1
|
Maroui MA, Odongo GA, Mundo L, Manara F, Mure F, Fusil F, Jay A, Gheit T, Michailidis TM, Ferrara D, Leoncini L, Murray P, Manet E, Ohlmann T, De Boevre M, De Saeger S, Cosset FL, Lazzi S, Accardi R, Herceg Z, Gruffat H, Khoueiry R. Aflatoxin B1 and Epstein-Barr virus-induced CCL22 expression stimulates B cell infection. Proc Natl Acad Sci U S A 2024; 121:e2314426121. [PMID: 38574017 PMCID: PMC11032484 DOI: 10.1073/pnas.2314426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.
Collapse
Affiliation(s)
- Mohamed Ali Maroui
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Grace Akinyi Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Lucia Mundo
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Francesca Manara
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Fabrice Mure
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Floriane Fusil
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Antonin Jay
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Tarik Gheit
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Thanos M. Michailidis
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Domenico Ferrara
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Paul Murray
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
| | - Evelyne Manet
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Gauteng2028, South Africa
| | - François-Loïc Cosset
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Rosita Accardi
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Henri Gruffat
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| |
Collapse
|
2
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
3
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
4
|
Oishi K, Horiuchi S, Frere J, Schwartz RE, tenOever BR. A diminished immune response underlies age-related SARS-CoV-2 pathologies. Cell Rep 2022; 39:111002. [PMID: 35714615 PMCID: PMC9181267 DOI: 10.1016/j.celrep.2022.111002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Morbidity and mortality in response to SARS-CoV-2 infection are significantly elevated in people of advanced age. To understand the underlying biology of this phenotype, we utilize the golden hamster model to compare how the innate and adaptive immune responses to SARS-CoV-2 infection differed between younger and older animals. We find that while both hamster cohorts showed similar virus kinetics in the lungs, the host response in older animals was dampened, with diminished tissue repair in the respiratory tract post-infection. Characterization of the adaptive immune response also revealed age-related differences, including fewer germinal center B cells in older hamsters, resulting in reduced potency of neutralizing antibodies. Moreover, older animals demonstrate elevated suppressor T cells and neutrophils in the respiratory tract, correlating with an increase in TGF-β and IL-17 induction. Together, these data support that diminished immunity is one of the underlying causes of age-related morbidity.
Collapse
Affiliation(s)
- Kohei Oishi
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Shu Horiuchi
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Justin Frere
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Robert E Schwartz
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
5
|
Hong YM, Min SY, Kim D, Kim S, Seo D, Lee KH, Han SH. Human MicroRNAs Attenuate the Expression of Immediate Early Proteins and HCMV Replication during Lytic and Latent Infection in Connection with Enhancement of Phosphorylated RelA/p65 (Serine 536) That Binds to MIEP. Int J Mol Sci 2022; 23:ijms23052769. [PMID: 35269913 PMCID: PMC8911160 DOI: 10.3390/ijms23052769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Attenuating the expression of immediate early (IE) proteins is essential for controlling the lytic replication of human cytomegalovirus (HCMV). The human microRNAs (hsa-miRs), miR-200b-3p and miR-200c-3p, have been identified to bind the 3′-untranslated region (3′-UTR) of the mRNA encoding IE proteins. However, whether hsa-miRs can reduce IE72 expression and HCMV viral load or exhibit a crosstalk with the host cellular signaling machinery, most importantly the NF-κB cascade, has not been evaluated. In this study, argonaute-crosslinking and immunoprecipitation-seq revealed that miR-200b-3p and miR-200c-3p bind the 3′-UTR of UL123, which is a gene that encodes IE72. The binding of these miRNAs to the 3′-UTR of UL123 was verified in transfected cells stably expressing GFP. We used miR-200b-3p/miR-200c-3p mimics to counteract the downregulation of these miRNA after acute HCMV infection. This resulted in reduced IE72/IE86 expression and HCMV VL during lytic infection. We determined that IE72/IE86 alone can inhibit the phosphorylation of RelA/p65 at the Ser536 residue and that p-Ser536 RelA/p65 binds to the major IE promoter/enhancer (MIEP). The upregulation of miR-200b-3p and miR-200c-3p resulted in the phosphorylation of RelA/p65 at Ser536 through the downregulation of IE, and the binding of the resultant p-Ser536 RelA/p65 to MIEP resulted in a decreased production of pro-inflammatory cytokines. Overall, miR-200b-3p and miR-200c-3p—together with p-Ser536 RelA/p65—can prevent lytic HCMV replication during acute and latent infection
Collapse
Affiliation(s)
- Yeon-Mi Hong
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Seo Yeon Min
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Dayeong Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Subin Kim
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Daekwan Seo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Kyoung Hwa Lee
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
| | - Sang Hoon Han
- Division of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 06273, Korea; (Y.-M.H.); (S.Y.M.); (D.K.); (S.K.); (K.H.L.)
- Correspondence: ; Tel.: +82-2-2019-3319; Fax: +82-2-3463-3882
| |
Collapse
|
6
|
CD4 T Cell-Mediated Immune Control of Cytomegalovirus Infection in Murine Salivary Glands. Pathogens 2021; 10:pathogens10121531. [PMID: 34959486 PMCID: PMC8704252 DOI: 10.3390/pathogens10121531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
CD4 T cells are well known for their supportive role in CD8 T cell and B cell responses during viral infection. However, during murine cytomegalovirus (MCMV) infection in the salivary glands (SGs), CD4 T cells exhibit direct antiviral effector functions to control the infection. In this mucosal organ, opposed to other infected tissues, MCMV establishes a sustained lytic replication that lasts for several weeks. While the protective function of CD4 T cells is exerted through the production of the pro-inflammatory cytokines interferon gamma (IFNγ) and tumor necrosis factor alpha (TNF), the reasons for their markedly delayed control of lytic MCMV infection remain elusive. Here, we review the current knowledge on the dynamics and mechanisms of the CD4 T cell-mediated control of MCMV-infected SGs, including their localization in the SG in relation to MCMV infected cells and other immune cells, their mode of action, and their regulation.
Collapse
|
7
|
A Novel Multiplexed Enzyme-Linked Immunosorbent Assay for the Detection of IgG Seroreactivity to Cytomegalovirus (CMV) UL144. J Clin Microbiol 2021; 59:e0096421. [PMID: 34076473 DOI: 10.1128/jcm.00964-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with human cytomegalovirus (CMV) is common and may have grave consequences in transplant recipients and congenitally infected children. Diagnosis of CMV infection is based on detection of specific antibodies and molecular assays. The incorporation of CMV serological assays into diagnostic algorithms requires careful evaluation and interpretation. Very few serological assays measure CMV infection by a specific strain. We developed an enzyme-linked immunosorbent assay (ELISA) using CMV-encoded UL144 as the antigen. UL144 encodes three major genotypes, A, B, and C, and recombinants. The ELISA was developed with the three UL144 proteins and optimized as a multiplex assay. Sera from 55 positive and 59 negative CMV IgG, determined by the clinical microbiology laboratory, were used for evaluation and optimization. A cutoff optical density (OD) that distinguishes UL144 antibody-positive from antibody-negative sera was established. UL144 A, B, C, and combinations of these antigens were detected in sera. An assay threshold of 0.1 was established and, from a total of 303 sera, the overall sensitivity, specificity, and positive and negative predictive values of the multiplex ELISA were 86.72% (95% confidence interval [CI] 79.59% to 92.07%), 96.57% (92.69% to 98.73%), 94.40% (88.45% to 97.38%), and 91.60% (87.50% to 94.44%), respectively. The inter- and intraassay median coefficients of variation were 0.06 (interquartile range [IQR] 0.56, 0.2) and 0.171 (IQR 0.038, 0.302), respectively. No cross-reactivity was observed with HSV-positive CMV-negative sera. This ELISA gives simple and reproducible results for detection of anti-CMV UL144 IgG. It may assist in differentiating natural infection from CMV vaccines that lack UL144, and may provide an important tool for epidemiological studies of CMV strains.
Collapse
|
8
|
Galitska G, Biolatti M, Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Landolfo S. Catch me if you can: the arms race between human cytomegalovirus and the innate immune system. Future Virol 2019. [DOI: 10.2217/fvl-2018-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV), a common opportunistic pathogen of significant clinical importance, targets immunocompromised individuals of the human population worldwide. The absence of a licensed vaccine and the low efficacy of currently available drugs remain a barrier to combating the global infection. The HCMV's ability to modulate and escape innate immune responses remains a critical step in the ongoing search for potential drug targets. Here, we describe the complex interplay between HCMV and the host immune system, focusing on different evasion strategies that the virus has employed to subvert innate immune responses. We especially highlight the mechanisms and role of host antiviral restriction factors and provide insights into viral modulation of pro-inflammatory NF-κB and interferon signaling pathways.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Santo Landolfo
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Elder E, Krishna B, Williamson J, Aslam Y, Farahi N, Wood A, Romashova V, Roche K, Murphy E, Chilvers E, Lehner PJ, Sinclair J, Poole E. Monocytes Latently Infected with Human Cytomegalovirus Evade Neutrophil Killing. iScience 2019; 12:13-26. [PMID: 30677738 PMCID: PMC6352302 DOI: 10.1016/j.isci.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV) in vivo is in undifferentiated cells of the myeloid lineage. Although latently infected cells are known to evade host T cell responses by suppression of T cell effector functions, it is not known if they must also evade surveillance by other host immune cells. Here we show that cells latently infected with HCMV can, indeed, be killed by host neutrophils but only in a serum-dependent manner. Specifically, antibodies to the viral latency-associated US28 protein mediate neutrophil killing of latently infected cells. To address this mechanistically, a full proteomic screen was carried out on latently infected monocytes. This showed that latent infection downregulates the neutrophil chemoattractants S100A8/A9, thus suppressing neutrophil recruitment to latently infected cells. The ability of latently infected cells to inhibit neutrophil recruitment represents an immune evasion strategy of this persistent human pathogen, helping to prevent clearance of the latent viral reservoir.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Benjamin Krishna
- Genomic Medicine Institute, Lerner Research Institute, 9620 Carnegie Avenue, Cleveland, OH, USA
| | - James Williamson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Yusuf Aslam
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Neda Farahi
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Alexander Wood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Veronika Romashova
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Kate Roche
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Eain Murphy
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Edwin Chilvers
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
10
|
Botto S, Abraham J, Mizuno N, Pryke K, Gall B, Landais I, Streblow DN, Fruh KJ, DeFilippis VR. Human Cytomegalovirus Immediate Early 86-kDa Protein Blocks Transcription and Induces Degradation of the Immature Interleukin-1β Protein during Virion-Mediated Activation of the AIM2 Inflammasome. mBio 2019; 10:e02510-18. [PMID: 30755509 PMCID: PMC6372796 DOI: 10.1128/mbio.02510-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Secretion of interleukin-1β (IL-1β) represents a fundamental innate immune response to microbial infection that, at the molecular level, occurs following activation of proteolytic caspases that cleave the immature protein into a secretable form. Human cytomegalovirus (HCMV) is the archetypal betaherpesvirus that is invariably capable of lifelong infection through the activity of numerous virally encoded immune evasion phenotypes. Innate immune pathways responsive to cytoplasmic double-stranded DNA (dsDNA) are known to be activated in response to contact between HCMV and host cells. Here, we used clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing to demonstrate that the dsDNA receptor absent in melanoma 2 (AIM2) is required for secretion of IL-1β following HCMV infection. Furthermore, dsDNA-responsive innate signaling induced by HCMV infection that leads to activation of the type I interferon response is also shown, unexpectedly, to play a contributory role in IL-1β secretion. Importantly, we also show that rendering virus particles inactive by UV exposure leads to substantially increased IL-1β processing and secretion and that live HCMV can inhibit this, suggesting the virus encodes factors that confer an inhibitory effect on this response. Further examination revealed that ectopic expression of the immediate early (IE) 86-kDa protein (IE86) is actually associated with a block in transcription of the pro-IL-1β gene and, independently, diminishment of the immature protein. Overall, these results reveal two new and distinct phenotypes conferred by the HCMV IE86 protein, as well as an unusual circumstance in which a single herpesviral protein exhibits inhibitory effects on multiple molecular processes within the same innate immune response.IMPORTANCE Persistent infection with HCMV is associated with the operation of diverse evasion phenotypes directed at antiviral immunity. Obstruction of intrinsic and innate immune responses is typically conferred by viral proteins either associated with the viral particle or expressed immediately after entry. In line with this, numerous phenotypes are attributed to the HCMV IE86 protein that involve interference with innate immune processes via transcriptional and protein-directed mechanisms. We describe novel IE86-mediated phenotypes aimed at virus-induced secretion of IL-1β. Intriguingly, while many viruses target the function of the molecular scaffold required for IL-1β maturation to prevent this response, we find that HCMV and IE86 target the IL-1β protein specifically. Moreover, we show that IE86 impairs both the synthesis of the IL-1β transcript and the stability of the immature protein. This indicates an unusual phenomenon in which a single viral protein exhibits two molecularly separate evasion phenotypes directed at a single innate cytokine.
Collapse
Affiliation(s)
- Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Kara Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Bryan Gall
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Igor Landais
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Klaus J Fruh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Victor R DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Who's Driving? Human Cytomegalovirus, Interferon, and NFκB Signaling. Viruses 2018; 10:v10090447. [PMID: 30134546 PMCID: PMC6163874 DOI: 10.3390/v10090447] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022] Open
Abstract
As essential components of the host's innate immune response, NFκB and interferon signaling are critical determinants of the outcome of infection. Over the past 25 years, numerous Human Cytomegalovirus (HCMV) genes have been identified that antagonize or modulate the signaling of these pathways. Here we review the biology of the HCMV factors that alter NFκB and interferon signaling, including what is currently known about how these viral genes contribute to infection and persistence, as well as the major outstanding questions that remain.
Collapse
|
12
|
Karamitros T, van Wilgenburg B, Wills M, Klenerman P, Magiorkinis G. Nanopore sequencing and full genome de novo assembly of human cytomegalovirus TB40/E reveals clonal diversity and structural variations. BMC Genomics 2018; 19:577. [PMID: 30068288 PMCID: PMC6090854 DOI: 10.1186/s12864-018-4949-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) has a double-stranded DNA genome of approximately 235 Kbp that is structurally complex including extended GC-rich repeated regions. Genomic recombination events are frequent in HCMV cultures but have also been observed in vivo. Thus, the assembly of HCMV whole genomes from technologies producing shorter than 500 bp sequences is technically challenging. Here we improved the reconstruction of HCMV full genomes by means of a hybrid, de novo genome-assembly bioinformatics pipeline upon data generated from the recently released MinION MkI B sequencer from Oxford Nanopore Technologies. RESULTS The MinION run of the HCMV (strain TB40/E) library resulted in ~ 47,000 reads from a single R9 flowcell and in ~ 100× average read depth across the virus genome. We developed a novel, self-correcting bioinformatics algorithm to assemble the pooled HCMV genomes in three stages. In the first stage of the bioinformatics algorithm, long contigs (N50 = 21,892) of lower accuracy were reconstructed. In the second stage, short contigs (N50 = 5686) of higher accuracy were assembled, while in the final stage the high quality contigs served as template for the correction of the longer contigs resulting in a high-accuracy, full genome assembly (N50 = 41,056). We were able to reconstruct a single representative haplotype without employing any scaffolding steps. The majority (98.8%) of the genomic features from the reference strain were accurately annotated on this full genome construct. Our method also allowed the detection of multiple alternative sub-genomic fragments and non-canonical structures suggesting rearrangement events between the unique (UL /US) and the repeated (T/IRL/S) genomic regions. CONCLUSIONS Third generation high-throughput sequencing technologies can accurately reconstruct full-length HCMV genomes including their low-complexity and highly repetitive regions. Full-length HCMV genomes could prove crucial in understanding the genetic determinants and viral evolution underpinning drug resistance, virulence and pathogenesis.
Collapse
Affiliation(s)
- Timokratis Karamitros
- Department of Zoology, University of Oxford, Oxford, United Kingdom. .,Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, 127 Vas Sofias Ave, 11527, Athens, Greece.
| | - Bonnie van Wilgenburg
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Mark Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Gkikas Magiorkinis
- Department of Zoology, University of Oxford, Oxford, United Kingdom. .,Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, M. Asias 75 str., 11527, Athens, Greece.
| |
Collapse
|
13
|
Hancock MH, Nelson JA. Modulation of the NFκb Signalling Pathway by Human Cytomegalovirus. VIROLOGY (HYDERABAD) 2017; 1:104. [PMID: 29082387 PMCID: PMC5659363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many viruses trigger innate and adaptive immune responses and must circumvent the negative consequences to successfully establish infection in their hosts. Human Cytomegalovirus (HCMV) is no exception, and devotes a significant portion of its coding capacity to genes involved in immune evasion. Activation of the NFκB signalling pathway by viral binding and entry results in induction of antiviral and pro-inflammatory genes that have significant negative effects on HCMV infection. However, NFκB signalling stimulates transcription from the Major Immediate Early Promoter (MIEP) and pro-inflammatory signalling is crucial for cellular differentiation and viral reactivation from latency. Accordingly, HCMV encodes proteins that act to both stimulate and inhibit the NFκB signalling pathway. In this Review we will highlight the complex interactions between HCMV and NFκB, discussing the known agonists and antagonists encoded by the virus and suggest why manipulation of the pathway may be critical for both lytic and latent infections.
Collapse
Affiliation(s)
- Meaghan H Hancock
- Corresponding author: Meaghan H. Hancock, Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA, Tel: 503-418-2784;
| | | |
Collapse
|
14
|
Abstract
Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.
Collapse
|
15
|
Polymorphisms and features of cytomegalovirus UL144 and UL146 in congenitally infected neonates with hepatic involvement. PLoS One 2017; 12:e0171959. [PMID: 28222150 PMCID: PMC5319779 DOI: 10.1371/journal.pone.0171959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/28/2017] [Indexed: 10/25/2022] Open
Abstract
Human cytomegalovirus is a significant agent of hepatic involvement in neonates. In this study, we investigated the polymorphisms and features of the viral genes UL144 and UL146 as well as their significance to congenital hepatic involvement. In 79 neonates with congenital cytomegalovirus infection and hepatic involvement, full length UL144 and UL146 were successfully amplified in 73.42% and 60.76% of cases, respectively. Sequencing indicated that both genes were hypervariable. Notably, UL144 genotype B was highly associated with aspartate aminotransferase (P = 0.028) and lactate dehydrogenase (P = 0.046). Similarly, UL146 genotype G1 and G13 were significantly associated with CMV IgM (P = 0.026), CMV IgG (P = 0.034), alanine aminotransferase (P = 0.019), and aspartate aminotransferase (P = 0.032). In conclusion, dominant UL144 (genotype B) and UL146 (genotype G1 and G13) genotypes are associated with elevated levels of enzymes and CMV IgM and IgG of cytomegalovirus infection.
Collapse
|
16
|
Abstract
Herpesviruses have evolved exquisite virus-host interactions that co-opt or evade a number of host pathways to enable the viruses to persist. Persistence of human cytomegalovirus (CMV), the prototypical betaherpesvirus, is particularly complex in the host organism. Depending on host physiology and the cell types infected, CMV persistence comprises latent, chronic, and productive states that may occur concurrently. Viral latency is a central strategy by which herpesviruses ensure their lifelong persistence. Although much remains to be defined about the virus-host interactions important to CMV latency, it is clear that checkpoints composed of viral and cellular factors exist to either maintain a latent state or initiate productive replication in response to host cues. CMV offers a rich platform for defining the virus-host interactions and understanding the host biology important to viral latency. This review describes current understanding of the virus-host interactions that contribute to viral latency and reactivation.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
17
|
Krishna BA, Lau B, Jackson SE, Wills MR, Sinclair JH, Poole E. Transient activation of human cytomegalovirus lytic gene expression during latency allows cytotoxic T cell killing of latently infected cells. Sci Rep 2016; 6:24674. [PMID: 27091512 PMCID: PMC4835774 DOI: 10.1038/srep24674] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/04/2016] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) latency in the myeloid lineage is maintained by repressive histone modifications around the major immediate early promoter (MIEP), which results in inhibition of the lytic viral life cycle. We now show that pharmacological inhibition of histone deacetylases (HDACs) relieves this repression of the MIEP and induces transient expression of the viral lytic immediate early (IE) antigens but, importantly, not full virus reactivation. In turn, these latently infected cells now become targets for IE-specific cytotoxic T cells (CTLs) which are present at high frequency in all normal healthy HCMV positive carriers but would normally be unable to target latent (lytic antigen-negative) cells. This approach of transiently inducing viral lytic gene expression by HDAC inhibition, in otherwise latently infected cells, offers a window of opportunity to target and purge the latent myeloid cell reservoir by making these normally immunologically undetectable cells visible to pre-existing host immune responses to viral lytic antigens.
Collapse
Affiliation(s)
- B. A. Krishna
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - B. Lau
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - S. E. Jackson
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - M. R. Wills
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - J. H. Sinclair
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| | - E. Poole
- Department of Medicine, University of Cambridge, Level 5 Laboratories Block, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ
| |
Collapse
|
18
|
Abstract
As with all human herpesviruses, human cytomegalovirus (HCMV) persists for the lifetime of the host by establishing a latent infection, which is broken by periodic reactivation events. One site of HCMV latency is in the progenitor cells of the myeloid lineage such as CD34+ cells and their CD14+ derivatives. The development of experimental techniques to isolate and culture these primary cells in vitro is enabling detailed analysis of the events that occur during virus latency and reactivation. Ex vivo differentiation of latently infected primary myeloid cells to dendritic cells and macrophages results in the reactivation of latent virus and provides model systems in which to analyse the viral and cellular functions involved in latent carriage and reactivation. Such analyses have shown that, in contrast to primary lytic infection or reactivation which is characterised by a regulated cascade of expression of all viral genes, latent infection is associated with a much more restricted viral transcription programme with expression of only a small number of viral genes. Additionally, concomitant changes in the expression of cellular miRNAs and cellular proteins occur, and this includes changes in the expression of a number of secreted cellular proteins and intracellular anti-apoptotic proteins, which all have profound effects on the latently infected cells. In this review, we concentrate on the effects of one of the latency-associated viral proteins, LAcmvIL-10, and describe how it causes a decrease in the cellular miRNA, hsa-miR-92a, and a concomitant upregulation of the GATA2 myeloid transcription factor, which, in turn, drives the expression of cellular IL-10. Taken together, we argue that HCMV latency, rather than a period of viral quiescence, is associated with the virally driven manipulation of host cell functions, perhaps every bit as complex as lytic infection. A full understanding of these changes in cellular and viral gene expression during latent infection could have far-reaching implications for therapeutic intervention.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Box 157, University of Cambridge, Addenbrooke’s Hospital, Level 5 Laboratories Block, Hills Road, Cambridge, CB2 0QQ UK
| | - John Sinclair
- Department of Medicine, Box 157, University of Cambridge, Addenbrooke’s Hospital, Level 5 Laboratories Block, Hills Road, Cambridge, CB2 0QQ UK
| |
Collapse
|
19
|
Roseoloviruses and their modulation of host defenses. Curr Opin Virol 2014; 9:178-87. [DOI: 10.1016/j.coviro.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 12/27/2022]
|
20
|
Latency-associated viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8 Secretion during latent infection through changes in the cellular microRNA hsa-miR-92a. J Virol 2014; 88:13947-55. [PMID: 25253336 PMCID: PMC4249158 DOI: 10.1128/jvi.02424-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. IMPORTANCE HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the “latent” phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system.
Collapse
|
21
|
Wills MR, Poole E, Lau B, Krishna B, Sinclair JH. The immunology of human cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies? Cell Mol Immunol 2014; 12:128-38. [PMID: 25132454 DOI: 10.1038/cmi.2014.75] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 12/30/2022] Open
Abstract
While the host immune response following primary human cytomegalovirus (HCMV) infection is generally effective at stopping virus replication and dissemination, virus is never cleared by the host and like all herpesviruses, persists for life. At least in part, this persistence is known to be facilitated by the ability of HCMV to establish latency in myeloid cells in which infection is essentially silent with, importantly, a total lack of new virus production. However, although the viral transcription programme during latency is much suppressed, a number of viral genes are expressed during latent infection at the protein level and many of these have been shown to have profound effects on the latent cell and its environment. Intriguingly, many of these latency-associated genes are also expressed during lytic infection. Therefore, why the same potent host immune responses generated during lytic infection to these viral gene products are not recognized during latency, thereby allowing clearance of latently infected cells, is far from clear. Reactivation from latency is also a major cause of HCMV-mediated disease, particularly in the immune compromised and immune naive, and is also likely to be a major source of virus in chronic subclinical HCMV infection which has been suggested to be associated with long-term diseases such as atherosclerosis and some neoplasias. Consequently, understanding latency and why latently infected cells appear to be immunoprivileged is crucial for an understanding of the pathogenesis of HCMV and may help to design strategies to eliminate latent virus reservoirs, at least in certain clinical settings.
Collapse
|
22
|
Van Damme E, Van Loock M. Functional annotation of human cytomegalovirus gene products: an update. Front Microbiol 2014; 5:218. [PMID: 24904534 PMCID: PMC4032930 DOI: 10.3389/fmicb.2014.00218] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023] Open
Abstract
Human cytomegalovirus is an opportunistic double-stranded DNA virus with one of the largest viral genomes known. The 235 kB genome is divided in a unique long (UL) and a unique short (US) region which are flanked by terminal and internal repeats. The expression of HCMV genes is highly complex and involves the production of protein coding transcripts, polyadenylated long non-coding RNAs, polyadenylated anti-sense transcripts and a variety of non-polyadenylated RNAs such as microRNAs. Although the function of many of these transcripts is unknown, they are suggested to play a direct or regulatory role in the delicately orchestrated processes that ensure HCMV replication and life-long persistence. This review focuses on annotating the complete viral genome based on three sources of information. First, previous reviews were used as a template for the functional keywords to ensure continuity; second, the Uniprot database was used to further enrich the functional database; and finally, the literature was manually curated for novel functions of HCMV gene products. Novel discoveries were discussed in light of the viral life cycle. This functional annotation highlights still poorly understood regions of the genome but more importantly it can give insight in functional clusters and/or may be helpful in the analysis of future transcriptomics and proteomics studies.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| | - Marnix Van Loock
- Janssen Infectious Diseases BVBA, Therapeutic Area of Infectious Diseases Beerse, Belgium
| |
Collapse
|
23
|
Hu C, Chen J, Ye L, Chen R, Zhang L, Xue X. Codon usage bias in human cytomegalovirus and its biological implication. Gene 2014; 545:5-14. [PMID: 24814188 DOI: 10.1016/j.gene.2014.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection, a worldwide contagion, causes a serious disorder in infected individuals. Analysis of codon usage can reveal much molecular information about this virus. The effective number of codon (ENC) values, relative synonymous codon usage (RSCU) values, codon adaptation index (CAI), and nucleotide contents was investigated in approximately 160 coding sequences (CDS) among 17 human cytomegalovirus genomes using the software CodonW. Linear regression analysis and logistic regression were performed to explore the preliminary data. The results showed that, overall, HCMV genomes had low codon usage bias (mean ENC=47.619). However, the ENC of individual CDS varied widely and was distributed unevenly between host-related genes and viral-self-function genes (P=0.002, odds ratio (OR)=3.194), as did the GC content (P=0.016, OR=2.178). The ENC values correlated with CAI, GC content, and the nucleotide composing at the 3rd codon position (GC3s) (P<0.001). There was a significant variation in the codon preference that depended on the RSCU data. The predicted ENC curve suggested that mutational pressure, rather than natural selection, was one of the main factors that determined the codon usage bias in HCMV. Among 123 genes with known function, the genes related to viral self-replication and viral-host interaction showed different ENC and CAI values, and GC and GC3s contents. In conclusion, the detailed codon usage bias theoretically revealed information concerning HCMV evolution and could be a valuable additional parameter for HCMV gene function research.
Collapse
Affiliation(s)
- Changyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Jing Chen
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lulu Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Renpin Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
24
|
Sinclair JH, Reeves MB. Human cytomegalovirus manipulation of latently infected cells. Viruses 2013; 5:2803-24. [PMID: 24284875 PMCID: PMC3856416 DOI: 10.3390/v5112803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/28/2022] Open
Abstract
Primary infection with human cytomegalovirus (HCMV) results in the establishment of a lifelong infection of the host which is aided by the ability of HCMV to undergo a latent infection. One site of HCMV latency in vivo is in haematopoietic progenitor cells, resident in the bone marrow, with genome carriage and reactivation being restricted to the cells of the myeloid lineage. Until recently, HCMV latency has been considered to be relatively quiescent with the virus being maintained essentially as a “silent partner” until conditions are met that trigger reactivation. However, advances in techniques to study global changes in gene expression have begun to show that HCMV latency is a highly active process which involves expression of specific latency-associated viral gene products which orchestrate major changes in the latently infected cell. These changes are argued to help maintain latent infection and to modulate the cellular environment to the benefit of latent virus. In this review, we will discuss these new findings and how they impact not only on our understanding of the biology of HCMV latency but also how they could provide tantalising glimpses into mechanisms that could become targets for the clearance of latent HCMV.
Collapse
Affiliation(s)
- John H. Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK; E-Mail:
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)207-794-0500 (ext. 33109)
| |
Collapse
|
25
|
Ma Y, Li M, Zheng B, Wang N, Gao S, Wang L, Qi Y, Sun Z, Ruan Q. Overlapping transcription structure of human cytomegalovirus UL140 and UL141 genes. J Biosci 2013; 38:35-44. [PMID: 23385811 DOI: 10.1007/s12038-012-9293-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transcription of human cytomegalovirus UL/b' region has been studied extensively for some genes. In this study, transcripts of the UL140 and UL141, two of the UL/b' genes, were identified in late RNAs of three HCMV isolates using Northern blot hybridization, cDNA library screening and RACE-PCR. At least three transcripts with length of 2800, 2400 and 1700 nt, as well as a group of transcripts of about 1000-1300 nt, were found in this gene region with an accordant 3' ends. Among the transcripts, two initiated upstream of the start code of the UL140 gene and contained the UL140 and UL141 open reading frame (ORF), one initiated in the middle of the UL140 gene, and could encode short ORFs upstream of the UL141 ORF. A group of transcripts initiated upstream or downstream of the start code of the UL141 gene, and could encode 'nested' ORFs, including the UL141 ORF. These 'nested' ORFs possess different initiation sites but the same termination site as that of the UL141 ORF.
Collapse
Affiliation(s)
- Yanping Ma
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning of P.R. China, 110004
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang YP, Qi Y, Huang YJ, Qi ML, Ma YP, He R, Ji YH, Sun ZR, Ruan Q. Identification of immediate early gene X-1 as a cellular target gene of hcmv-mir-UL148D. Int J Mol Med 2013; 31:959-66. [PMID: 23403649 DOI: 10.3892/ijmm.2013.1271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/23/2013] [Indexed: 11/05/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that causes congenital diseases and opportunistic infections in immunocompromised individuals. Its functional proteins and microRNAs (miRNAs) facilitate efficient viral propagation by altering host cell behavior. The identification of functional target genes of miRNAs is an important step in the study of HCMV pathogenesis. HCMV encodes at least 14 miRNAs, including hcmv-mir-UL148D, which resides in the HCMV UL/b' region. hcmv-mir-UL148D is the only miRNA encoded by the HCMV UL/b' region; however, its targets and functional effects have not yet been eludidated. In this study, hybrid-PCR screening was used to identify target genes and dual luciferase reporter assay was used to evaluate the binding effect of hcmv-miR-UL148D to the 3' untranslated region (3'UTR) of IEX-1. In addition, western blot analysis was used to detect the expression kinetics of IEX-1 protein and apoptosis assay was used to identify the effects of hcmv-miR-UL148D on cell apoptosis. The hybrid-PCR results showed that only one binding site in the 3'UTR of the cellular gene, human immediate early gene X-1 (IEX-1), was completely complementary to an 11 nucleotide (nt) sequence in the 5' terminus of hcmv-mir-UL148D, including the entire seed region. The binding site was demonstrated to be functional by dual luciferase reporter assay with a 47% repression of the relative luciferase activity. In an in vitro system of human embryonic kidney 293 (HEK293) cells, the ectopically expressed hcmv-mir-UL148D exhibited a downregulatory effect on IEX-1 expression, and decreased the cell apoptosis induced by transfected IEX-1. Our data demonstrate that hcmv-mir-UL148D targets the cellular gene, IEX-1, downregulating its expression and thus results in anti-apoptotic effects.
Collapse
Affiliation(s)
- Yue-Ping Wang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The myeloid transcription factor GATA-2 regulates the viral UL144 gene during human cytomegalovirus latency in an isolate-specific manner. J Virol 2013; 87:4261-71. [PMID: 23365437 DOI: 10.1128/jvi.03497-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is generally accepted that, following primary infection, human cytomegalovirus (HCMV) establishes lifelong latency in CD34(+) progenitor cells and other derivative cells of the myeloid lineage. In this study, we show that the viral UL144 gene is expressed during latent infection in two cell types of the myeloid lineage, CD34(+) and CD14(+) monocytes, and that the UL144 protein is functional in latently infected monocytes. However, this latency-associated expression of UL144 occurs only in certain isolates of HCMV and depends on the presence of functional GATA-2 transcription factor binding sites in the UL144 promoter, in contrast to the viral latency-associated gene LUNA, which we also show is regulated by GATA-2 but expressed uniformly during latent infection independent of the virus isolate. Taken together, these data suggest that the HCMV latency-associated transcriptome may be virus isolate specific and dependent on the repertoire of transcription factor binding sites in the promoters of latency-associated genes.
Collapse
|
28
|
McSharry BP, Avdic S, Slobedman B. Human cytomegalovirus encoded homologs of cytokines, chemokines and their receptors: roles in immunomodulation. Viruses 2012. [PMID: 23202490 PMCID: PMC3509658 DOI: 10.3390/v4112448] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV), the largest human herpesvirus, infects a majority of the world’s population. Like all herpesviruses, following primary productive infection, HCMV establishes a life-long latent infection, from which it can reactivate years later to produce new, infectious virus. Despite the presence of a massive and sustained anti-HCMV immune response, productively infected individuals can shed virus for extended periods of time, and once latent infection is established, it is never cleared from the host. It has been proposed that HCMV must therefore encode functions which help to evade immune mediated clearance during productive virus replication and latency. Molecular mimicry is a strategy used by many viruses to subvert and regulate anti-viral immunity and HCMV has hijacked/developed a range of functions that imitate host encoded immunomodulatory proteins. This review will focus on the HCMV encoded homologs of cellular cytokines/chemokines and their receptors, with an emphasis on how these virus encoded homologs may facilitate viral evasion of immune clearance.
Collapse
Affiliation(s)
- Brian P. McSharry
- Discipline of Infectious Diseases and Immunology, University of Sydney, Australia; (B.P.McS); (S.A.); (B.S.)
- Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia
| | - Selmir Avdic
- Discipline of Infectious Diseases and Immunology, University of Sydney, Australia; (B.P.McS); (S.A.); (B.S.)
- Centre for Virus Research, Westmead Millennium Institute, Sydney, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, University of Sydney, Australia; (B.P.McS); (S.A.); (B.S.)
- Author to whom correspondence should be addressed; ; Tel.: +1-61-93514334
| |
Collapse
|
29
|
Li C, Samaranayake NR, Ong KL, Wong HK, Cheung BMY. Is human cytomegalovirus infection associated with hypertension? The United States National Health and Nutrition Examination Survey 1999-2002. PLoS One 2012; 7:e39760. [PMID: 22768311 PMCID: PMC3388091 DOI: 10.1371/journal.pone.0039760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/28/2012] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Recent studies have implicated the human cytomegalovirus (HCMV) as a possible pathogen for causing hypertension. We aimed to study the association between HCMV infection and hypertension in the United States National Health and Nutrition Examination Survey (NHANES). METHODS We analyzed data on 2979 men and 3324 women in the NHANES 1999-2002. We included participants aged 16-49 years who had valid data on HCMV infection and hypertension. RESULTS Of the participants, 54.7% had serologic evidence of HCMV infection and 17.5% had hypertension. There were ethnic differences in the prevalence of HCMV infection (P<0.001) and hypertension (P<0.001). The prevalence of both increased with age (P<0.001). Before adjustment, HCMV seropositivity was significantly associated with hypertension in women (OR=1.63, 95% CI=1.25-2.13, P=0.001) but not in men. After adjustment for race/ethnicity, the association between HCMV seropositivity and hypertension in women remained significant (OR=1.55, 95% CI=1.20-2.02, P=0.002). Further adjustment for body mass index, diabetes status and hypercholesterolemia attenuated the association (OR=1.44, 95% CI=1.10-1.90, P=0.010). However, after adjusting for age, the association was no longer significant (OR=1.24, 95% CI=0.91-1.67, P=0.162). CONCLUSIONS In this nationally representative population-based survey, HCMV seropositivity is associated with hypertension in women in the NHANES population. This association is largely explained by the association of hypertension with age and the increase in past exposure to HCMV with age.
Collapse
Affiliation(s)
- Chao Li
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | | - Kwok Leung Ong
- Lipid Research Group, Heart Research Institute, Sydney, Australia
| | - Hoi Kin Wong
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Bernard M. Y. Cheung
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, China
- * E-mail:
| |
Collapse
|
30
|
Walter J, Fraga L, Orin MJ, Decker WD, Gipps T, Stek A, Aldrovandi GM. Immunomodulatory factors in cervicovaginal secretions from pregnant and non-pregnant women: a cross-sectional study. BMC Infect Dis 2011; 11:263. [PMID: 21961998 PMCID: PMC3190379 DOI: 10.1186/1471-2334-11-263] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 09/30/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pregnant women are at an increased risk for HIV infection due to unknown biological causes. Given the strong effect of sex-hormones on the expression of immunomuodulatory factors, the central role of mucosal immunity in HIV pathogenesis and the lack of previous studies, we here tested for differences in immunomuodulatory factors in cervico-vaginal secretions between pregnant and non-pregnant women. METHODS We compared concentrations of 39 immunomodulatory factors in cervicovaginal lavages (CVL) from 21 pregnant women to those of 24 non-pregnant healthy women from the US. We used Bonferroni correction to correct for multiple testing and linear regression modeling to adjust for possible confounding by plasma cytokine concentration, cervical ectopy, total protein concentration, and other possible confounders. Cervical ectopy was determined by planimetry. Concentration of immunomodulatory factors were measured by a multiplex assay, protein concentration by the Bradford Method. RESULTS Twenty six (66%) of the 39 measured immunomodulatory factors were detectable in at least half of the CVL samples included in the study. Pregnant women had threefold lower CVL concentration of CCL22 (geometric mean: 29.6 pg/ml versus 89.7 pg/ml, p = 0.0011) than non-pregnant women. CVL CCL22 concentration additionally correlated negatively with gestational age (Spearman correlation coefficient [RS]: -0.49, p = 0.0006). These associations remained significant when corrected for multiple testing. CCL22 concentration in CVL was positively correlated with age and negatively correlated with time since last coitus and the size of cervical ectopy. However, none of these associations could explain the difference of CCL22 concentration between pregnant and non-pregnant women in this study, which remained significant in adjusted analysis. CONCLUSIONS In this study population, pregnancy is associated with reduced concentrations of CCL22 in cervicovaginal secretions. The role of CCL22 on HIV transmission should now be investigated in prospective studies.
Collapse
Affiliation(s)
- Jan Walter
- Department of Plant Pathology and Microbiology, University of California, Riverside, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Qi Y, Ma Y, He R, Wang N, Ruan Q, Ji Y, Li M, Sun Z, Ren G. Characterization of 3' termini of human cytomegalovirus UL138-UL145 transcripts in a clinical strain. Microbiol Immunol 2011; 55:95-9. [PMID: 21204946 DOI: 10.1111/j.1348-0421.2010.00294.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The functions of some proteins encoded by human cytomegalovirus (HCMV) UL/b' genes have been studied; however, systematic analysis of the transcripts for this region is still insufficient. The results of both rapid amplification of cDNA ends (RACE) and cDNA library screening in this study proved that 3' termini of all transcripts in the UL138-UL145 region were located approximately 20 bp downstream from each potential poly (A) signal, which were at the positions of nucleotides 7184, 9954 and 12848 in the UL/b' sequence of the H strain, respectively. Thus, there were at least two large families of polycistronic transcripts in this gene region. The first family of 3'-coterminal transcripts contained UL139, UL140 and UL141 genes, and the second one consisted of UL142, UL143, UL144 and UL145 genes. The 3'-coterminal characterization further confirmed that multiple uses of polyadenylation signals were commonly used by HCMV to utilize genetic information.
Collapse
Affiliation(s)
- Ying Qi
- Virus Laboratory, Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Poole E, McGregor Dallas SR, Colston J, Joseph RSV, Sinclair J. Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34⁺ progenitors. J Gen Virol 2011; 92:1539-1549. [PMID: 21471310 DOI: 10.1099/vir.0.031377-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV; human herpesvirus 5) is known to be CD34(+) haematopoietic progenitor cells, and it is likely that carriage of latent virus has profound effects on cellular gene expression in order to optimize latency and reactivation. As microRNAs (miRNAs) play important roles in regulating stem-cell gene expression, this study asked whether latent carriage of HCMV led to changes in cellular miRNA expression. A comprehensive miRNA screen showed the differential regulation of a number of cellular miRNAs during HCMV latency in CD34(+) progenitor cells. One of these, hsa-miR-92a, was robustly decreased in three independent miRNA screens. Latency-induced change in hsa-miR-92a results in an increase in expression of GATA-2 and subsequent increased expression of cellular IL-10, which aids the maintenance of latent viral genomes in CD34(+) cells, probably resulting from their increased survival.
Collapse
Affiliation(s)
- Emma Poole
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stuart R McGregor Dallas
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Julia Colston
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Robert Samuel V Joseph
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - John Sinclair
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
33
|
Mercorelli B, Lembo D, Palù G, Loregian A. Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol Ther 2011; 131:309-29. [PMID: 21570424 PMCID: PMC7112563 DOI: 10.1016/j.pharmthera.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, mainly transplant recipients and AIDS patients, and is the most frequent cause of congenital malformations in newborn children. To date, few drugs are licensed for the treatment of HCMV infections, most of which target the viral DNA polymerase and suffer from many drawbacks, including long-term toxicity, low potency, and poor bioavailability. In addition, the emergence of drug-resistant viral strains is becoming an increasing problem for disease management. Finally, none of the current anti-HCMV drugs have been approved for the treatment of congenital infections. For all these reasons, there is still a strong need for new anti-HCMV drugs with novel mechanisms of action. The first events of the virus replication cycle, including attachment, entry, immediate-early gene expression, and immediate-early functions—in particular that of Immediate-Early 2 protein—represent attractive targets for the development of novel antiviral compounds. Such inhibitors would block not only the expression of viral immediate-early proteins, which play a key role in the pathogenesis of HCMV infection, but also the host immunomodulation and the changes to cell physiology induced by the first events of virus infection. This review describes the current knowledge on the initial phases of HCMV replication, their validation as potential novel antiviral targets, and the development of compounds that block such processes.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | | | |
Collapse
|
34
|
Riezu-Boj JI, Larrea E, Aldabe R, Guembe L, Casares N, Galeano E, Echeverria I, Sarobe P, Herrero I, Sangro B, Prieto J, Lasarte JJ. Hepatitis C virus induces the expression of CCL17 and CCL22 chemokines that attract regulatory T cells to the site of infection. J Hepatol 2011; 54:422-31. [PMID: 21129807 DOI: 10.1016/j.jhep.2010.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/28/2010] [Accepted: 07/12/2010] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The mechanisms by which Foxp3+ T regulatory cells (Treg) accumulate in HCV infected livers are not known. Here, we studied the role of chemokines CCL17 and CCL22 in this process. METHODS Chemokine mRNA levels were determined by qPCR in liver biopsies from 26 HCV chronically infected patients (CHC), 11 patients with treatment-induced sustained virological response (SVR), 16 patients with other liver diseases unrelated to HCV, and 24 normal livers. Double-immunofluorescence Foxp3/CD3 or CD11c/CCL22 was performed in liver sections. Chemokine production by monocyte-derived dendritic cells (MDDC) co-cultured with uninfected or HCV-JFH1 infected Huh7 cells was measured by qPCR and ELISA. Chemotactic activity of culture supernatants was also tested. RESULTS Foxp3+ Treg were increased in CHC livers as compared to controls. Patients with CHC showed elevated intrahepatic levels of CCL17 mRNA compared to normal livers or livers from subjects with SVR or other forms of liver disease. Intrahepatic CCL22 expression was also higher in CHC than in healthy subjects or SVR patients but similar to that observed in other liver diseases. Dendritic cells producing CCL22 could be found inside the hepatic lobule in CHC patients. Contact between MDDC and HCV-JFH1-infected Huh7 cells induced the expression of CCL17 and CCL22 in a process partially dependent on ICAM-1. Transwell experiments showed that upregulation of these chemokines enhanced Treg migration. CONCLUSIONS Contact of HCV-infected cells with dendritic cells induces the production of Treg-attracting chemokines, an effect which may favour liver accumulation of Treg in CHC. Our findings contribute to explain the mechanism by which HCV escapes the immune response and thus reveals novel therapeutic targets.
Collapse
Affiliation(s)
- José-Ignacio Riezu-Boj
- Gene Therapy and Hepatology Area, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kuo CH, Ko YC, Yang SN, Chu YT, Wang WL, Huang SK, Chen HN, Wei WJ, Jong YJ, Hung CH. Effects of PGI2 analogues on Th1- and Th2-related chemokines in monocytes via epigenetic regulation. J Mol Med (Berl) 2010; 89:29-41. [PMID: 21085923 DOI: 10.1007/s00109-010-0694-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/06/2010] [Accepted: 10/29/2010] [Indexed: 01/25/2023]
Abstract
Chemokines play important roles in asthma. Prostaglandin I(2) (PGI(2)) analogue is recently suggested as a candidate for treating asthma. However, the effects of PGI(2) analogues on the expression of Th1- and Th2-related chemokines are unknown. To this end, we investigated the in vitro effects of PGI(2) analogues on the expression of Th1-related chemokine interferon-γ-inducible protein-10 (IP-10/CXCL10) and Th2-related chemokine macrophage-derived chemokine (MDC/CCL22) in human monocytes. The human monocytes were pretreated with iloprost and treprostinil before lipopolysaccharide (LPS) stimulation. IP-10 and MDC were measured by ELISA. Intracellular signaling was investigated by cyclic adenosine monophosphate (cAMP) assay, western blot and chromatin immunoprecipitation. PGI(2) analogues enhanced MDC, but suppressed IP-10 expression in LPS-stimulated monocytes. These effects were reversed by the I prostanoid (IP) receptor antagonist (CAY10449), peroxisomal proliferators-activated receptor (PPAR)-α antagonist (GW6741) and PPAR-γ antagonist (GW9662). PGI(2) analogues increased intracellular cAMP levels. Forskolin, an adenyl cyclase activator, conferred similar effects. PGI(2) analogue-enhanced MDC expression was reduced by nuclear factor (NF) κB inhibitor (BAY 117085) and mitogen-activated protein kinase (MAPK)-p38 inhibitor (SB203580). PGI(2) analogues up-regulated phospho-p65 and phospho-p38 but down-regulated phospho-ERK expression. Iloprost enhanced H3 acetylation in MDC promoter area and suppressed H3 acetylation, H3K4, and H3K36 trimethylation in IP-10 promoter area. PGI(2) analogues enhanced MDC expression via the I prostanoid-receptor-cAMP, PPAR-α and PPAR-γ, NFκB-p65, MAPK-p38-ATF2 pathways and increasing histone acetylation, and suppressed IP-10 expression via the IP-receptor-cAMP, PPAR-γ, MAPK-ERK-ELK1 pathways and inhibiting histone acetylation and trimethylation in LPS-stimulated monocytes. PGI(2) analogues may therefore increase Th2 recruitment and inflammation.
Collapse
Affiliation(s)
- Chang-Hung Kuo
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bradley AJ, Lurain NS, Ghazal P, Trivedi U, Cunningham C, Baluchova K, Gatherer D, Wilkinson GWG, Dargan DJ, Davison AJ. High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169. J Gen Virol 2009; 90:2375-2380. [PMID: 19553388 PMCID: PMC2885757 DOI: 10.1099/vir.0.013250-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 06/23/2009] [Indexed: 12/14/2022] Open
Abstract
The genomes of commonly used variants of human cytomegalovirus (HCMV) strains Towne and AD169 each contain a substantial mutation in which a region (U(L)/b') at the right end of the long unique region has been replaced by an inverted duplication of a region from the left end of the genome. Using high-throughput technology, we have sequenced HCMV strain Towne (ATCC VR-977) and confirmed the presence of two variants, one exhibiting the replacement in U(L)/b' and the other intact in this region. Both variants are mutated in genes RL13, UL1, UL40, UL130, US1 and US9. We have also sequenced a novel AD169 variant (varUC) that is intact in U(L)/b' except for a small deletion that affects genes UL144, UL142, UL141 and UL140. Like other AD169 variants, varUC is mutated in genes RL5A, RL13, UL36 and UL131A. A subpopulation of varUC contains an additional deletion affecting genes IRS1, US1 and US2.
Collapse
Affiliation(s)
- Amanda J. Bradley
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Nell S. Lurain
- Department of Immunology and Microbiology, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA
| | - Peter Ghazal
- Division of Pathway Medicine, University of Edinburgh Medical School, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Urmi Trivedi
- The Gene Pool, Ashworth Laboratories, Institute of Evolutionary Biology, King's Buildings, Edinburgh EH9 3JT, UK
| | - Charles Cunningham
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Katarina Baluchova
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Derek Gatherer
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Gavin W. G. Wilkinson
- Department of Medical Microbiology, Tenovus Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XX, UK
| | - Derrick J. Dargan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Andrew J. Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
37
|
Radonjic M, de Haan JR, van Erk MJ, van Dijk KW, van den Berg SAA, de Groot PJ, Müller M, van Ommen B. Genome-wide mRNA expression analysis of hepatic adaptation to high-fat diets reveals switch from an inflammatory to steatotic transcriptional program. PLoS One 2009; 4:e6646. [PMID: 19680557 PMCID: PMC2722023 DOI: 10.1371/journal.pone.0006646] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/15/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Excessive exposure to dietary fats is an important factor in the initiation of obesity and metabolic syndrome associated pathologies. The cellular processes associated with the onset and progression of diet-induced metabolic syndrome are insufficiently understood. PRINCIPAL FINDINGS To identify the mechanisms underlying the pathological changes associated with short and long-term exposure to excess dietary fat, hepatic gene expression of ApoE3Leiden mice fed chow and two types of high-fat (HF) diets was monitored using microarrays during a 16-week period. A functional characterization of 1663 HF-responsive genes reveals perturbations in lipid, cholesterol and oxidative metabolism, immune and inflammatory responses and stress-related pathways. The major changes in gene expression take place during the early (day 3) and late (week 12) phases of HF feeding. This is also associated with characteristic opposite regulation of many HF-affected pathways between these two phases. The most prominent switch occurs in the expression of inflammatory/immune pathways (early activation, late repression) and lipogenic/adipogenic pathways (early repression, late activation). Transcriptional network analysis identifies NF-kappaB, NEMO, Akt, PPARgamma and SREBP1 as the key controllers of these processes and suggests that direct regulatory interactions between these factors may govern the transition from early (stressed, inflammatory) to late (pathological, steatotic) hepatic adaptation to HF feeding. This transition observed by hepatic gene expression analysis is confirmed by expression of inflammatory proteins in plasma and the late increase in hepatic triglyceride content. In addition, the genes most predictive of fat accumulation in liver during 16-week high-fat feeding period are uncovered by regression analysis of hepatic gene expression and triglyceride levels. CONCLUSIONS The transition from an inflammatory to a steatotic transcriptional program, possibly driven by the reciprocal activation of NF-kappaB and PPARgamma regulators, emerges as the principal signature of the hepatic adaptation to excess dietary fat. These findings may be of essential interest for devising new strategies aiming to prevent the progression of high-fat diet induced pathologies.
Collapse
Affiliation(s)
- Marijana Radonjic
- Nutrigenomics Consortium, Top Institute Food and Nutrition, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Qi Y, He R, Ma YP, Sun ZR, Ji YH, Ruan Q. Human cytomegalovirus UL138 open reading frame is highly conserved in clinical strains. ACTA ACUST UNITED AC 2009; 24:107-11. [PMID: 19618608 DOI: 10.1016/s1001-9294(09)60071-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the variability of human cytomegalovirus (HCMV) UL138 open reading frame (ORF) in clinical strains. METHODS HCMV UL138 ORF was amplified by polymerase chain reaction (PCR) and PCR amplification products were sequenced directly, and the data were analyzed in 19 clinical strains. RESULTS UL138 ORF in all 30 clinical strains was amplified successfully. Compared with that of Toledo strain, the nucleotide and amino acid sequence identities of UL138 ORF in all strains were 97.41% to 99.41% and 98.24% to 99.42%, respectively. All of the nucleotide mutations were substitutions. The spatial structure and post-translational modification sites of UL138 encoded proteins were conserved. The result of phylogenetic tree showed that HCMV UL138 sequence variations were not definitely related with different clinical symptoms. CONCLUSION HCMV UL138 ORF in clinical strains is high conservation, which might be helpful for UL138 encoded protein to play a role in latent infection of HCMV.
Collapse
Affiliation(s)
- Ying Qi
- Virus Laboratory, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | | | | | | | | | | |
Collapse
|
39
|
Poole E, Groves I, MacDonald A, Pang Y, Alcami A, Sinclair J. Identification of TRIM23 as a cofactor involved in the regulation of NF-kappaB by human cytomegalovirus. J Virol 2009; 83:3581-90. [PMID: 19176615 PMCID: PMC2663253 DOI: 10.1128/jvi.02072-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 01/15/2009] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) regulates NF-kappaB during infection by a variety of mechanisms. For example, the HCMV gene product, UL144, is known to activate NF-kappaB in a tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6)-dependent manner, causing the upregulation of the chemokine CCL22 (MDC). Viral UL144 is expressed from the UL/b' region of the HCMV genome at early times postinfection and is a TNFR1-like homologue. Despite this homology to the TNFR1 receptor superfamily, UL144 does not bind to members of the TNF ligand superfamily. We show here that the upregulation of NF-kappaB by UL144 is dependent upon cellular tripartite motif 23 (TRIM23) protein. We propose a mechanism by which UL144 activates NF-kappaB through a direct interaction with the cellular protein TRIM23 in a complex containing TRAF6. In contrast, TRIM23 is not involved in conventional double-stranded RNA signaling via NF-kappaB. Therefore, we present a novel role for TRIM23 that is specific to UL144-mediated activation of NF-kappaB during the course of virus infection.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|