1
|
Yang Y, Delcourte L, van Belleghem C, Fonte S, Gerard K, Baconnais S, Callon M, Le Cam E, Fogeron ML, Levrero M, Faivre-Moskalenko C, Böckmann A, Lecoq L. Structure and nucleic acid interactions of the S Δ60 domain of the hepatitis delta virus small antigen. Proc Natl Acad Sci U S A 2025; 122:e2411890122. [PMID: 40324079 DOI: 10.1073/pnas.2411890122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/25/2025] [Indexed: 05/07/2025] Open
Abstract
Infection with hepatitis delta virus (HDV) causes the most severe form of viral hepatitis, affecting more than 15 million people worldwide. HDV is a small RNA satellite virus of the hepatitis B virus (HBV) that relies on the HBV envelope for viral particle assembly. The only specific HDV component is the ribonucleoprotein (RNP), which consists of viral RNA (vRNA) associated with the small (S) and large (L) delta antigens (HDAg). While the structure of the HDAg N-terminal assembly domain is known, here we address the structure of the remaining SΔ60 protein using NMR. We show that SΔ60 contains two intrinsically disordered regions separated by a helix-loop-helix motif and that this structure is conserved in the full-length protein. Solution NMR analysis revealed that SΔ60 binds to both full-length and truncated vRNA, highlighting the role of the helical regions in submicromolar affinity interactions. The resulting complex contains approximately 120 SΔ60 proteins per RNA. Our results provide a model for the arginine-rich domains in RNP assembly and RNA interactions. In addition, we show that a cluster of acidic residues within the structured region of SΔ60 is critical for HDV replication, possibly mimicking the nucleosome acidic patch involved in the recruitment of chromatin remodelers. Our work thus provides the molecular basis for understanding the role of the C-terminal RNA-binding domain of S-HDAg in HDV infection.
Collapse
Affiliation(s)
- Yang Yang
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Loïc Delcourte
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Carolanne van Belleghem
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Simone Fonte
- Institut hospitalo-universitaire (IHU) EVEREST, Institute of Hepatology Lyon, Lyon 69004, France
- UMR University Claude Bernard Lyon 1 - INSERM U1350, Pathobiologie et thérapie des maladies du foie (PaThLiv), Lyon 69003, France
| | - Kassandra Gerard
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR CNRS 5672, Lyon 69342, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay - Gustave Roussy, Villejuif 94805, France
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay - Gustave Roussy, Villejuif 94805, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Massimo Levrero
- Institut hospitalo-universitaire (IHU) EVEREST, Institute of Hepatology Lyon, Lyon 69004, France
- UMR University Claude Bernard Lyon 1 - INSERM U1350, Pathobiologie et thérapie des maladies du foie (PaThLiv), Lyon 69003, France
- Department of Hepatology, Hospices Civils de Lyon, Lyon 69004, France
- Faculté de Médecine Lyon Est, University Claude Bernard Lyon 1, Lyon 69003, France
| | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon 69367, France
| |
Collapse
|
2
|
Yang Y, Fogeron ML, Malär AA, Lecoq L, Barnes AB, Meier BH, Böckmann A, Callon M. Hepatitis Delta Antigen Retains the Assembly Domain as the Only Rigid Entity. J Am Chem Soc 2024; 146:29531-29539. [PMID: 39412103 DOI: 10.1021/jacs.4c09409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The hepatitis delta virus (HDV) S-HDAg and L-HDAg antigens are the two isoforms of the single protein encoded by the viral genome. Together with the double-stranded RNA genome they form the HDV ribonucleoprotein (RNP) complex. In the context of a divide-and-conquer approach, we used a combination of cell-free protein synthesis and proton (1H)-detected fast magic angle spinning solid-state NMR at highest magnetic field to characterize S-HDAg. We sequentially assigned denovo its isolated N-terminal assembly domain using less than 1 mg of fully protonated protein. Our results show that the assembly domain is the sole rigid component in S-HDAg, with its structure remaining fully conserved within the full-length protein. In contrast, the rest of the protein remains dynamic. This work provides the necessary foundation for future studies of the viral RNP.
Collapse
Affiliation(s)
- Yang Yang
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Alexander A Malär
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Alexander B Barnes
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors, 69367 Lyon, France
| |
Collapse
|
3
|
Zhao L, Deng Y, Wang Y, Zhou S, Yin B, Chen Y, Wang Y, Li J, Wang L, Lin Y, Wang L. Nanopore efficiently identifies hepatitis D virus antigens in vitro assay. MATERIALS TODAY PHYSICS 2024; 46:101479. [DOI: 10.1016/j.mtphys.2024.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
|
4
|
Hsu CW, Hsu HY, Chen CH, Chao M. Unbranched rod-like RNA is required for RNA editing of hepatitis delta virus genotype 2 and genotype 4. Virus Res 2023; 338:199239. [PMID: 37827303 PMCID: PMC10590747 DOI: 10.1016/j.virusres.2023.199239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
RNA editing of the hepatitis delta virus (HDV) is essential for generating the large delta antigen, which is crucial for virion assembly. In HDV genotype 1 (HDV-1), editing occurs within the context of the unbranched rod-like structure characteristic of HDV RNA, while RNA editing in HDV-3 requires a branched double-hairpin structure. The regulation of RNA editing in HDV-2 and HDV-4 remains uncertain. Based on predictions of the unbranched rod-like RNA structures of HDV-2 and HDV-4, the editing site occurs as an A.C mismatch pair, surrounded by four base pairs upstream and two base pairs downstream of the editing site, respectively. To investigate HDV-2 and HDV-4 RNA editing, cultured cells were transfected with non-replicating editing reporters carrying wild-type sequences or specific mutations. The results revealed that the editing rates observed for wild-type HDV-2 and HDV-4 were fairly similar, albeit lower than that of HDV-1. Like HDV-1, both HDV-2 and HDV-4 showed a reduction in editing rate when the A.C mismatch pair and the immediately upstream base-paired region were disturbed. Notably, extending the downstream base-paired region from two to three or four (forming a structure identical to that of HDV-1) base pairs increased editing rate. Furthermore, we presented novel evidence that indicates the importance of the first bulge's size, located upstream of the editing site, and the base-pairing length within 7-13 and 28-39 nucleotides downstream of the editing site in influencing the HDV-4 editing rate. To summarize, our analyses suggest that the unbranched rod-like structures surrounding the editing site of HDV-2 and HDV-4 play a crucial role in regulating their RNA editing rates.
Collapse
Affiliation(s)
- Chao-Wei Hsu
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan
| | - Hsueh-Ying Hsu
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan
| | - Chien-Hung Chen
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Mei Chao
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Guishan, Taoyang 33302, Taiwan; Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang 33302, Taiwan.
| |
Collapse
|
5
|
Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antiviral Res 2023; 209:105461. [PMID: 36396025 DOI: 10.1016/j.antiviral.2022.105461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France
| | - Patrick T Kennedy
- The Blizard Institute, Queen Mary University of London, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France.
| | - Tarik Asselah
- Université de Paris, Cité CRI, INSERM UMR 1149, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
6
|
Kim GW, Moon JS, Gudima SO, Siddiqui A. N 6-Methyladenine Modification of Hepatitis Delta Virus Regulates Its Virion Assembly by Recruiting YTHDF1. J Virol 2022; 96:e0112422. [PMID: 36102650 PMCID: PMC9555152 DOI: 10.1128/jvi.01124-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a defective satellite virus that uses hepatitis B virus (HBV) envelope proteins to form its virions and infect hepatocytes via the HBV receptors. Concomitant HDV/HBV infection continues to be a major health problem, with at least 25 million people chronically infected worldwide. N6-methyladenine (m6A) modification of cellular and viral RNAs is the most prevalent internal modification that occurs cotranscriptionally, and this modification regulates various biological processes. We have previously described a wider range of functional roles of m6A methylation of HBV RNAs, including its imminent regulatory role in the encapsidation of pregenomic RNA. In this study, we present evidence that m6A methylation also plays an important role in the HDV life cycle. Using the methylated RNA immunoprecipitation (MeRIP) assay, we identified that the intracellular HDV genome and antigenome are m6A methylated in HDV- and HBV-coinfected primary human hepatocytes and HepG2 cell expressing sodium taurocholate cotransporting polypeptide (NTCP), while the extracellular HDV genome is not m6A methylated. We observed that HDV genome and delta antigen levels are significantly decreased in the absence of METTL3/14, while the extracellular HDV genome levels are increased by depletion of METTL3/14. Importantly, YTHDF1, an m6A reader protein, interacts with the m6A-methylated HDV genome and inhibits the interaction between the HDV genome and antigens. Thus, m6A of the HDV genome negatively regulates virion production by inhibiting the interaction of the HDV genome with delta antigens through the recruitment of YTHDF1. This is the first study that provides insight into the functional roles of m6A in the HDV life cycle. IMPORTANCE The functional roles of N6-methyladenine (m6A) modifications in the HBV life cycle have been recently highlighted. Here, we investigated the functional role of m6A modification in the HDV life cycle. HDV is a subviral agent of HBV, as it uses HBV envelope proteins to form its virions. We found that m6A methylation also occurs in the intracellular HDV genome and antigenome but not in the extracellular HDV genome. The m6A modification of the HDV genome recruits m6A reader protein (YTHDF1) onto the viral genome. The association of YTHDF1 with the HDV genome abrogates the interaction of delta antigens with the HDV genome and inhibits virion assembly. This study describes the unique effects of m6A on regulation of the HDV life cycle.
Collapse
Affiliation(s)
- Geon-Woo Kim
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Microbiology and Molecular Biology, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Jae-Su Moon
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aleem Siddiqui
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Medical Advances in Hepatitis D Therapy: Molecular Targets. Int J Mol Sci 2022; 23:ijms231810817. [PMID: 36142728 PMCID: PMC9506394 DOI: 10.3390/ijms231810817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
An approximate number of 250 million people worldwide are chronically infected with hepatitis B virus, making them susceptible to a coinfection with hepatitis D virus. The superinfection causes the most severe form of a viral hepatitis and thus drastically worsens the course of the disease. Until recently, the only available therapy consisted of interferon-α, only eligible for a minority of patients. In July 2020, the EMA granted Hepcludex conditional marketing authorization throughout the European Union. This first-in-class entry inhibitor offers the promise to prevent the spread in order to gain control and eventually participate in curing hepatitis B and D. Hepcludex is an example of how understanding the viral lifecycle can give rise to new therapy options. Sodium taurocholate co-transporting polypeptide, the virus receptor and the target of Hepcludex, and other targets of hepatitis D therapy currently researched are reviewed in this work. Farnesyltransferase inhibitors such as Lonafarnib, targeting another essential molecule in the HDV life cycle, represent a promising target for hepatitis D therapy. Farnesyltransferase attaches a farnesyl (isoprenyl) group to proteins carrying a C-terminal Ca1a2X (C: cysteine, a: aliphatic amino acid, X: C-terminal amino acid) motif like the large hepatitis D virus antigen. This modification enables the interaction of the HBV/HDV particle and the virus envelope proteins. Lonafarnib, which prevents this envelopment, has been tested in clinical trials. Targeting the lifecycle of the hepatitis B virus needs to be considered in hepatitis D therapy in order to cure a patient from both coexisting infections. Nucleic acid polymers target the hepatitis B lifecycle in a manner that is not yet understood. Understanding the possible targets of the hepatitis D virus therapy is inevitable for the improvement and development of a sufficient therapy that HDV patients are desperately in need of.
Collapse
|
8
|
Gorbovytska V, Kim SK, Kuybu F, Götze M, Um D, Kang K, Pittroff A, Brennecke T, Schneider LM, Leitner A, Kim TK, Kuhn CD. Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nat Commun 2022; 13:2429. [PMID: 35508485 PMCID: PMC9068813 DOI: 10.1038/s41467-022-29934-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Enhancer RNAs (eRNAs) are long non-coding RNAs that originate from enhancers. Although eRNA transcription is a canonical feature of activated enhancers, the molecular features required for eRNA function and the mechanism of how eRNAs impinge on target gene transcription have not been established. Thus, using eRNA-dependent RNA polymerase II (Pol II) pause release as a model, we here investigate the requirement of sequence, structure and length of eRNAs for their ability to stimulate Pol II pause release by detaching NELF from paused Pol II. We find eRNAs not to exert their function through common structural or sequence motifs. Instead, eRNAs that exhibit a length >200 nucleotides and that contain unpaired guanosines make multiple, allosteric contacts with NELF subunits -A and -E to trigger efficient NELF release. By revealing the molecular determinants of eRNA function, our study establishes eRNAs as an important player in Pol II pause release, and it provides new insight into the regulation of metazoan transcription.
Collapse
Affiliation(s)
- Vladyslava Gorbovytska
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Seung-Kyoon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.,Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Filiz Kuybu
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Michael Götze
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Andreas Pittroff
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Theresia Brennecke
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Lisa-Marie Schneider
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea. .,Institute of Convergence Science, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Claus-D Kuhn
- RNA Biochemistry, University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.
| |
Collapse
|
9
|
Hepatitis delta virus genome RNA synthesis initiates at position 1646 with a non-templated guanosine. J Virol 2021; 96:e0201721. [PMID: 34878890 DOI: 10.1128/jvi.02017-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a significant human pathogen that causes acute and chronic liver disease; there is no licensed therapy. HDV is a circular negative-sense ssRNA virus that produces three RNAs in infected cells: genome, antigenome and mRNA; the latter encodes hepatitis delta antigen, the viral protein. These RNAs are synthesized by host DNA-dependent RNA polymerase acting as an RNA-dependent RNA polymerase. Although HDV genome RNA accumulates to high levels in infected cells, the mechanism by which this process occurs remains poorly understood. For example, the nature of the 5' end of the genome, including the synthesis start site and its chemical composition, are not known. Analysis of this process has been challenging because the initiation site is part of an unstable precursor in the rolling circle mechanism by which HDV genome RNA is synthesized. In this study, circular HDV antigenome RNAs synthesized in vitro were used to directly initiate HDV genome RNA synthesis in transfected cells, thus enabling detection of the 5' end of the genome RNA. The 5' end of this RNA is capped, as expected for a Pol II product. Initiation begins at position 1646 on the genome, which is located near the loop end proximal to the start site for HDAg mRNA synthesis. Unexpectedly, synthesis begins with a guanosine that is not conventionally templated by the HDV RNA. IMPORTANCE Hepatitis delta virus (HDV) is a unique virus that causes severe liver disease. It uses host RNA Polymerase II to copy its circular RNA genome in a unique and poorly understood process. Although the virus RNA accumulates to high levels within infected cells, it is not known how synthesis of the viral RNA begins, nor even where on the genome synthesis starts. Here, we identify the start site for the initiation of HDV genome RNA synthesis as position 1646, which is at one end of the closed hairpin-like structure of the viral RNA. The 5' end of the RNA is capped, as expected for Pol II products. However, RNA synthesis begins with a guanosine that is not present in the genome. Thus, although HDV uses Pol II to synthesize the viral genome, some details of the initiation process are different. These differences could be important for successfully targeting virus replication.
Collapse
|
10
|
Lucifora J, Delphin M. Current knowledge on Hepatitis Delta Virus replication. Antiviral Res 2020; 179:104812. [PMID: 32360949 DOI: 10.1016/j.antiviral.2020.104812] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Hepatitis B Virus (HBV) that infects liver parenchymal cells is responsible for severe liver diseases and co-infection with Hepatitis Delta Virus (HDV) leads to the most aggressive form of viral hepatitis. Even tough being different for their viral genome (relaxed circular partially double stranded DNA for HBV and circular RNA for HDV), HBV and HDV are both maintained as episomes in the nucleus of infected cells and use the cellular machinery for the transcription of their viral RNAs. We propose here an update on the current knowledge on HDV replication cycle that may eventually help to identify new antiviral targets.
Collapse
Affiliation(s)
- Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France.
| | - Marion Delphin
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, France
| |
Collapse
|
11
|
Abeywickrama-Samarakoon N, Cortay JC, Sureau C, Müller S, Alfaiate D, Guerrieri F, Chaikuad A, Schröder M, Merle P, Levrero M, Dény P. Hepatitis Delta Virus histone mimicry drives the recruitment of chromatin remodelers for viral RNA replication. Nat Commun 2020; 11:419. [PMID: 31964889 PMCID: PMC6972770 DOI: 10.1038/s41467-020-14299-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/21/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatitis Delta virus (HDV) is a satellite of Hepatitis B virus with a single-stranded circular RNA genome. HDV RNA genome synthesis is carried out in infected cells by cellular RNA polymerases with the assistance of the small hepatitis delta antigen (S-HDAg). Here we show that S-HDAg binds the bromodomain (BRD) adjacent to zinc finger domain 2B (BAZ2B) protein, a regulatory subunit of BAZ2B-associated remodeling factor (BRF) ISWI chromatin remodeling complexes. shRNA-mediated silencing of BAZ2B or its inactivation with the BAZ2B BRD inhibitor GSK2801 impairs HDV replication in HDV-infected human hepatocytes. S-HDAg contains a short linear interacting motif (SLiM) KacXXR, similar to the one recognized by BAZ2B BRD in histone H3. We found that the integrity of the S-HDAg SLiM sequence is required for S-HDAg interaction with BAZ2B BRD and for HDV RNA replication. Our results suggest that S-HDAg uses a histone mimicry strategy to co-activate the RNA polymerase II-dependent synthesis of HDV RNA and sustain HDV replication. Histone mimicry of viral components is a strategy to subvert host factors for virus replication. Here, the authors show that an acetylated histone-like motif of the small Hepatitis Delta Antigen (S-HDAg) interacts with the chromatin remodeler BAZ2B to recruit the DNA-dependent RNA polymerase II for HDV RNA replication.
Collapse
Affiliation(s)
| | - Jean-Claude Cortay
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, INSERM U1134, Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, 75739, Paris, France
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Dulce Alfaiate
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Département de Pathologie et Immunologie, Université de Genève, avenue de Champel 41, 1206, Genève, Switzerland.,Department of Infectious and Tropical Diseases, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France
| | - Francesca Guerrieri
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Italian Institute of Technology (IIT) - Center for Life Nanoscience (CLNS), Sapienza University, Viale Regina Elena, 291, 00161, Rome, Italy
| | - Apirat Chaikuad
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Martin Schröder
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Philippe Merle
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France.,Department of Hepatology, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France
| | - Massimo Levrero
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France. .,Italian Institute of Technology (IIT) - Center for Life Nanoscience (CLNS), Sapienza University, Viale Regina Elena, 291, 00161, Rome, Italy. .,Department of Hepatology, Hôpital de la Croix Rousse, Hospices Civils de Lyon and Université Lyon I, 103 Grande Rue de la Croix-Rousse, 69004, Lyon, France.
| | - Paul Dény
- INSERM, U1052 UMR CNRS 5286, Cancer Research Center of Lyon (CRCL), 151 cours Albert Thomas, 69424, Lyon, France. .,Laboratoire de Microbiologie Clinique, Groupe des Hôpitaux Universitaires de Paris - Seine Saint Denis, UFR Santé Médecine, Biologie Humaine, Université Paris 13, 125 Rue de Stalingrad, 93009, Bobigny, France.
| |
Collapse
|
12
|
Hsu CW, Juang HH, Kuo CY, Li HP, Iang SB, Lin SH, Yeh CT, Chao M. Structural Pattern Differences in Unbranched Rod-like RNA of Hepatitis Delta Virus affect RNA Editing. Viruses 2019; 11:v11100934. [PMID: 31614652 PMCID: PMC6832723 DOI: 10.3390/v11100934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) RNA forms an unbranched rod-like structure and complexes with the delta antigen (HDAg). Host ADAR1-catalyzed RNA editing at the amber/W site of the small HDAg leads to the production of the large HDAg, which inhibits replication and is required for virion assembly. For HDV genotype 1, amber/W editing is controlled by HDAg and the RNA structure immediate vicinity and downstream of the editing site. Here, the effects of 20 mutants carrying an increased length of consecutive base-pairing at various sites in HDV RNA on amber/W site editing were examined. All nine mutants carrying genomic regions that formed up to 15 consecutive base pairs, which is also the maximum length observed in 41 naturally occurring HDV genomes, showed normal editing rate. However, mutants carrying a 16 or 17 consecutive base-paired antigenomic segment located as far as 114 nt upstream could increase editing efficiency, possibly by interfering with HDAg binding. These data show for the first time that extended base-pairing upstream of the amber/W site could increase HDV RNA editing efficiency. Furthermore, it appears that the naturally occurring HDV RNA structures have been selected for suboptimal amber/W RNA editing, which favors the HDV replication cycle.
Collapse
Affiliation(s)
- Chao-Wei Hsu
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Guishan, Taoyang 33302, Taiwan; (C.-W.H.); (C.-T.Y.)
| | - Horng-Heng Juang
- Department of Anatomy, Chang Gung University, Guishan, Taoyang 33302, Taiwan;
| | - Chien-Yi Kuo
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyang 33302, Taiwan; (C.-Y.K.); (H.-P.L.); (S.-B.I.); (S.-H.L.)
| | - Hsin-Pai Li
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyang 33302, Taiwan; (C.-Y.K.); (H.-P.L.); (S.-B.I.); (S.-H.L.)
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang 33302, Taiwan
| | - Shan-Bei Iang
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyang 33302, Taiwan; (C.-Y.K.); (H.-P.L.); (S.-B.I.); (S.-H.L.)
| | - Siao-Han Lin
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyang 33302, Taiwan; (C.-Y.K.); (H.-P.L.); (S.-B.I.); (S.-H.L.)
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Guishan, Taoyang 33302, Taiwan; (C.-W.H.); (C.-T.Y.)
| | - Mei Chao
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Guishan, Taoyang 33302, Taiwan; (C.-W.H.); (C.-T.Y.)
- Department of Microbiology and Immunology, Chang Gung University, Guishan, Taoyang 33302, Taiwan; (C.-Y.K.); (H.-P.L.); (S.-B.I.); (S.-H.L.)
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Guishan, Taoyang 33302, Taiwan
- Correspondence:
| |
Collapse
|
13
|
Hepatitis Delta Antigen Regulates mRNA and Antigenome RNA Levels during Hepatitis Delta Virus Replication. J Virol 2019; 93:JVI.01989-18. [PMID: 30728256 DOI: 10.1128/jvi.01989-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of acute and chronic liver disease. HDV produces three processed RNAs that accumulate in infected cells: the circular genome; the circular antigenome, which serves as a replication intermediate; and lesser amounts of the mRNA, which encodes the sole viral protein, hepatitis delta antigen (HDAg). The HDV genome and antigenome RNAs form ribonucleoprotein complexes with HDAg. Although HDAg is required for HDV replication, it is not known how the relative amounts of HDAg and HDV RNA affect replication, or whether HDAg synthesis is regulated by the virus. Using a novel transfection system in which HDV replication is initiated using in vitro-synthesized circular HDV RNAs, HDV replication was found to depend strongly on the relative amounts of HDV RNA and HDAg. HDV controls these relative amounts via differential effects of HDAg on the production of HDV mRNA and antigenome RNA, both of which are synthesized from the genome RNA template. mRNA synthesis is favored at low HDAg levels but becomes saturated at high HDAg concentrations. Antigenome RNA accumulation increases linearly with HDAg and dominates at high HDAg levels. These results provide a conceptual model for how HDV antigenome RNA production and mRNA transcription are controlled from the earliest stage of infection onward and also demonstrate that, in this control, HDV behaves similarly to other negative-strand RNA viruses, even though there is no genetic similarity between them.IMPORTANCE Hepatitis delta virus (HDV) is a satellite of hepatitis B virus that increases the severity of liver disease; approximately 15 million people are chronically infected worldwide. There are no licensed therapies available. HDV is not related to any known virus, and few details regarding its replication cycle are known. One key question is whether and how HDV regulates the relative amounts of viral RNA and protein in infected cells. Such regulation might be important because the HDV RNA and protein form complexes that are essential for HDV replication, and the proper stoichiometry of these complexes could be critical for their function. Our results show that the relative amounts of HDV RNA and protein in cells are indeed important for HDV replication and that the virus does control them. These observations indicate that further study of these regulatory mechanisms is required to better understand replication of this serious human pathogen.
Collapse
|
14
|
Chen M, Du D, Zheng W, Liao M, Zhang L, Liang G, Gong M. Small hepatitis delta antigen selectively binds to target mRNA in hepatic cells: a potential mechanism by which hepatitis D virus downregulates glutathione S-transferase P1 and induces liver injury and hepatocarcinogenesis. Biochem Cell Biol 2018; 97:130-139. [PMID: 30153423 DOI: 10.1139/bcb-2017-0321] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Liver coinfection by hepatitis B virus (HBV) and hepatitis D virus (HDV) can result in a severe form of hepatocellular carcinoma with poor prognosis. Coinfection with HDV and HBV causes more deleterious effects than infection with HBV alone. Clinical research has shown that glutathione S-transferase P1 (GSTP1), a tumor suppressor gene, is typically downregulated in liver samples from hepatitis-infected patients. In the present study, our data indicated that small HDV antigen (s-HDAg) could specifically bind to GSTP1 mRNA and significantly downregulate GSTP1 protein expression. For the human fetal hepatocyte cell line L-02, cells transfected with s-HDAg, along with decreased GSTP1 expression, there was a significant accumulation of reactive oxygen species (ROS) and increased apoptotic ratios. Restoring GSTP1 expression through silencing s-HDAg via RNAi or overexpressing exogenous GSTP1 could largely recover the abnormal cell status. Our results revealed a novel potential mechanism of HDV-induced liver injury and hepatocarcinogenesis: s-HDAg can inhibit GSTP1 expression by directly binding to GSTP1 mRNA, which leads to accumulation of cellular ROS, resulting in high cellular apoptotic ratios and increased selective pressure for malignant transformation. To our knowledge, this is the first study to examine s-HDAg-specific pathogenic mechanisms through potential protein-RNA interactions.
Collapse
Affiliation(s)
- Mianzhi Chen
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Du
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingheng Liao
- b Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Zhang
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Liang
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- a Huaxi-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Alves C, Cheng H, Tavanez JP, Casaca A, Gudima S, Roder H, Cunha C. Structural and nucleic acid binding properties of hepatitis delta virus small antigen. World J Virol 2017; 6:26-35. [PMID: 28573087 PMCID: PMC5437381 DOI: 10.5501/wjv.v6.i2.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/30/2017] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To further characterize the structure and nucleic acid binding properties of the 195 amino acid small delta antigen, S-HDAg, a study was made of a truncated form of S-HDAg, comprising amino acids 61-195 (∆60HDAg), thus lacking the domain considered necessary for dimerization and higher order multimerization.
METHODS Circular dichroism, and nuclear magnetic resonance experiments were used to assess the structure of ∆60HDAg. Nucleic acid binding properties were investigated by gel retardation assays.
RESULTS Results showed that the truncated ∆60HDAg protein is intrinsically disordered but compact, whereas the RNA binding domain, comprising residues 94-146, adopts a dynamic helical conformation. We also found that ∆60HDAg fails to multimerize but still contains nucleic acid binding activity, indicating that multimerization is not essential for nucleic acid binding. Moreover, in agreement with what has been previously reported for full-length protein, no apparent specificity was found for the truncated protein regarding nucleic acid binding.
CONCLUSION Taken together these results allowed concluding that ∆60HDAg is intrinsically disordered but compact; ∆60HDAg is not a multimer but is still capable of nucleic acid binding albeit without apparent specificity.
Collapse
|
16
|
Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol 2016; 64:S102-S116. [PMID: 27084031 DOI: 10.1016/j.jhep.2016.02.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans.
Collapse
Affiliation(s)
- Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS INSERM U1134, Paris, France.
| | - Francesco Negro
- Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
17
|
Abstract
This work reviews specific related aspects of hepatitis delta virus (HDV) reproduction, including virion structure, the RNA genome, the mode of genome replication, the delta antigens, and the assembly of HDV using the envelope proteins of its helper virus, hepatitis B virus (HBV). These topics are considered with perspectives ranging from a history of discovery through to still-unsolved problems. HDV evolution, virus entry, and associated pathogenic potential and treatment of infections are considered in other articles in this collection.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
18
|
Erkizan HV, Schneider JA, Sajwan K, Graham GT, Griffin B, Chasovskikh S, Youbi SE, Kallarakal A, Chruszcz M, Padmanabhan R, Casey JL, Üren A, Toretsky JA. RNA helicase A activity is inhibited by oncogenic transcription factor EWS-FLI1. Nucleic Acids Res 2015; 43:1069-80. [PMID: 25564528 PMCID: PMC4333382 DOI: 10.1093/nar/gku1328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA helicases impact RNA structure and metabolism from transcription through translation, in part through protein interactions with transcription factors. However, there is limited knowledge on the role of transcription factor influence upon helicase activity. RNA helicase A (RHA) is a DExH-box RNA helicase that plays multiple roles in cellular biology, some functions requiring its activity as a helicase while others as a protein scaffold. The oncogenic transcription factor EWS-FLI1 requires RHA to enable Ewing sarcoma (ES) oncogenesis and growth; a small molecule, YK-4-279 disrupts this complex in cells. Our current study investigates the effect of EWS-FLI1 upon RHA helicase activity. We found that EWS-FLI1 reduces RHA helicase activity in a dose-dependent manner without affecting intrinsic ATPase activity; however, the RHA kinetics indicated a complex model. Using separated enantiomers, only (S)-YK-4-279 reverses the EWS-FLI1 inhibition of RHA helicase activity. We report a novel RNA binding property of EWS-FLI1 leading us to discover that YK-4-279 inhibition of RHA binding to EWS-FLI1 altered the RNA binding profile of both proteins. We conclude that EWS-FLI1 modulates RHA helicase activity causing changes in overall transcriptome processing. These findings could lead to both enhanced understanding of oncogenesis and provide targets for therapy.
Collapse
Affiliation(s)
- Hayriye Verda Erkizan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Jeffrey A Schneider
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Kamal Sajwan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Garrett T Graham
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Brittany Griffin
- Department of Microbiology and Immunology, Georgetown University Medical Center, SW 309 Med-Dent, Washington, DC 20007, USA
| | - Sergey Chasovskikh
- Department of Radiation Medicine, Georgetown University Medical Center, 3970 Reservoir Road NW, New Research Building E220, Washington, DC 20007, USA
| | - Sarah E Youbi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Abraham Kallarakal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, SW 309 Med-Dent, Washington, DC 20007, USA
| | - John L Casey
- Department of Microbiology and Immunology, Georgetown University Medical Center, SW 309 Med-Dent, Washington, DC 20007, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Jeffrey A Toretsky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| |
Collapse
|
19
|
Hepatitis delta antigen requires a flexible quasi-double-stranded RNA structure to bind and condense hepatitis delta virus RNA in a ribonucleoprotein complex. J Virol 2014; 88:7402-11. [PMID: 24741096 DOI: 10.1128/jvi.00443-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The circular genome and antigenome RNAs of hepatitis delta virus (HDV) form characteristic unbranched, quasi-double-stranded RNA secondary structures in which short double-stranded helical segments are interspersed with internal loops and bulges. The ribonucleoprotein complexes (RNPs) formed by these RNAs with the virus-encoded protein hepatitis delta antigen (HDAg) perform essential roles in the viral life cycle, including viral replication and virion formation. Little is understood about the formation and structure of these complexes and how they function in these key processes. Here, the specific RNA features required for HDAg binding and the topology of the complexes formed were investigated. Selective 2'OH acylation analyzed by primer extension (SHAPE) applied to free and HDAg-bound HDV RNAs indicated that the characteristic secondary structure of the RNA is preserved when bound to HDAg. Notably, the analysis indicated that predicted unpaired positions in the RNA remained dynamic in the RNP. Analysis of the in vitro binding activity of RNAs in which internal loops and bulges were mutated and of synthetically designed RNAs demonstrated that the distinctive secondary structure, not the primary RNA sequence, is the major determinant of HDAg RNA binding specificity. Atomic force microscopy analysis of RNPs formed in vitro revealed complexes in which the HDV RNA is substantially condensed by bending or wrapping. Our results support a model in which the internal loops and bulges in HDV RNA contribute flexibility to the quasi-double-stranded structure that allows RNA bending and condensing by HDAg. IMPORTANCE RNA-protein complexes (RNPs) formed by the hepatitis delta virus RNAs and protein, HDAg, perform critical roles in virus replication. Neither the structures of these RNPs nor the RNA features required to form them have been characterized. HDV RNA is unusual in that it forms an unbranched quasi-double-stranded structure in which short base-paired segments are interspersed with internal loops and bulges. We analyzed the role of the HDV RNA sequence and secondary structure in the formation of a minimal RNP and visualized the structure of this RNP using atomic force microscopy. Our results indicate that HDAg does not recognize the primary sequence of the RNA; rather, the principle contribution of unpaired bases in HDV RNA to HDAg binding is to allow flexibility in the unbranched quasi-double-stranded RNA structure. Visualization of RNPs by atomic force microscopy indicated that the RNA is significantly bent or condensed in the complex.
Collapse
|
20
|
Arginine-rich motifs are not required for hepatitis delta virus RNA binding activity of the hepatitis delta antigen. J Virol 2013; 87:8665-74. [PMID: 23740973 DOI: 10.1128/jvi.00929-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta virus (HDV) replication and packaging require interactions between the unbranched rodlike structure of HDV RNA and hepatitis delta antigen (HDAg), a basic, disordered, oligomeric protein. The tendency of the protein to bind nonspecifically to nucleic acids has impeded analysis of HDV RNA protein complexes and conclusive determination of the regions of HDAg involved in RNA binding. The most widely cited model suggests that RNA binding involves two proposed arginine-rich motifs (ARMs I and II) in the middle of HDAg. However, other studies have questioned the roles of the ARMs. Here, binding activity was analyzed in vitro using HDAg-160, a C-terminal truncation that binds with high affinity and specificity to HDV RNA segments in vitro. Mutation of the core arginines of ARM I or ARM II in HDAg-160 did not diminish binding to HDV unbranched rodlike RNA. These same mutations did not abolish the ability of full-length HDAg to inhibit HDV RNA editing in cells, an activity that involves RNA binding. Moreover, only the N-terminal region of the protein, which does not contain the ARMs, was cross-linked to a bound HDV RNA segment in vitro. These results indicate that the amino-terminal region of HDAg is in close contact with the RNA and that the proposed ARMs are not required for binding HDV RNA. Binding was not reduced by mutation of additional clusters of basic amino acids. This result is consistent with an RNA-protein complex that is formed via numerous contacts between the RNA and each HDAg monomer.
Collapse
|
21
|
Abstract
Hepatitis delta virus (HDV) uses ADAR1 editing of the viral antigenome RNA to switch from viral RNA replication to packaging. At early times in the replication cycle, the virus produces the protein HDAg-S, which is required for RNA synthesis; at later times, as result of editing at the amber/W site, the virus produces HDAg-L, which is required for packaging, but inhibits further RNA synthesis as levels increase. Control of editing during the replication cycle is essential for the virus and is multifaceted. Both the rate at which amber/W site editing occurs and the ultimate amount of editing are restricted; moreover, despite the nearly double stranded character of the viral RNA, efficient editing is restricted to the amber/W site. The mechanisms used by the virus for controlling editing operate at several levels, and range from molecular interactions to procedural. They include the placement of editing in the HDV replication cycle, RNA structural dynamics, and interactions of both ADAR1 and HDAg with specific structural features of the RNA. That HDV genotypes 1 and 3 use different RNA structural features for editing and control the process in ways related to these features underscores the critical roles of editing and its control in HDV replication. This review will cover the mechanisms of editing at the amber/W site and the means by which the virus controls it in these two genotypes.
Collapse
Affiliation(s)
- John L Casey
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
22
|
Alves C, Cheng H, Roder H, Taylor J. Intrinsic disorder and oligomerization of the hepatitis delta virus antigen. Virology 2010; 407:333-40. [PMID: 20855099 PMCID: PMC2952689 DOI: 10.1016/j.virol.2010.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 12/11/2022]
Abstract
The 195 amino acid basic protein (δAg) of hepatitis delta virus (HDV) is essential for replication of the HDV RNA genome. Numerous properties have been mapped to full-length δAg and attempts made to link these to secondary, tertiary and quaternary structures. Here, for the full-size δAg, extensive intrinsic disorder was predicted using PONDR-FIT, a meta-predictor of intrinsic disorder, and evidenced by circular dichroism measurements. Most δAg amino acids are in disordered configurations with no more than 30% adopting an α-helical structure. In addition, dynamic light scattering studies indicated that purified δAg assembled into structures of as large as dodecamers. Cross-linking followed by denaturing polyacrylamide gel electrophoresis revealed hexamers to octamers for this purified δAg and at least this size for δAg found in virus-like particles. Oligomers of purified δAg were resistant to elevated NaCl and urea concentrations, and bound without specificity to RNA and single- and double-stranded DNAs.
Collapse
|
23
|
Chen R, Linnstaedt SD, Casey JL. RNA editing and its control in hepatitis delta virus replication. Viruses 2010; 2:131-146. [PMID: 21994604 PMCID: PMC3185552 DOI: 10.3390/v2010131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 12/31/2009] [Accepted: 01/05/2009] [Indexed: 12/12/2022] Open
Abstract
The hepatitis delta virus genome is a small circular RNA, similar to viroids. Although HDV contains a gene, the protein produced (HDAg) is encoded by less than half the genome and possesses no RNA polymerase activity. Because of this limited coding capacity, HDV relies heavily on host functions and on structural features of the viral RNA—very much like viroids. The virus’ use of host RNA editing activity to produce two functionally distinct forms of HDAg is a particularly good example of this reliance. This review covers the mechanisms and control of RNA editing in the HDV replication cycle.
Collapse
Affiliation(s)
| | | | - John L. Casey
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-202-687-1052; Fax: +1-202-687-1800
| |
Collapse
|
24
|
Multimerization of hepatitis delta antigen is a critical determinant of RNA binding specificity. J Virol 2009; 84:1406-13. [PMID: 19923178 DOI: 10.1128/jvi.01723-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatitis delta virus (HDV) RNA forms an unbranched rod structure that is associated with hepatitis delta antigen (HDAg) in cells replicating HDV. Previous in vitro binding experiments using bacterially expressed HDAg showed that the formation of a minimal ribonucleoprotein complex requires an HDV unbranched rod RNA of at least about 300 nucleotides (nt) and suggested that HDAg binds the RNA as a multimer of fixed size. The present study specifically examines the role of HDAg multimerization in the formation of the HDV ribonucleoprotein complex (RNP). Disruption of HDAg multimerization by site-directed mutagenesis was found to profoundly alter the nature of RNP formation. Mutant HDAg proteins defective for multimerization exhibited neither the 300-nt RNA size requirement for binding nor specificity for the unbranched rod structure. The results unambiguously demonstrate that HDAg binds HDV RNA as a multimer and that the HDAg multimer is formed prior to binding the RNA. RNP formation was found to be temperature dependent, which is consistent with conformational changes occurring on binding. Finally, analysis of RNPs constructed with unbranched rod RNAs successively longer than the minimum length indicated that multimeric binding is not limited to the first HDAg bound and that a minimum RNA length of between 604 and 714 nt is required for binding of a second multimer. The results confirm the previous proposal that HDAg binds as a large multimer and demonstrate that the multimer is a critical determinant of the structure of the HDV RNP.
Collapse
|
25
|
Abstract
Hepatitis delta virus (HDV) is a subviral agent dependent upon hepatitis B virus (HBV). HDV uses the envelope proteins of HBV to achieve assembly and infection of target cells. Otherwise, the replication of the RNA genome of HDV is totally different from that of its helper virus, and involves redirection of host polymerase activity. This chapter is concerned with recent developments in our understanding of the genome replication process.
Collapse
Affiliation(s)
- John M Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|