1
|
Wu X, Liu H, Guo YR. Insights into Virus-Host Interactions: Lessons from Caenorhabditis elegans-Orsay Virus Model. Curr Med Sci 2025; 45:169-184. [PMID: 40029496 DOI: 10.1007/s11596-025-00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 03/05/2025]
Abstract
The study of virus-host interactions has been significantly advanced using model organisms, with nematodes being a prominent example. Caenorhabditis elegans (C. elegans) nematodes have provided valuable insights into the mechanisms of viral infections, host defense strategies, and the development of antiviral therapies. With the discovery of natural viral pathogens of nematodes, Orsay virus, Le Blanc virus, Santeuil virus, and Mělník virus, the exploration of the virus-host interaction model based on nematodes has entered a new era. The virus-host interaction network consists of viruses, hosts, and the antagonistic effects of viruses on host immunity. The nematode virus-host interaction model is a concrete manifestation used to study the complex relationships among these three elements. Previous studies have indicated that during the entire process of nematode infection by viruses, antiviral RNA interference (RNAi) plays a crucial role. Additionally, the host's innate immune responses, such as the antiviral-specific intracellular pathogen response (IPR) and certain signaling pathways homologous to those in humans, are particularly important in the natural immune and antiviral processes of nematodes. These processes are regulated by multiple genes in the host. The reverse genetics system for Orsay virus has been successfully developed to study viral gene function and virus-host interactions. Nematodes serve as simple host models for understanding RNA virus replication, related cellular components, and virus-host interaction mechanisms. These findings will likely contribute to the development of antiviral treatment strategies based on novel targets.
Collapse
Affiliation(s)
- Xun Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yusong R Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Qi F, Chen X, Wang J, Niu X, Li S, Huang S, Ran X. Genome-wide characterization of structure variations in the Xiang pig for genetic resistance to African swine fever. Virulence 2024; 15:2382762. [PMID: 39092797 PMCID: PMC11299630 DOI: 10.1080/21505594.2024.2382762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/07/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
African swine fever (ASF) is a rapidly fatal viral haemorrhagic fever in Chinese domestic pigs. Although very high mortality is observed in pig farms after an ASF outbreak, clinically healthy and antibody-positive pigs are found in those farms, and viral detection is rare from these pigs. The ability of pigs to resist ASF viral infection may be modulated by host genetic variations. However, the genetic basis of the resistance of domestic pigs against ASF remains unclear. We generated a comprehensive set of structural variations (SVs) in a Chinese indigenous Xiang pig with ASF-resistant (Xiang-R) and ASF-susceptible (Xiang-S) phenotypes using whole-genome resequencing method. A total of 53,589 nonredundant SVs were identified, with an average of 25,656 SVs per individual in the Xiang pig genome, including insertion, deletion, inversion and duplication variations. The Xiang-R group harboured more SVs than the Xiang-S group. The F-statistics (FST) was carried out to reveal genetic differences between two populations using the resequencing data at each SV locus. We identified 2,414 population-stratified SVs and annotated 1,152 Ensembl genes (including 986 protein-coding genes), in which 1,326 SVs might disturb the structure and expression of the Ensembl genes. Those protein-coding genes were mainly enriched in the Wnt, Hippo, and calcium signalling pathways. Other important pathways associated with the ASF viral infection were also identified, such as the endocytosis, apoptosis, focal adhesion, Fc gamma R-mediated phagocytosis, junction, NOD-like receptor, PI3K-Akt, and c-type lectin receptor signalling pathways. Finally, we identified 135 candidate adaptive genes overlapping 166 SVs that were involved in the virus entry and virus-host cell interactions. The fact that some of population-stratified SVs regions detected as selective sweep signals gave another support for the genetic variations affecting pig resistance against ASF. The research indicates that SVs play an important role in the evolutionary processes of Xiang pig adaptation to ASF infection.
Collapse
Affiliation(s)
- Fenfang Qi
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xia Chen
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xi Niu
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Sheng Li
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Shihui Huang
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
3
|
Alkan C, Brésard G, Frézal L, Richaud A, Ruaud A, Zhang G, Félix MA. Natural variation in infection specificity of Caenorhabditis briggsae isolates by two RNA viruses. PLoS Pathog 2024; 20:e1012259. [PMID: 38861582 PMCID: PMC11195985 DOI: 10.1371/journal.ppat.1012259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Antagonistic relationships such as host-virus interactions potentially lead to rapid evolution and specificity in interactions. The Orsay virus is so far the only horizontal virus naturally infecting the nematode C. elegans. In contrast, several related RNA viruses infect its congener C. briggsae, including Santeuil (SANTV) and Le Blanc (LEBV) viruses. Here we focus on the host's intraspecific variation in sensitivity to these two intestinal viruses. Many temperate-origin C. briggsae strains, including JU1264 and JU1498, are sensitive to both, while many tropical strains, such as AF16, are resistant to both. Interestingly, some C. briggsae strains exhibit a specific resistance, such as the HK104 strain, specifically resistant to LEBV. The viral sensitivity pattern matches the strains' geographic and genomic relationships. The heavily infected strains mount a seemingly normal small RNA response that is insufficient to suppress viral infection, while the resistant strains show no small RNA response, suggesting an early block in viral entry or replication. We use a genetic approach from the host side to map genomic regions participating in viral resistance polymorphisms. Using Advanced Intercrossed Recombinant Inbred Lines (RILs) between virus-resistant AF16 and SANTV-sensitive HK104, we detect Quantitative Trait Loci (QTLs) on chromosomes IV and III. Building RILs between virus-sensitive JU1498 and LEBV-resistant HK104 followed by bulk segregant analysis, we identify a chromosome II QTL. In both cases, further introgressions of the regions confirmed the QTLs. This diversity provides an avenue for studying virus entry, replication, and exit mechanisms, as well as host-virus specificity and the host response to a specific virus infection.
Collapse
Affiliation(s)
- Cigdem Alkan
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gautier Brésard
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Lise Frézal
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques Paris, Paris, France
| | - Aurélien Richaud
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Albane Ruaud
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gaotian Zhang
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Marie-Anne Félix
- IBENS, Department of Biology, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
4
|
Kywe C, Lundquist EA, Ackley BD, Lansdon P. The MAB-5/Hox family transcription factor is important for Caenorhabditis elegans innate immune response to Staphylococcus epidermidis infection. G3 (BETHESDA, MD.) 2024; 14:jkae054. [PMID: 38478633 PMCID: PMC11075571 DOI: 10.1093/g3journal/jkae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 03/03/2024] [Indexed: 04/12/2024]
Abstract
Innate immunity functions as a rapid defense against broad classes of pathogenic agents. While the mechanisms of innate immunity in response to antigen exposure are well-studied, how pathogen exposure activates the innate immune responses and the role of genetic variation in immune activity is currently being investigated. Previously, we showed significant survival differences between the N2 and the CB4856 Caenorhabditis elegans isolates in response to Staphylococcus epidermidis infection. One of those differences was expression of the mab-5 Hox family transcription factor, which was induced in N2, but not CB4856, after infection. In this study, we use survival assays and RNA-sequencing to better understand the role of mab-5 in response to S. epidermidis. We found that mab-5 loss-of-function (LOF) mutants were more susceptible to S. epidermidis infection than N2 or mab-5 gain-of-function (GOF) mutants, but not as susceptible as CB4856 animals. We then conducted transcriptome analysis of infected worms and found considerable differences in gene expression profiles when comparing animals with mab-5 LOF to either N2 or mab-5 GOF. N2 and mab-5 GOF animals showed a significant enrichment in expression of immune genes and C-type lectins, whereas mab-5 LOF mutants did not. Overall, gene expression profiling in mab-5 mutants provided insight into MAB-5 regulation of the transcriptomic response of C. elegans to pathogenic bacteria and helps us to understand mechanisms of innate immune activation and the role that transcriptional regulation plays in organismal health.
Collapse
Affiliation(s)
- Christopher Kywe
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Patrick Lansdon
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
5
|
González R, Félix MA. Caenorhabditis elegans immune responses to microsporidia and viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105148. [PMID: 38325500 DOI: 10.1016/j.dci.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France.
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France
| |
Collapse
|
6
|
Smith BR, Patch KB, Gupta A, Knoles EM, Unckless RL. The genetic basis of variation in immune defense against Lysinibacillus fusiformis infection in Drosophila melanogaster. PLoS Pathog 2023; 19:e1010934. [PMID: 37549163 PMCID: PMC10434897 DOI: 10.1371/journal.ppat.1010934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/17/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023] Open
Abstract
The genetic causes of phenotypic variation often differ depending on the population examined, particularly if the populations were founded by relatively small numbers of genotypes. Similarly, the genetic causes of phenotypic variation among similar traits (resistance to different xenobiotic compounds or pathogens) may also be completely different or only partially overlapping. Differences in genetic causes for variation in the same trait among populations suggests context dependence for how selection acts on those traits. Similarities in the genetic causes of variation for different traits, on the other hand, suggests pleiotropy which would also influence how natural selection shapes variation in a trait. We characterized immune defense against a natural Drosophila pathogen, the Gram-positive bacterium Lysinibacillus fusiformis, in three different populations and found almost no overlap in the genetic architecture of variation in survival post infection. However, when comparing our results to a similar experiment with the fungal pathogen, B. bassiana, we found a convincing shared QTL peak for both pathogens. This peak contains the Bomanin cluster of Drosophila immune effectors. Loss of function mutants and RNAi knockdown experiments confirms a role of some of these genes in immune defense against both pathogens. This suggests that natural selection may act on the entire cluster of Bomanin genes (and the linked region under the QTL) or specific peptides for specific pathogens.
Collapse
Affiliation(s)
- Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Kistie B. Patch
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Anjali Gupta
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Emma M. Knoles
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
7
|
Mok C, Xiao MA, Wan YC, Zhao W, Ahmed SM, Luallen RJ, Reinke AW. High-throughput phenotyping of infection by diverse microsporidia species reveals a wild C. elegans strain with opposing resistance and susceptibility traits. PLoS Pathog 2023; 19:e1011225. [PMID: 36893187 PMCID: PMC10030041 DOI: 10.1371/journal.ppat.1011225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/21/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Animals are under constant selective pressure from a myriad of diverse pathogens. Microsporidia are ubiquitous animal parasites, but the influence they exert on shaping animal genomes is mostly unknown. Using multiplexed competition assays, we measured the impact of four different species of microsporidia on 22 wild isolates of Caenorhabditis elegans. This resulted in the identification and confirmation of 13 strains with significantly altered population fitness profiles under infection conditions. One of these identified strains, JU1400, is sensitive to an epidermal-infecting species by lacking tolerance to infection. JU1400 is also resistant to an intestinal-infecting species and can specifically recognize and destroy this pathogen. Genetic mapping of JU1400 demonstrates that these two opposing phenotypes are caused by separate loci. Transcriptional analysis reveals the JU1400 sensitivity to epidermal microsporidia infection results in a response pattern that shares similarity to toxin-induced responses. In contrast, we do not observe JU1400 intestinal resistance being regulated at the transcriptional level. The transcriptional response to these four microsporidia species is conserved, with C. elegans strain-specific differences in potential immune genes. Together, our results show that phenotypic differences to microsporidia infection amongst C. elegans are common and that animals can evolve species-specific genetic interactions.
Collapse
Affiliation(s)
- Calvin Mok
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meng A. Xiao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yin C. Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shanzeh M. Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Shaw CL, Kennedy DA. Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis. Proc Biol Sci 2022; 289:20221165. [PMID: 36126684 PMCID: PMC9489279 DOI: 10.1098/rspb.2022.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans. We assayed species across the Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at least one replicate) and evidence of sustained transmission in 6 strains (including all three experimental C. elegans strains) in at least one replicate. Transmission was strongly associated with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis strains suggests that the system could be powerful for studying spillover and emergence.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Kennedy
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Lansdon P, Carlson M, Ackley BD. Wild-type Caenorhabditis elegans isolates exhibit distinct gene expression profiles in response to microbial infection. BMC Genomics 2022; 23:229. [PMID: 35321659 PMCID: PMC8943956 DOI: 10.1186/s12864-022-08455-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
The soil-dwelling nematode Caenorhabditis elegans serves as a model system to study innate immunity against microbial pathogens. C. elegans have been collected from around the world, where they, presumably, adapted to regional microbial ecologies. Here we use survival assays and RNA-sequencing to better understand how two isolates from disparate climates respond to pathogenic bacteria. We found that, relative to N2 (originally isolated in Bristol, UK), CB4856 (isolated in Hawaii), was more susceptible to the Gram-positive microbe, Staphylococcus epidermidis, but equally susceptible to Staphylococcus aureus as well as two Gram-negative microbes, Providencia rettgeri and Pseudomonas aeruginosa. We performed transcriptome analysis of infected worms and found gene-expression profiles were considerably different in an isolate-specific and microbe-specific manner. We performed GO term analysis to categorize differential gene expression in response to S. epidermidis. In N2, genes that encoded detoxification enzymes and extracellular matrix proteins were significantly enriched, while in CB4856, genes that encoded detoxification enzymes, C-type lectins, and lipid metabolism proteins were enriched, suggesting they have different responses to S. epidermidis, despite being the same species. Overall, discerning gene expression signatures in an isolate by pathogen manner can help us to understand the different possibilities for the evolution of immune responses within organisms.
Collapse
Affiliation(s)
- Patrick Lansdon
- Department of Molecular Biosciences, University of Kansas, 5004 Haworth Hall, 1200 Sunnyside Ave, KS, 66045, Lawrence, USA
| | - Maci Carlson
- Department of Molecular Biosciences, University of Kansas, 5004 Haworth Hall, 1200 Sunnyside Ave, KS, 66045, Lawrence, USA
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, 5004 Haworth Hall, 1200 Sunnyside Ave, KS, 66045, Lawrence, USA.
| |
Collapse
|
10
|
van Sluijs L, Bosman KJ, Pankok F, Blokhina T, Wilten JIHA, te Molder DM, Riksen JAG, Snoek BL, Pijlman GP, Kammenga JE, Sterken MG. Balancing Selection of the Intracellular Pathogen Response in Natural Caenorhabditis elegans Populations. Front Cell Infect Microbiol 2022; 11:758331. [PMID: 35174100 PMCID: PMC8841876 DOI: 10.3389/fcimb.2021.758331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic variation in host populations may lead to differential viral susceptibilities. Here, we investigate the role of natural genetic variation in the Intracellular Pathogen Response (IPR), an important antiviral pathway in the model organism Caenorhabditis elegans against Orsay virus (OrV). The IPR involves transcriptional activity of 80 genes including the pals-genes. We examine the genetic variation in the pals-family for traces of selection and explore the molecular and phenotypic effects of having distinct pals-gene alleles. Genetic analysis of 330 global C. elegans strains reveals that genetic diversity within the IPR-related pals-genes can be categorized in a few haplotypes worldwide. Importantly, two key IPR regulators, pals-22 and pals-25, are in a genomic region carrying signatures of balancing selection, suggesting that different evolutionary strategies exist in IPR regulation. We infected eleven C. elegans strains that represent three distinct pals-22 pals-25 haplotypes with Orsay virus to determine their susceptibility. For two of these strains, N2 and CB4856, the transcriptional response to infection was also measured. The results indicate that pals-22 pals-25 haplotype shapes the defense against OrV and host genetic variation can result in constitutive activation of IPR genes. Our work presents evidence for balancing genetic selection of immunity genes in C. elegans and provides a novel perspective on the functional diversity that can develop within a main antiviral response in natural host populations.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Kobus J. Bosman
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Frederik Pankok
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Tatiana Blokhina
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Jop I. H. A. Wilten
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Dennie M. te Molder
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Basten L. Snoek
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Virology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Mark G. Sterken,
| |
Collapse
|
11
|
van Sluijs L, Liu J, Schrama M, van Hamond S, Vromans SPJM, Scholten MH, Žibrat N, Riksen JAG, Pijlman GP, Sterken MG, Kammenga JE. Virus infection modulates male sexual behaviour in Caenorhabditis elegans. Mol Ecol 2021; 30:6776-6790. [PMID: 34534386 PMCID: PMC9291463 DOI: 10.1111/mec.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022]
Abstract
Mating dynamics follow from natural selection on mate choice and individuals maximizing their reproductive success. Mate discrimination reveals itself by a plethora of behaviours and morphological characteristics, each of which can be affected by pathogens. A key question is how pathogens affect mate choice and outcrossing behaviour. Here we investigated the effect of Orsay virus on the mating dynamics of the androdiecious (male and hermaphrodite) nematode Caenorhabditis elegans. We tested genetically distinct strains and found that viral susceptibility differed between sexes in a genotype-dependent manner with males of reference strain N2 being more resistant than hermaphrodites. Males displayed a constitutively higher expression of intracellular pathogen response (IPR) genes, whereas the antiviral RNAi response did not have increased activity in males. Subsequent monitoring of sex ratios over 10 generations revealed that viral presence can change mating dynamics in isogenic populations. Sexual attraction assays showed that males preferred mating with uninfected rather than infected hermaphrodites. Together our results illustrate for the first time that viral infection can significantly affect male mating choice and suggest altered mating dynamics as a novel cause benefitting outcrossing under pathogenic stress conditions in C. elegans.
Collapse
Affiliation(s)
- Lisa van Sluijs
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Jie Liu
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Mels Schrama
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Sanne van Hamond
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | | | - Marèl H. Scholten
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Nika Žibrat
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Joost A. G. Riksen
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Gorben P. Pijlman
- Laboratory of VirologyWageningen University and ResearchWageningenthe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| | - Jan E. Kammenga
- Laboratory of NematologyWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
12
|
Snoek BL, Sterken MG, Nijveen H, Volkers RJM, Riksen J, Rosenstiel PC, Schulenburg H, Kammenga JE. The genetics of gene expression in a Caenorhabditis elegans multiparental recombinant inbred line population. G3 (BETHESDA, MD.) 2021; 11:jkab258. [PMID: 34568931 PMCID: PMC8496280 DOI: 10.1093/g3journal/jkab258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
Studying genetic variation of gene expression provides a powerful way to unravel the molecular components underlying complex traits. Expression quantitative trait locus (eQTL) studies have been performed in several different model species, yet most of these linkage studies have been based on the genetic segregation of two parental alleles. Recently, we developed a multiparental segregating population of 200 recombinant inbred lines (mpRILs) derived from four wild isolates (JU1511, JU1926, JU1931, and JU1941) in the nematode Caenorhabditis elegans. We used RNA-seq to investigate how multiple alleles affect gene expression in these mpRILs. We found 1789 genes differentially expressed between the parental lines. Transgression, expression beyond any of the parental lines in the mpRILs, was found for 7896 genes. For expression QTL mapping almost 9000 SNPs were available. By combining these SNPs and the RNA-seq profiles of the mpRILs, we detected almost 6800 eQTLs. Most trans-eQTLs (63%) co-locate in six newly identified trans-bands. The trans-eQTLs found in previous two-parental allele eQTL experiments and this study showed some overlap (17.5-46.8%), highlighting on the one hand that a large group of genes is affected by polymorphic regulators across populations and conditions, on the other hand, it shows that the mpRIL population allows identification of novel gene expression regulatory loci. Taken together, the analysis of our mpRIL population provides a more refined insight into C. elegans complex trait genetics and eQTLs in general, as well as a starting point to further test and develop advanced statistical models for detection of multiallelic eQTLs and systems genetics studying the genotype-phenotype relationship.
Collapse
Affiliation(s)
- Basten L Snoek
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Rita J M Volkers
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Joost Riksen
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| | - Philip C Rosenstiel
- Institute for Clinical Molecular Biology, University of Kiel, 24098 Kiel, Germany
- Competence Centre for Genomic Analysis (CCGA) Kiel, University of Kiel, 24098 Kiel, Germany
| | - Hinrich Schulenburg
- Zoological Institute, University of Kiel, 24098 Kiel, Germany
- Max Planck Institute for Evolutionary Biology, 24306 Ploen, Germany
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, NL-6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Evans KS, van Wijk MH, McGrath PT, Andersen EC, Sterken MG. From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet 2021; 37:933-947. [PMID: 34229867 DOI: 10.1016/j.tig.2021.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022]
Abstract
Although many studies have examined quantitative trait variation across many species, only a small number of genes and thereby molecular mechanisms have been discovered. Without these data, we can only speculate about evolutionary processes that underlie trait variation. Here, we review how quantitative and molecular genetics in the nematode Caenorhabditis elegans led to the discovery and validation of 37 quantitative trait genes over the past 15 years. Using these data, we can start to make inferences about evolution from these quantitative trait genes, including the roles that coding versus noncoding variation, gene family expansion, common versus rare variants, pleiotropy, and epistasis play in trait variation across this species.
Collapse
Affiliation(s)
- Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|