ERK-RSK signaling by targeting kinase docking systems in the host. Nat Commun 2022; 13:472. [PMID: 35078976 PMCID: PMC8789800 DOI: 10.1038/s41467-022-28109-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
The Kaposi's sarcoma associated herpesvirus protein ORF45 binds the extracellular signal-regulated kinase (ERK) and the p90 Ribosomal S6 kinase (RSK). ORF45 was shown to be a kinase activator in cells but a kinase inhibitor in vitro, and its effects on the ERK-RSK complex are unknown. Here, we demonstrate that ORF45 binds ERK and RSK using optimized linear binding motifs. The crystal structure of the ORF45-ERK2 complex shows how kinase docking motifs recognize the activated form of ERK. The crystal structure of the ORF45-RSK2 complex reveals an AGC kinase docking system, for which we provide evidence that it is functional in the host. We find that ORF45 manipulates ERK-RSK signaling by favoring the formation of a complex, in which activated kinases are better protected from phosphatases and docking motif-independent RSK substrate phosphorylation is selectively up-regulated. As such, our data suggest that ORF45 interferes with the natural design of kinase docking systems in the host.
Collapse
Affiliation(s)
- Anita Alexa
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Fridolin Gross
- IFOM, Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Krisztián Albert
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Evan Kobori
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0654, USA
| | - Ádám L Póti
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Gergő Gógl
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Isabel Bento
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Ersheng Kuang
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4370, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0654, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4370, USA
| | - Andrea Ciliberto
- IFOM, Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Attila Reményi
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary.
| |
Collapse
|
7
|
Gillen J, Zhu F. Disruption of the Interaction between ORF33 and the Conserved Carboxyl-Terminus of ORF45 Abolishes Progeny Virion Production of Kaposi Sarcoma-Associated Herpesvirus. Viruses 2021; 13:1828. [PMID: 34578410 PMCID: PMC8472245 DOI: 10.3390/v13091828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The Open Reading Frame 45 (ORF45) of Kaposi sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific, immediate-early, tegument protein required for efficient viral replication and virion production. We have previously shown that ORF45 interacts with the conserved herpesviral protein ORF33 through the highly conserved C-terminal 19 amino acids (C19) of ORF45. Because the deletion of C19 abolished ORF33 accumulation and viral production, we reasoned that this interaction could be critical for viral production and explored as an antiviral target for gammaherpesviruses. In work described in this article, we characterize this interaction in further detail, first by revealing that this interaction is conserved among gammaherpesviruses, then by identifying residues in C19 critical for its interaction with and stabilization of ORF33. More importantly, we show that disruption of the interaction, either by mutating key residues (W403A or W405A) in C19 or by using competing cell penetration peptide TAT-C19, dramatically reduce the yield of KSHV progeny viruses. Our results not only reveal critical roles of this interaction to viral production but also provide a proof of concept for targeting the ORF33-ORF45 interaction as a novel antiviral strategy against KSHV and other gammaherpesviruses.
Collapse
Affiliation(s)
- Joseph Gillen
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA;
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| |
Collapse
|
8
|
Naimo E, Zischke J, Schulz TF. Recent Advances in Developing Treatments of Kaposi's Sarcoma Herpesvirus-Related Diseases. Viruses 2021; 13:1797. [PMID: 34578378 PMCID: PMC8473310 DOI: 10.3390/v13091797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022] Open
Abstract
Kaposi-sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) is the causative agent of several malignancies, including Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). Active KSHV replication has also been associated with a pathological condition called KSHV inflammatory cytokine syndrome (KICS), and KSHV may play a role in rare cases of post-transplant polyclonal lymphoproliferative disorders. Several commonly used herpesviral DNA polymerase inhibitors are active against KSHV in tissue culture. Unfortunately, they are not always efficacious against KSHV-induced diseases. To improve the outcome for the patients, new therapeutics need to be developed, including treatment strategies that target either viral proteins or cellular pathways involved in tumor growth and/or supporting the viral life cycle. In this review, we summarize the most commonly established treatments against KSHV-related diseases and review recent developments and promising new compounds that are currently under investigation or on the way to clinical use.
Collapse
Affiliation(s)
- Eleonora Naimo
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (E.N.); (J.Z.)
- German Centre for Infection Research, Hannover-Braunschweig Site, 38023 Braunschweig, Germany
- Cluster of Excellence 2155 RESIST, Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
9
|
Hussein HAM, Alfhili MA, Pakala P, Simon S, Hussain J, McCubrey JA, Akula SM. miRNAs and their roles in KSHV pathogenesis. Virus Res 2019; 266:15-24. [PMID: 30951791 DOI: 10.1016/j.virusres.2019.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman Disease (MCD). Recent mechanistic advances have discerned the importance of microRNAs in the virus-host relationship. KSHV has two modes of replication: lytic and latent phase. KSHV entry into permissive cells, establishment of infection, and maintenance of latency are contingent upon successful modulation of the host miRNA transcriptome. Apart from host cell miRNAs, KSHV also encodes viral miRNAs. Among various cellular and molecular targets, miRNAs are appearing to be key players in regulating viral pathogenesis. Therefore, the use of miRNAs as novel therapeutics has gained considerable attention as of late. This innovative approach relies on either mimicking miRNA species by identical oligonucleotides, or selective silencing of miRNA with specific oligonucleotide inhibitors. Here, we provide an overview of KSHV pathogenesis at the molecular level with special emphasis on the various roles miRNAs play during virus infection.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Faculty of Science, Al Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Alfhili
- Department of Medicine (Division of Hematology/Oncology), Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Pranaya Pakala
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Sandra Simon
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Jaffer Hussain
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|