1
|
Shin J, Meinke G, Bohm AA, Bullock PA. A model for polyomavirus helicase activity derived in part from the AlphaFold2 structure of SV40 T-antigen. J Virol 2024; 98:e0111924. [PMID: 39311578 PMCID: PMC11494911 DOI: 10.1128/jvi.01119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 09/27/2024] Open
Abstract
The mechanism used by polyomavirus and other viral SF3 helicases to unwind DNA at replication forks remains unknown. Using AlphaFold2, we have determined the structure of a representative SF3 helicase, the SV40 T-antigen (T-ag). This model has been analyzed in terms of the features of T-ag required for helicase activity, particularly the proximity of the T-ag origin binding domain (OBD) to the replication fork and the distribution of basic residues on the surface of the OBD that are known to play roles in DNA unwinding. These and related studies provide additional evidence that the T-ag OBDs have a role in the unwinding of DNA at the replication fork. Nuclear magnetic resonance and modeling experiments also indicate that protonated histidines on the surface of the T-ag OBD play an important role in the unwinding process, and additional modeling studies indicate that protonated histidines are essential in other SF3 and SF6 helicases. Finally, a model for T-ag's helicase activity is presented, which is a variant of the "rope climber." According to this model, the hands are the N-terminal OBD domains that interact with the replication fork, while the C-terminal helicase domains contain the feet that bind to single-stranded DNA. IMPORTANCE Enzymes termed helicases are essential for the replication of DNA tumor viruses. Unfortunately, much remains to be determined about this class of enzymes, including their structures and the mechanism(s) they employ to unwind DNA. Herein, we present the full-length structure of a model helicase encoded by a DNA tumor virus. Moreover, this AI-based structure has been analyzed in terms of its basic functional properties, such as the orientation of the helicase at replication forks and the relative locations of the amino acid residues that are critical for helicase activity. Obtaining this information is important because it permits proposals regarding how DNA is routed through these model helicases. Also presented is structural evidence that the conclusions drawn from our detailed analyses of one model helicase, encoded by one class of tumor viruses, are likely to apply to other viral and eukaryotic helicases.
Collapse
Affiliation(s)
- Jong Shin
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex A. Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter A. Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wan L, Toland S, Robinson-McCarthy LR, Lee N, Schaich MA, Hengel SR, Li X, Bernstein KA, Van Houten B, Chang Y, Moore PS. Unlicensed origin DNA melting by MCV and SV40 polyomavirus LT proteins is independent of ATP-dependent helicase activity. Proc Natl Acad Sci U S A 2023; 120:e2308010120. [PMID: 37459531 PMCID: PMC10372695 DOI: 10.1073/pnas.2308010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Cellular eukaryotic replication initiation helicases are first loaded as head-to-head double hexamers on double-stranded (ds) DNA origins and then initiate S-phase DNA melting during licensed (once per cell cycle) replication. Merkel cell polyomavirus (MCV) large T (LT) helicase oncoprotein similarly binds and melts its own 98-bp origin but replicates multiple times in a single cell cycle. To examine the actions of this unlicensed viral helicase, we quantitated multimerization of MCV LT molecules as they assembled on MCV DNA origins using real-time single-molecule microscopy. MCV LT formed highly stable double hexamers having 17-fold longer mean lifetime (τ, >1,500 s) on DNA than single hexamers. Unexpectedly, partial MCV LT assembly without double-hexamer formation was sufficient to melt origin dsDNA as measured by RAD51, RPA70, or S1 nuclease cobinding. DNA melting also occurred with truncated MCV LT proteins lacking the helicase domain, but was lost from a protein without the multimerization domain that could bind only as a monomer to DNA. SV40 polyomavirus LT also multimerized to the MCV origin without forming a functional hexamer but still melted origin DNA. MCV origin melting did not require ATP hydrolysis and occurred for both MCV and SV40 LT proteins using the nonhydrolyzable ATP analog, adenylyl-imidodiphosphate (AMP-PNP). LT double hexamers formed in AMP-PNP, and melted DNA, consistent with direct LT hexamer assembly around single-stranded (ss) DNA without the energy-dependent dsDNA-to-ssDNA melting and remodeling steps used by cellular helicases. These results indicate that LT multimerization rather than helicase activity is required for origin DNA melting during unlicensed virus replication.
Collapse
Affiliation(s)
- Li Wan
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Sabrina Toland
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | | | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15219
| | - Matthew A. Schaich
- Genome Stability Program, Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15232
| | - Sarah R. Hengel
- Department of Pharmacology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15232
| | - Xiaochen Li
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
- School of Medicine, Tsinghua University, Beijing100084, China
| | - Kara A. Bernstein
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Bennett Van Houten
- Genome Stability Program, Hillman Cancer Center, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA15232
| | - Yuan Chang
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| | - Patrick S. Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15213
| |
Collapse
|
3
|
Witkin AE, Banerji J, Bullock PA. A model for the formation of the duplicated enhancers found in polyomavirus regulatory regions. Virology 2020; 543:27-33. [PMID: 32056844 DOI: 10.1016/j.virol.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
When purified from persistent infections, the genomes of most human polyomaviruses contain single enhancers. However, when isolated from productively infected cells from immunocompromised individuals, the genomes of several polyomaviruses contain duplicated enhancers that promote a number of polyoma-based diseases. The mechanism(s) that gives rise to the duplicated enhancers in the polyomaviruses is, however, not known. Herein we propose a model for the duplication of the enhancers that is based on recent advances in our understanding of; 1) the initiation of polyomavirus DNA replication, 2) the formation of long flaps via displacement synthesis and 3) the subsequent generation of duplicated enhancers via double stranded break repair. Finally, we discuss the possibility that the polyomavirus based replication dependent enhancer duplication model may be relevant to the enhancer-associated rearrangements detected in human genomes that are associated with various diseases, including cancers.
Collapse
Affiliation(s)
- Anna E Witkin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Julian Banerji
- Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
4
|
Replication of JC Virus DNA in the G144 Oligodendrocyte Cell Line Is Dependent Upon Akt. J Virol 2017; 91:JVI.00735-17. [PMID: 28768870 DOI: 10.1128/jvi.00735-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is an often-fatal demyelinating disease of the central nervous system. PML results when oligodendrocytes within immunocompromised individuals are infected with the human JC virus (JCV). We have identified an oligodendrocyte precursor cell line, termed G144, that supports robust levels of JCV DNA replication, a central part of the JCV life cycle. In addition, we have determined that JC virus readily infects G144 cells. Furthermore, we have determined that JCV DNA replication in G144 cells is stimulated by myristoylated (i.e., constitutively active) Akt and reduced by the Akt-specific inhibitor MK2206. Thus, this oligodendrocyte-based model system will be useful for a number of purposes, such as studies of JCV infection, establishing key pathways needed for the regulation of JCV DNA replication, and identifying inhibitors of this process.IMPORTANCE The disease progressive multifocal leukoencephalopathy (PML) is caused by the infection of particular brain cells, termed oligodendrocytes, by the JC virus. Studies of PML, however, have been hampered by the lack of an immortalized human cell line derived from oligodendrocytes. Here, we report that the G144 oligodendrocyte cell line supports both infection by JC virus and robust levels of JCV DNA replication. Moreover, we have established that the Akt pathway regulates JCV DNA replication and that JCV DNA replication can be inhibited by MK2206, a compound that is specific for Akt. These and related findings suggest that we have established a powerful oligodendrocyte-based model system for studies of JCV-dependent PML.
Collapse
|
5
|
Origin DNA Melting-An Essential Process with Divergent Mechanisms. Genes (Basel) 2017; 8:genes8010026. [PMID: 28085061 PMCID: PMC5295021 DOI: 10.3390/genes8010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Origin DNA melting is an essential process in the various domains of life. The replication fork helicase unwinds DNA ahead of the replication fork, providing single-stranded DNA templates for the replicative polymerases. The replication fork helicase is a ring shaped-assembly that unwinds DNA by a steric exclusion mechanism in most DNA replication systems. While one strand of DNA passes through the central channel of the helicase ring, the second DNA strand is excluded from the central channel. Thus, the origin, or initiation site for DNA replication, must melt during the initiation of DNA replication to allow for the helicase to surround a single-DNA strand. While this process is largely understood for bacteria and eukaryotic viruses, less is known about how origin DNA is melted at eukaryotic cellular origins. This review describes the current state of knowledge of how genomic DNA is melted at a replication origin in bacteria and eukaryotes. We propose that although the process of origin melting is essential for the various domains of life, the mechanism for origin melting may be quite different among the different DNA replication initiation systems.
Collapse
|
6
|
Gai D, Wang D, Li SX, Chen XS. The structure of SV40 large T hexameric helicase in complex with AT-rich origin DNA. eLife 2016; 5. [PMID: 27921994 PMCID: PMC5140265 DOI: 10.7554/elife.18129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
DNA replication is a fundamental biological process. The initial step in eukaryotic DNA replication is the assembly of the pre-initiation complex, including the formation of two head-to-head hexameric helicases around the replication origin. How these hexameric helicases interact with their origin dsDNA remains unknown. Here, we report the co-crystal structure of the SV40 Large-T Antigen (LT) hexameric helicase bound to its origin dsDNA. The structure shows that the six subunits form a near-planar ring that interacts with the origin, so that each subunit makes unique contacts with the DNA. The origin dsDNA inside the narrower AAA+ domain channel shows partial melting due to the compression of the two phosphate backbones, forcing Watson-Crick base-pairs within the duplex to flip outward. This structure provides the first snapshot of a hexameric helicase binding to origin dsDNA, and suggests a possible mechanism of origin melting by LT during SV40 replication in eukaryotic cells.
Collapse
Affiliation(s)
- Dahai Gai
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Program, University of Southern California, Los Angeles, United States
| | - Damian Wang
- Department of Biological Sciences, Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Shu-Xing Li
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, United States
| | - Xiaojiang S Chen
- Departments of Biological Sciences and Chemistry, Molecular and Computational Biology Program, University of Southern California, Los Angeles, United States.,Department of Biological Sciences, Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, United States
| |
Collapse
|
7
|
Meinke G, Phelan PJ, Shin J, Gagnon D, Archambault J, Bohm A, Bullock PA. Structural Based Analyses of the JC Virus T-Antigen F258L Mutant Provides Evidence for DNA Dependent Conformational Changes in the C-Termini of Polyomavirus Origin Binding Domains. PLoS Pathog 2016; 12:e1005362. [PMID: 26735515 PMCID: PMC4703215 DOI: 10.1371/journal.ppat.1005362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 11/21/2022] Open
Abstract
The replication of human polyomavirus JCV, which causes Progressive Multifocal Leukoencephalopathy, is initiated by the virally encoded T-antigen (T-ag). The structure of the JC virus T-ag origin-binding domain (OBD) was recently solved by X-ray crystallography. This structure revealed that the OBD contains a C-terminal pocket, and that residues from the multifunctional A1 and B2 motifs situated on a neighboring OBD molecule dock into the pocket. Related studies established that a mutation in a pocket residue (F258L) rendered JCV T-ag unable to support JCV DNA replication. To establish why this mutation inactivated JCV T-ag, we have solved the structure of the F258L JCV T-ag OBD mutant. Based on this structure, it is concluded that the structural consequences of the F258L mutation are limited to the pocket region. Further analyses, utilizing the available polyomavirus OBD structures, indicate that the F258 region is highly dynamic and that the relative positions of F258 are governed by DNA binding. The possible functional consequences of the DNA dependent rearrangements, including promotion of OBD cycling at the replication fork, are discussed.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul J. Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, United States of America
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Andrew Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter A. Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Yu XJ, Greenleaf WB, Shi YS, Chen XS. Mechanism of subunit coordination of an AAA+ hexameric molecular nanomachine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:531-41. [PMID: 25555349 DOI: 10.1016/j.nano.2014.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 12/18/2022]
Abstract
Simian virus 40 large tumor antigen (LT) is both a potent oncogenic protein and an efficient hexameric nanomachine that harnesses the energy from ATP binding/hydrolysis to melt origin DNA and unwind replication forks. However, how the six subunits of the helicase motor coordinate during ATP hydrolysis and DNA unwinding/translocation is unresolved. Here we investigated the subunit coordination mechanisms "binomial distribution mutant doping" experiments in the presence of various DNA substrates. For ATP hydrolysis, we observed multiple coordination modes, ranging from random and semi-random, and semi-coordinated modes, depending on which type of DNA is present. For DNA unwinding, however, the results indicated a fully-coordinated mode for the natural origin-containing duplex DNA, but a semi-coordinated mode for a pre-existing fork-DNA, providing direct evidence for LT to use potentially different mechanisms to unwind the two types of substrates. The results of this study provide insights into DNA translocation and unwinding mechanisms for LT hexameric biomotor. From the clinical editor: The study describes the subunit coordination of simian virus 40 large tumor antigen (LT) showing that multiple mechanisms exist that handle the specific needs of different stages of DNA replication.
Collapse
Affiliation(s)
- Xian Jessica Yu
- Molecular and Computational Biology Program, Department of Biology, University of Southern California, Los Angeles, CA, USA
| | - William B Greenleaf
- Molecular and Computational Biology Program, Department of Biology, University of Southern California, Los Angeles, CA, USA
| | - Yemin Stanley Shi
- Molecular and Computational Biology Program, Department of Biology, University of Southern California, Los Angeles, CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Department of Biology, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, University of Southern California, Los Angeles, CA, USA; Norris Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Shin J, Phelan PJ, Chhum P, Bashkenova N, Yim S, Parker R, Gagnon D, Gjoerup O, Archambault J, Bullock PA. Analysis of JC virus DNA replication using a quantitative and high-throughput assay. Virology 2014; 468-470:113-125. [PMID: 25155200 DOI: 10.1016/j.virol.2014.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.
Collapse
Affiliation(s)
- Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Paul J Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Panharith Chhum
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nazym Bashkenova
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sung Yim
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Robert Parker
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Ole Gjoerup
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
10
|
Di Maro A, Citores L, Russo R, Iglesias R, Ferreras JM. Sequence comparison and phylogenetic analysis by the Maximum Likelihood method of ribosome-inactivating proteins from angiosperms. PLANT MOLECULAR BIOLOGY 2014; 85:575-88. [PMID: 24880476 DOI: 10.1007/s11103-014-0204-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/16/2014] [Indexed: 05/16/2023]
Abstract
Ribosome-inactivating proteins (RIPs) from angiosperms are rRNA N-glycosidases that have been proposed as defence proteins against virus and fungi. They have been classified as type 1 RIPs, consisting of single-chain proteins, and type 2 RIPs, consisting of an A chain with RIP properties covalently linked to a B chain with lectin properties. In this work we have carried out a broad search of RIP sequence data banks from angiosperms in order to study their main structural characteristics and phylogenetic evolution. The comparison of the sequences revealed the presence, outside of the active site, of a novel structure that might be involved in the internal protein dynamics linked to enzyme catalysis. Also the B-chains presented another conserved structure that might function either supporting the beta-trefoil structure or in the communication between both sugar-binding sites. A systematic phylogenetic analysis of RIP sequences revealed that the most primitive type 1 RIPs were similar to that of the actual monocots (Poaceae and Asparagaceae). The primitive RIPs evolved to the dicot type 1 related RIPs (like those from Caryophyllales, Lamiales and Euphorbiales). The gene of a type 1 RIP related with the actual Euphorbiaceae type 1 RIPs fused with a double beta trefoil lectin gene similar to the actual Cucurbitaceae lectins to generate the type 2 RIPs and finally this gene underwent deletions rendering either type 1 RIPs (like those from Cucurbitaceae, Rosaceae and Iridaceae) or lectins without A chain (like those from Adoxaceae).
Collapse
Affiliation(s)
- Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100, Caserta, Italy
| | | | | | | | | |
Collapse
|
11
|
Meinke G, Phelan PJ, Kalekar R, Shin J, Archambault J, Bohm A, Bullock PA. Insights into the initiation of JC virus DNA replication derived from the crystal structure of the T-antigen origin binding domain. PLoS Pathog 2014; 10:e1003966. [PMID: 24586168 PMCID: PMC3930596 DOI: 10.1371/journal.ppat.1003966] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/16/2014] [Indexed: 01/07/2023] Open
Abstract
JC virus is a member of the Polyomavirus family of DNA tumor viruses and the causative agent of progressive multifocal leukoencephalopathy (PML). PML is a disease that occurs primarily in people who are immunocompromised and is usually fatal. As with other Polyomavirus family members, the replication of JC virus (JCV) DNA is dependent upon the virally encoded protein T-antigen. To further our understanding of JCV replication, we have determined the crystal structure of the origin-binding domain (OBD) of JCV T-antigen. This structure provides the first molecular understanding of JCV T-ag replication functions; for example, it suggests how the JCV T-ag OBD site-specifically binds to the major groove of GAGGC sequences in the origin. Furthermore, these studies suggest how the JCV OBDs interact during subsequent oligomerization events. We also report that the OBD contains a novel "pocket"; which sequesters the A1 & B2 loops of neighboring molecules. Mutagenesis of a residue in the pocket associated with the JCV T-ag OBD interfered with viral replication. Finally, we report that relative to the SV40 OBD, the surface of the JCV OBD contains one hemisphere that is highly conserved and one that is highly variable.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul J. Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Radha Kalekar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacques Archambault
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada
| | - Andrew Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter A. Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Chang YP, Xu M, Machado ACD, Yu XJ, Rohs R, Chen XS. Mechanism of origin DNA recognition and assembly of an initiator-helicase complex by SV40 large tumor antigen. Cell Rep 2013; 3:1117-27. [PMID: 23545501 DOI: 10.1016/j.celrep.2013.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/10/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022] Open
Abstract
The DNA tumor virus Simian virus 40 (SV40) is a model system for studying eukaryotic replication. SV40 large tumor antigen (LTag) is the initiator/helicase that is essential for genome replication. LTag recognizes and assembles at the viral replication origin. We determined the structure of two multidomain LTag subunits bound to origin DNA. The structure reveals that the origin binding domains (OBDs) and Zn and AAA+ domains are involved in origin recognition and assembly. Notably, the OBDs recognize the origin in an unexpected manner. The histidine residues of the AAA+ domains insert into a narrow minor groove region with enhanced negative electrostatic potential. Computational analysis indicates that this region is intrinsically narrow, demonstrating the role of DNA shape readout in origin recognition. Our results provide important insights into the assembly of the LTag initiator/helicase at the replication origin and suggest that histidine contacts with the minor groove serve as a mechanism of DNA shape readout.
Collapse
Affiliation(s)
- Y Paul Chang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
13
|
Analysis of the costructure of the simian virus 40 T-antigen origin binding domain with site I reveals a correlation between GAGGC spacing and spiral assembly. J Virol 2012; 87:2923-34. [PMID: 23269808 DOI: 10.1128/jvi.02549-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyomavirus origins of replication contain multiple occurrences of G(A/G)GGC, the high-affinity binding element for the viral initiator T-antigen (T-ag). The site I regulatory region of simian virus 40, involved in the repression of transcription and the enhancement of DNA replication initiation, contains two GAGGC sequences arranged head to tail and separated by a 7-bp AT-rich sequence. We have solved a 3.2-Å costructure of the SV40 origin-binding domain (OBD) bound to site I. We have also established that T-ag assembly on site I is limited to the formation of a single hexamer. These observations have enabled an analysis of the role(s) of the OBDs bound to the site I pentanucleotides in hexamer formation. Of interest, they reveal a correlation between the OBDs bound to site I and a pair of OBD subunits in the previously described hexameric spiral structure. Based on these findings, we propose that spiral assembly is promoted by pentanucleotide pairs arranged in a head-to-tail manner. Finally, the possibility that spiral assembly by OBD subunits accounts for the heterogeneous distribution of pentanucleotides found in the origins of replication of polyomaviruses is discussed.
Collapse
|
14
|
Simmons DT. Modeling of the SV40 DNA Replication Machine. Genes (Basel) 2012; 3:742-58. [PMID: 24705083 PMCID: PMC3902795 DOI: 10.3390/genes3040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 10/24/2012] [Accepted: 11/04/2012] [Indexed: 12/04/2022] Open
Abstract
The mechanism of SV40 DNA replication is certainly not completely understood. The proteins that are necessary for replication have been known for quite some time, but how they work together to form a nanomachine capable of faithfully replicating the virus DNA is only partially understood. Some of the proteins involved have been crystallized and their 3D structures determined, and several EM reconstructions of SV40 T antigen have been generated. In addition, there is a fair amount of biochemical data that pinpoints the sites of interaction between various proteins. With this information, various models were assembled that show how the SV40 DNA replication nanomachine could be structured in three dimensional space. This process was aided by the use of a 3D docking program as well as fitting of structures. The advantage of the availability of these models is that they are experimentally testable and they provide an insight into how the replication machine could work. Another advantage is that it is possible to quickly compare newly published structures to the models in order to come up with improved models.
Collapse
Affiliation(s)
- Daniel T Simmons
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
15
|
Lyubimov AY, Costa A, Bleichert F, Botchan MR, Berger JM. ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote. Proc Natl Acad Sci U S A 2012; 109:11999-2004. [PMID: 22778422 PMCID: PMC3409790 DOI: 10.1073/pnas.1209406109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heterohexameric minichromosome maintenance (MCM2-7) complex is an ATPase that serves as the central replicative helicase in eukaryotes. During initiation, the ring-shaped MCM2-7 particle is thought to open to facilitate loading onto DNA. The conformational state accessed during ring opening, the interplay between ATP binding and MCM2-7 architecture, and the use of these events in the regulation of DNA unwinding are poorly understood. To address these issues in isolation from the regulatory complexity of existing eukaryotic model systems, we investigated the structure/function relationships of a naturally minimized MCM2-7 complex from the microsporidian parasite Encephalitozoon cuniculi. Electron microscopy and small-angle X-ray scattering studies show that, in the absence of ATP, MCM2-7 spontaneously adopts a left-handed, open-ring structure. Nucleotide binding does not promote ring closure but does cause the particle to constrict in a two-step process that correlates with the filling of high- and low-affinity ATPase sites. Our findings support the idea that an open ring forms the default conformational state of the isolated MCM2-7 complex, and they provide a structural framework for understanding the multiphasic ATPase kinetics observed in different MCM2-7 systems.
Collapse
Affiliation(s)
- Artem Y. Lyubimov
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, and
| | - Alessandro Costa
- Clare Hall Laboratories, London Research Institute, Cancer Research United Kingdom, Herts EN6 3LD, United Kingdom
| | - Franziska Bleichert
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, and
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720; and
| | - Michael R. Botchan
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, and
| | - James M. Berger
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, and
| |
Collapse
|
16
|
Meinke G, Phelan P, Fradet-Turcotte A, Archambault J, Bullock PA. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:560-7. [PMID: 21636896 PMCID: PMC3107053 DOI: 10.1107/s0907444911014302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/16/2011] [Indexed: 12/13/2022]
Abstract
The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS-PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Biochemistry, Tufts School of Medicine and the Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
17
|
Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 2011; 18:471-7. [PMID: 21378962 PMCID: PMC4184033 DOI: 10.1038/nsmb.2004] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/09/2010] [Indexed: 11/09/2022]
Abstract
Two central steps for initiating eukaryotic DNA replication involve loading of the Mcm2-7 helicase onto double-stranded DNA and its activation by GINS-Cdc45. To better understand these events, we determined the structures of Mcm2-7 and the CMG complex by using single-particle electron microscopy. Mcm2-7 adopts two conformations--a lock-washer-shaped spiral state and a planar, gapped-ring form--in which Mcm2 and Mcm5 flank a breach in the helicase perimeter. GINS and Cdc45 bridge this gap, forming a topologically closed assembly with a large interior channel; nucleotide binding further seals off the discontinuity between Mcm2 and Mcm5, partitioning the channel into two smaller pores. Together, our data help explain how GINS and Cdc45 activate Mcm2-7, indicate that Mcm2-7 loading may be assisted by a natural predisposition of the hexamer to form open rings, and suggest a mechanism by which the CMG complex assists DNA strand separation.
Collapse
Affiliation(s)
- Alessandro Costa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Structure-based analysis of the interaction between the simian virus 40 T-antigen origin binding domain and single-stranded DNA. J Virol 2010; 85:818-27. [PMID: 20980496 DOI: 10.1128/jvi.01738-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The origin-binding domain (OBD) of simian virus 40 (SV40) large T-antigen (T-Ag) is essential for many of T-Ag's interactions with DNA. Nevertheless, many important issues related to DNA binding, for example, how single-stranded DNA (ssDNA) transits along the T-Ag OBD, have yet to be established. Therefore, X-ray crystallography was used to determine the costructure of the T-Ag OBD bound to DNA substrates such as the single-stranded region of a forked oligonucleotide. A second structure of the T-Ag OBD crystallized in the presence of poly(dT)(12) is also reported. To test the conclusions derived from these structures, residues identified as being involved in binding to ssDNA by crystallography or by an earlier nuclear magnetic resonance study were mutated, and their binding to DNA was characterized via fluorescence anisotropy. In addition, these mutations were introduced into full-length T-Ag, and these mutants were tested for their ability to support replication. When considered in terms of additional homology-based sequence alignments, our studies refine our understanding of how the T-Ag OBDs encoded by the polyomavirus family interact with ssDNA, a critical step during the initiation of DNA replication.
Collapse
|
19
|
Gai D, Chang YP, Chen XS. Origin DNA melting and unwinding in DNA replication. Curr Opin Struct Biol 2010; 20:756-62. [PMID: 20870402 DOI: 10.1016/j.sbi.2010.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/25/2010] [Accepted: 08/31/2010] [Indexed: 02/04/2023]
Abstract
Genomic DNA replication is a necessary step in the life cycles of all organisms. To initiate DNA replication, the double-stranded DNA (dsDNA) at the origin of replication must be separated or melted; this melted region is propagated and a mature replication fork is formed. To accomplish origin recognition, initial DNA melting, and the eventual formation of a replication fork, coordinated activity of initiators, helicases, and other cellular factors are required. In this review, we focus on recent advances in the structural and biochemical studies of the initiators and the replicative helicases in multiple replication systems, with emphasis on the systems in archaeal and eukaryotic cells. These studies have yielded insights into the plausible mechanisms of the early stages of DNA replication.
Collapse
Affiliation(s)
- Dahai Gai
- Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
20
|
Residues in the central beta-hairpin of the DNA helicase of bacteriophage T7 are important in DNA unwinding. Proc Natl Acad Sci U S A 2010; 107:6782-7. [PMID: 20351255 DOI: 10.1073/pnas.1002734107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ring-shaped helicase of bacteriophage T7 (gp4), the product of gene 4, has basic beta-hairpin loops lining its central core where they are postulated to be the major sites of DNA interaction. We have altered multiple residues within the beta-hairpin loop to determine their role during dTTPase-driven DNA unwinding. Residues His-465, Leu-466, and Asn-468 are essential for both DNA unwinding and DNA synthesis mediated by T7 DNA polymerase during leading-strand DNA synthesis. Gp4-K467A, gp4-K471A, and gp4-K473A form fewer hexamers than heptamers compared to wild-type helicase and alone are deficient in DNA unwinding. However, they complement for the growth of T7 bacteriophage lacking gene 4. Single-molecule studies show that these three altered helicases support rates of leading-strand DNA synthesis comparable to that observed with wild-type gp4. Gp4-K467A, devoid of unwinding activity alone, supports leading-strand synthesis in the presence of T7 DNA polymerase. We propose that DNA polymerase limits the backward movement of the helicase during unwinding as well as assisting the forward movement necessary for strand separation.
Collapse
|
21
|
Cuesta I, Núñez-Ramírez R, Scheres SHW, Gai D, Chen XS, Fanning E, Carazo JM. Conformational rearrangements of SV40 large T antigen during early replication events. J Mol Biol 2010; 397:1276-86. [PMID: 20219473 DOI: 10.1016/j.jmb.2010.02.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 11/25/2022]
Abstract
The Simian virus 40 (SV40) large tumor antigen (LTag) functions as the replicative helicase and initiator for viral DNA replication. For SV40 replication, the first essential step is the assembly of an LTag double hexamer at the origin DNA that will subsequently melt the origin DNA to initiate fork unwinding. In this study, we used three-dimensional cryo-electron microscopy to visualize early events in the activation of DNA replication in the SV40 model system. We obtained structures of wild-type double-hexamer complexes of LTag bound to SV40 origin DNA, to which atomic structures have been fitted. Wild-type LTag was observed in two distinct conformations: In one conformation, the central module containing the J-domains and the origin binding domains of both hexamers is a compact closed ring. In the other conformation, the central module is an open ring with a gap formed by rearrangement of the N-terminal regions of the two hexamers, potentially allowing for the passage of single-stranded DNA generated from the melted origin DNA. Double-hexamer complexes containing mutant LTag that lacks the N-terminal J-domain show the central module predominantly in the closed-ring state. Analyses of the LTag C-terminal regions reveal that the LTag hexamers bound to the A/T-rich tract origin of replication and early palindrome origin of replication elements are structurally distinct. Lastly, visualization of DNA density protruding from the LTag C-terminal domains suggests that oligomerization of the LTag complex takes place on double-stranded DNA.
Collapse
Affiliation(s)
- Isabel Cuesta
- Unidad de Biocomputación, Centro Nacional de Biotecnología-CSIC, C/Darwin 3, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Development of quantitative and high-throughput assays of polyomavirus and papillomavirus DNA replication. Virology 2010; 399:65-76. [PMID: 20079917 DOI: 10.1016/j.virol.2009.12.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/17/2009] [Accepted: 12/17/2009] [Indexed: 11/23/2022]
Abstract
Polyoma- and papillomaviruses genome replication is initiated by the binding of large T antigen (LT) and of E1 and E2, respectively, at the viral origin (ori). Replication of an ori-containing plasmid occurs in cells transiently expressing these viral proteins and is typically quantified by Southern blotting or PCR. To facilitate the study of SV40 and HPV31 DNA replication, we developed cellular assays in which transient replication of the ori-plasmid is quantified using a firefly luciferase gene located in cis to the ori. Under optimized conditions, replication of the SV40 and HPV31 ori-plasmids resulted in a 50- and 150-fold increase in firefly luciferase levels, respectively. These results were validated using replication-defective mutants of LT, E1 and E2 and with inhibitors of DNA replication and cell-cycle progression. These quantitative and high-throughput assays should greatly facilitate the study of SV40 and HPV31 DNA replication and the identification of small-molecule inhibitors of this process.
Collapse
|
23
|
The minimum replication origin of merkel cell polyomavirus has a unique large T-antigen loading architecture and requires small T-antigen expression for optimal replication. J Virol 2009; 83:12118-28. [PMID: 19759150 DOI: 10.1128/jvi.01336-09] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Merkel cell polyomavirus (MCV) is a recently discovered human polyomavirus causing the majority of human Merkel cell carcinomas. We mapped a 71-bp minimal MCV replication core origin sufficient for initiating eukaryotic DNA replication in the presence of wild-type MCV large T protein (LT). The origin includes a poly(T)-rich tract and eight variably oriented, GAGGC-like pentanucleotide sequences (PS) that serve as LT recognition sites. Mutation analysis shows that only four of the eight PS are required for origin replication. A single point mutation in one origin PS from a naturally occurring, tumor-derived virus reduces LT assembly on the origin and eliminates viral DNA replication. Tumor-derived LT having mutations truncating either the origin-binding domain or the helicase domain also prevent LT-origin assembly. Optimal MCV replication requires coexpression of MCV small T protein (sT), together with LT. An intact DnaJ domain on the LT is required for replication but is dispensable on the sT. In contrast, PP2A targeting by sT is required for enhanced replication. The MCV origin provides a novel model for eukaryotic replication from a defined DNA element and illustrates the selective pressure within tumors to abrogate independent MCV replication.
Collapse
|
24
|
Simian virus 40 large T antigen can specifically unwind the central palindrome at the origin of DNA replication. J Virol 2009; 83:3312-22. [PMID: 19144705 DOI: 10.1128/jvi.01867-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The hydrophilic channels between helicase domains of simian virus 40 (SV40) large T antigen play a critical role in DNA replication. Previous mutagenesis of residues in the channels identified one class of mutants (class A: D429A, N449S, and N515S) with normal DNA binding and ATPase and helicase activities but with a severely reduced ability to unwind origin DNA and to support SV40 DNA replication in vitro. Here, we further studied these mutants to gain insights into how T antigen unwinds the origin. We found that the mutants were compromised in melting the imperfect palindrome (EP) but normal in untwisting the AT-rich track. However, the mutants' defect in EP melting was not the major reason they failed to unwind the origin because supplying an EP region as a mismatched bubble, or deleting the EP region altogether, did not rescue their unwinding deficiency. These results suggested that specific separation of the central palindrome of the origin (site II) is an essential step in unwinding origin DNA by T antigen. In support of this, wild-type T antigen was able to specifically unwind a 31-bp DNA containing only site II in an ATPase-dependent reaction, whereas D429A and N515S failed to do so. By performing a systematic mutagenesis of 31-bp site II DNA, we identified discrete regions in each pentanucleotide necessary for normal origin unwinding. These data indicate that T antigen has a mechanism to specifically unwind the central palindrome. Various models are proposed to illustrate how T antigen could separate the central origin.
Collapse
|
25
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|
26
|
Evidence for a structural relationship between BRCT domains and the helicase domains of the replication initiators encoded by the Polyomaviridae and Papillomaviridae families of DNA tumor viruses. J Virol 2008; 82:8849-62. [PMID: 18579587 DOI: 10.1128/jvi.00553-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of DNA tumor viruses have provided important insights into fundamental cellular processes and oncogenic transformation. They have revealed, for example, that upon expression of virally encoded proteins, cellular pathways involved in DNA repair and cell cycle control are disrupted. Herein, evidence is presented that BRCT-related regions are present in the helicase domains of the viral initiators encoded by the Polyomaviridae and Papillomaviridae viral families. Of interest, BRCT domains in cellular proteins recruit factors involved in diverse pathways, including DNA repair and the regulation of cell cycle progression. Therefore, the viral BRCT-related regions may compete with host BRCT domains for particular cellular ligands, a process that would help to explain the pleiotropic effects associated with infections with many DNA tumor viruses.
Collapse
|
27
|
Ozaki S, Kawakami H, Nakamura K, Fujikawa N, Kagawa W, Park SY, Yokoyama S, Kurumizaka H, Katayama T. A common mechanism for the ATP-DnaA-dependent formation of open complexes at the replication origin. J Biol Chem 2008; 283:8351-62. [PMID: 18216012 DOI: 10.1074/jbc.m708684200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of chromosomal replication and its cell cycle-coordinated regulation bear crucial and fundamental mechanisms in most cellular organisms. Escherichia coli DnaA protein forms a homomultimeric complex with the replication origin (oriC). ATP-DnaA multimers unwind the duplex within the oriC unwinding element (DUE). In this study, structural analyses suggested that several residues exposed in the central pore of the putative structure of DnaA multimers could be important for unwinding. Using mutation analyses, we found that, of these candidate residues, DnaA Val-211 and Arg-245 are prerequisites for initiation in vivo and in vitro. Whereas DnaA V211A and R245A proteins retained normal affinities for ATP/ADP and DNA and activity for the ATP-specific conformational change of the initiation complex in vitro, oriC complexes of these mutant proteins were inactive in DUE unwinding and in binding to the single-stranded DUE. Unlike oriC complexes including ADP-DnaA or the mutant DnaA, ATP-DnaA-oriC complexes specifically bound the upper strand of single-stranded DUE. Specific T-rich sequences within the strand were required for binding. The corresponding conserved residues of the DnaA ortholog in Thermotoga maritima, an ancient eubacterium, were also required for DUE unwinding, consistent with the idea that the mechanism and regulation for DUE unwinding can be evolutionarily conserved. These findings provide novel insights into mechanisms for pore-mediated origin unwinding, ATP/ADP-dependent regulation, and helicase loading of the initiation complex.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fradet-Turcotte A, Vincent C, Joubert S, Bullock PA, Archambault J. Quantitative analysis of the binding of simian virus 40 large T antigen to DNA. J Virol 2007; 81:9162-74. [PMID: 17596312 PMCID: PMC1951407 DOI: 10.1128/jvi.00384-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SV40 large T antigen (T-ag) is a multifunctional protein that successively binds to 5'-GAGGC-3' sequences in the viral origin of replication, melts the origin, unwinds DNA ahead of the replication fork, and interacts with host DNA replication factors to promote replication of the simian virus 40 genome. The transition of T-ag from a sequence-specific binding protein to a nonspecific helicase involves its assembly into a double hexamer whose formation is likely dictated by the propensity of T-ag to oligomerize and its relative affinities for the origin as well as for nonspecific double- and single-stranded DNA. In this study, we used a sensitive assay based on fluorescence anisotropy to measure the affinities of wild-type and mutant forms of the T-ag origin-binding domain (OBD), and of a larger fragment containing the N-terminal domain (N260), for different DNA substrates. We report that the N-terminal domain does not contribute to binding affinity but reduces the propensity of the OBD to self-associate. We found that the OBD binds with different affinities to its four sites in the origin and determined a consensus binding site by systematic mutagenesis of the 5'-GAGGC-3' sequence and of the residue downstream of it, which also contributes to affinity. Interestingly, the OBD also binds to single-stranded DNA with an approximately 10-fold higher affinity than to nonspecific duplex DNA and in a mutually exclusive manner. Finally, we provide evidence that the sequence specificity of full-length T-ag is lower than that of the OBD. These results provide a quantitative basis onto which to anchor our understanding of the interaction of T-ag with the origin and its assembly into a double hexamer.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|