1
|
Ziesel A, Jabbari H. Unveiling hidden structural patterns in the SARS-CoV-2 genome: Computational insights and comparative analysis. PLoS One 2024; 19:e0298164. [PMID: 38574063 PMCID: PMC10994416 DOI: 10.1371/journal.pone.0298164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/19/2024] [Indexed: 04/06/2024] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, is known to exhibit secondary structures in its 5' and 3' untranslated regions, along with the frameshifting stimulatory element situated between ORF1a and 1b. To identify additional regions containing conserved structures, we utilized a multiple sequence alignment with related coronaviruses as a starting point. We applied a computational pipeline developed for identifying non-coding RNA elements. Our pipeline employed three different RNA structural prediction approaches. We identified forty genomic regions likely to harbor structures, with ten of them showing three-way consensus substructure predictions among our predictive utilities. We conducted intracomparisons of the predictive utilities within the pipeline and intercomparisons with four previously published SARS-CoV-2 structural datasets. While there was limited agreement on the precise structure, different approaches seemed to converge on regions likely to contain structures in the viral genome. By comparing and combining various computational approaches, we can predict regions most likely to form structures, as well as a probable structure or ensemble of structures. These predictions can be used to guide surveillance, prophylactic measures, or therapeutic efforts. Data and scripts employed in this study may be found at https://doi.org/10.5281/zenodo.8298680.
Collapse
Affiliation(s)
- Alison Ziesel
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Hosna Jabbari
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Szczesniak I, Baliga-Gil A, Jarmolowicz A, Soszynska-Jozwiak M, Kierzek E. Structural and Functional RNA Motifs of SARS-CoV-2 and Influenza A Virus as a Target of Viral Inhibitors. Int J Mol Sci 2023; 24:ijms24021232. [PMID: 36674746 PMCID: PMC9860923 DOI: 10.3390/ijms24021232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.
Collapse
|
3
|
Alemrajabi M, Macias Calix K, Assis R. Epistasis-Driven Evolution of the SARS-CoV-2 Secondary Structure. J Mol Evol 2022; 90:429-437. [PMID: 36178491 PMCID: PMC9523185 DOI: 10.1007/s00239-022-10073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
Epistasis is an evolutionary phenomenon whereby the fitness effect of a mutation depends on the genetic background in which it arises. A key source of epistasis in an RNA molecule is its secondary structure, which contains functionally important topological motifs held together by hydrogen bonds between Watson–Crick (WC) base pairs. Here we study epistasis in the secondary structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by examining properties of derived alleles arising from substitution mutations at ancestral WC base-paired and unpaired (UP) sites in 15 conserved topological motifs across the genome. We uncover fewer derived alleles and lower derived allele frequencies at WC than at UP sites, supporting the hypothesis that modifications to the secondary structure are often deleterious. At WC sites, we also find lower derived allele frequencies for mutations that abolish base pairing than for those that yield G·U “wobbles,” illustrating that weak base pairing can partially preserve the integrity of the secondary structure. Last, we show that WC sites under the strongest epistatic constraint reside in a three-stemmed pseudoknot motif that plays an essential role in programmed ribosomal frameshifting, whereas those under the weakest epistatic constraint are located in 3’ UTR motifs that regulate viral replication and pathogenicity. Our findings demonstrate the importance of epistasis in the evolution of the SARS-CoV-2 secondary structure, as well as highlight putative structural and functional targets of different forms of natural selection.
Collapse
Affiliation(s)
- Mahsa Alemrajabi
- Department of Physics, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ksenia Macias Calix
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Raquel Assis
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA.
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
4
|
Kim K, Calabrese P, Wang S, Qin C, Rao Y, Feng P, Chen XS. The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness. Sci Rep 2022; 12:14972. [PMID: 36100631 PMCID: PMC9470679 DOI: 10.1038/s41598-022-19067-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure.
Collapse
Affiliation(s)
- Kyumin Kim
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Calabrese
- Quantitative and Computational Biology Department, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shanshan Wang
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90089, USA.
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Kim K, Calabrese P, Wang S, Qin C, Rao Y, Feng P, Chen XS. The Roles of APOBEC-mediated RNA Editing in SARS-CoV-2 Mutations, Replication and Fitness.. [PMID: 34981048 PMCID: PMC8722585 DOI: 10.1101/2021.12.18.473309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During COVID-19 pandemic, mutations of SARS-CoV-2 produce new strains that can be more infectious or evade vaccines. Viral RNA mutations can arise from misincorporation by RNA-polymerases and modification by host factors. Analysis of SARS-CoV-2 sequence from patients showed a strong bias toward C-to-U mutation, suggesting a potential mutational role by host APOBEC cytosine deaminases that possess broad anti-viral activity. We report the first experimental evidence demonstrating that APOBEC3A, APOBEC1, and APOBEC3G can edit on specific sites of SARS-CoV-2 RNA to produce C-to-U mutations. However, SARS-CoV-2 replication and viral progeny production in Caco-2 cells are not inhibited by the expression of these APOBECs. Instead, expression of wild-type APOBEC3 greatly promotes viral replication/propagation, suggesting that SARS-CoV-2 utilizes the APOBEC-mediated mutations for fitness and evolution. Unlike the random mutations, this study suggests the predictability of all possible viral genome mutations by these APOBECs based on the UC/AC motifs and the viral genomic RNA structure. Efficient Editing of SARS-CoV-2 genomic RNA by Host APOBEC deaminases and Its Potential Impacts on the Viral Replication and Emergence of New Strains in COVID-19 Pandemic
Collapse
|
6
|
Zafferani M, Haddad C, Luo L, Davila-Calderon J, Chiu LY, Mugisha CS, Monaghan AG, Kennedy AA, Yesselman JD, Gifford RJ, Tai AW, Kutluay SB, Li ML, Brewer G, Tolbert BS, Hargrove AE. Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures. SCIENCE ADVANCES 2021; 7:eabl6096. [PMID: 34826236 PMCID: PMC8626076 DOI: 10.1126/sciadv.abl6096] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/06/2021] [Indexed: 05/15/2023]
Abstract
The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small-molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5′-end. Nuclear magnetic resonance–based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5′ untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA–targeted antivirals.
Collapse
Affiliation(s)
- Martina Zafferani
- Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | - Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | | | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | - Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Adeline G. Monaghan
- Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | - Andrew A. Kennedy
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, 1150 W Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Joseph D. Yesselman
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd., Bearsden, Glasgow G61 1QH, UK
| | - Andrew W. Tai
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, 1150 W Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | - Amanda E. Hargrove
- Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27705, USA
| |
Collapse
|
7
|
Chen SC, Olsthoorn RCL, Yu CH. Structural phylogenetic analysis reveals lineage-specific RNA repetitive structural motifs in all coronaviruses and associated variations in SARS-CoV-2. Virus Evol 2021; 7:veab021. [PMID: 34141447 PMCID: PMC8206606 DOI: 10.1093/ve/veab021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many single-stranded (ss) RNA viruses, the cis-acting packaging signal that confers selectivity genome packaging usually encompasses short structured RNA repeats. These structural units, termed repetitive structural motifs (RSMs), potentially mediate capsid assembly by specific RNA–protein interactions. However, general knowledge of the conservation and/or the diversity of RSMs in the positive-sense ssRNA coronaviruses (CoVs) is limited. By performing structural phylogenetic analysis, we identified a variety of RSMs in nearly all CoV genomic RNAs, which are exclusively located in the 5′-untranslated regions (UTRs) and/or in the inter-domain regions of poly-protein 1ab coding sequences in a lineage-specific manner. In all alpha- and beta-CoVs, except for Embecovirus spp, two to four copies of 5′-gUUYCGUc-3′ RSMs displaying conserved hexa-loop sequences were generally identified in Stem-loop 5 (SL5) located in the 5′-UTRs of genomic RNAs. In Embecovirus spp., however, two to eight copies of 5′-agc-3′/guAAu RSMs were found in the coding regions of non-structural protein (NSP) 3 and/or NSP15 in open reading frame (ORF) 1ab. In gamma- and delta-CoVs, other types of RSMs were found in several clustered structural elements in 5′-UTRs and/or ORF1ab. The identification of RSM-encompassing structural elements in all CoVs suggests that these RNA elements play fundamental roles in the life cycle of CoVs. In the recently emerged SARS-CoV-2, beta-CoV-specific RSMs are also found in its SL5, displaying two copies of 5′-gUUUCGUc-3′ motifs. However, multiple sequence alignment reveals that the majority of SARS-CoV-2 possesses a variant RSM harboring SL5b C241U, and intriguingly, several variations in the coding sequences of viral proteins, such as Nsp12 P323L, S protein D614G, and N protein R203K-G204R, are concurrently found with such variant RSM. In conclusion, the comprehensive exploration for RSMs reveals phylogenetic insights into the RNA structural elements in CoVs as a whole and provides a new perspective on variations currently found in SARS-CoV-2.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - René C L Olsthoorn
- Department of Supramolecular Biomaterials Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden,The Netherlands
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
8
|
Miao Z, Tidu A, Eriani G, Martin F. Secondary structure of the SARS-CoV-2 5'-UTR. RNA Biol 2021; 18:447-456. [PMID: 32965173 PMCID: PMC7544965 DOI: 10.1080/15476286.2020.1814556] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2, a positive-sense single-stranded RNA Coronavirus, is a global threat to human health. Thus, understanding its life cycle mechanistically would be important to facilitate the design of antiviral drugs. A key aspect of viral progression is the synthesis of viral proteins by the ribosome of the human host. In Coronaviruses, this process is regulated by the viral 5' and 3' untranslated regions (UTRs), but the precise regulatory mechanism has not yet been well understood. In particular, the 5'-UTR of the viral genome is most likely involved in translation initiation of viral proteins. Here, we performed inline probing and RNase V1 probing to establish a model of the secondary structure of SARS-CoV-2 5'-UTR. We found that the 5'-UTR contains stable structures including a very stable four-way junction close to the AUG start codon. Sequence alignment analysis of SARS-CoV-2 variants 5'-UTRs revealed a highly conserved structure with few co-variations that confirmed our secondary structure model based on probing experiments.
Collapse
Affiliation(s)
- Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, UK
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Antonin Tidu
- Architecture Et Réactivité De l’ARN, Université De Strasbourg, Institut De Biologie Moléculaire Et Cellulaire Du CNRS, Strasbourg, France
| | - Gilbert Eriani
- Architecture Et Réactivité De l’ARN, Université De Strasbourg, Institut De Biologie Moléculaire Et Cellulaire Du CNRS, Strasbourg, France
| | - Franck Martin
- Architecture Et Réactivité De l’ARN, Université De Strasbourg, Institut De Biologie Moléculaire Et Cellulaire Du CNRS, Strasbourg, France
| |
Collapse
|
9
|
Manfredonia I, Incarnato D. Structure and regulation of coronavirus genomes: state-of-the-art and novel insights from SARS-CoV-2 studies. Biochem Soc Trans 2021; 49:341-352. [PMID: 33367597 PMCID: PMC7925004 DOI: 10.1042/bst20200670] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Coronaviruses (CoV) are positive-sense single-stranded RNA viruses, harboring the largest viral RNA genomes known to date. Apart from the primary sequence encoding for all the viral proteins needed for the generation of new viral particles, certain regions of CoV genomes are known to fold into stable structures, controlling several aspects of CoV life cycle, from the regulation of the discontinuous transcription of subgenomic mRNAs, to the packaging of the genome into new virions. Here we review the current knowledge on CoV RNA structures, discussing it in light of the most recent discoveries made possible by analyses of the SARS-CoV-2 genome.
Collapse
Affiliation(s)
- Ilaria Manfredonia
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
10
|
Comparative Genomics and Integrated Network Approach Unveiled Undirected Phylogeny Patterns, Co-mutational Hot Spots, Functional Cross Talk, and Regulatory Interactions in SARS-CoV-2. mSystems 2021; 6:6/1/e00030-21. [PMID: 33622851 PMCID: PMC8573956 DOI: 10.1128/msystems.00030-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in 92 million cases in a span of 1 year. The study focuses on understanding population-specific variations attributing its high rate of infections in specific geographical regions particularly in the United States. Rigorous phylogenomic network analysis of complete SARS-CoV-2 genomes (245) inferred five central clades named a (ancestral), b, c, d, and e (subtypes e1 and e2). Clade d and subclade e2 were found exclusively comprised of U.S. strains. Clades were distinguished by 10 co-mutational combinations in Nsp3, ORF8, Nsp13, S, Nsp12, Nsp2, and Nsp6. Our analysis revealed that only 67.46% of single nucleotide polymorphism (SNP) mutations were at the amino acid level. T1103P mutation in Nsp3 was predicted to increase protein stability in 238 strains except for 6 strains which were marked as ancestral type, whereas co-mutation (P409L and Y446C) in Nsp13 were found in 64 genomes from the United States highlighting its 100% co-occurrence. Docking highlighted mutation (D614G) caused reduction in binding of spike proteins with angiotensin-converting enzyme 2 (ACE2), but it also showed better interaction with the TMPRSS2 receptor contributing to high transmissibility among U.S. strains. We also found host proteins, MYO5A, MYO5B, and MYO5C, that had maximum interaction with viral proteins (nucleocapsid [N], spike [S], and membrane [M] proteins). Thus, blocking the internalization pathway by inhibiting MYO5 proteins which could be an effective target for coronavirus disease 2019 (COVID-19) treatment. The functional annotations of the host-pathogen interaction (HPI) network were found to be closely associated with hypoxia and thrombotic conditions, confirming the vulnerability and severity of infection. We also screened CpG islands in Nsp1 and N conferring the ability of SARS-CoV-2 to enter and trigger zinc antiviral protein (ZAP) activity inside the host cell. IMPORTANCE In the current study, we presented a global view of mutational pattern observed in SARS-CoV-2 virus transmission. This provided a who-infect-whom geographical model since the early pandemic. This is hitherto the most comprehensive comparative genomics analysis of full-length genomes for co-mutations at different geographical regions especially in U.S. strains. Compositional structural biology results suggested that mutations have a balance of opposing forces affecting pathogenicity suggesting that only a few mutations are effective at the translation level. Novel HPI analysis and CpG predictions elucidate the proof of concept of hypoxia and thrombotic conditions in several patients. Thus, the current study focuses the understanding of population-specific variations attributing a high rate of SARS-CoV-2 infections in specific geographical regions which may eventually be vital for the most severely affected countries and regions for sharp development of custom-made vindication strategies.
Collapse
|
11
|
Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains JK, Banijamali E, Binas O, Castillo-Martinez J, Cetiner E, Ceylan B, Chiu LY, Davila-Calderon J, Dhamotharan K, Duchardt-Ferner E, Ferner J, Frydman L, Fürtig B, Gallego J, Grün JT, Hacker C, Haddad C, Hähnke M, Hengesbach M, Hiller F, Hohmann KF, Hymon D, de Jesus V, Jonker H, Keller H, Knezic B, Landgraf T, Löhr F, Luo L, Mertinkus KR, Muhs C, Novakovic M, Oxenfarth A, Palomino-Schätzlein M, Petzold K, Peter SA, Pyper DJ, Qureshi NS, Riad M, Richter C, Saxena K, Schamber T, Scherf T, Schlagnitweit J, Schlundt A, Schnieders R, Schwalbe H, Simba-Lahuasi A, Sreeramulu S, Stirnal E, Sudakov A, Tants JN, Tolbert BS, Vögele J, Weiß L, Wirmer-Bartoschek J, Wirtz Martin MA, Wöhnert J, Zetzsche H. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res 2020; 48:12415-12435. [PMID: 33167030 PMCID: PMC7736788 DOI: 10.1093/nar/gkaa1013] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.
Collapse
Affiliation(s)
- Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Sabine R Akabayov
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Elnaz Banijamali
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Erhan Cetiner
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Lucio Frydman
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - José Gallego
- School of Medicine, Catholic University of Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Carolin Hacker
- Signals GmbH & Co. KG, Graf-von-Stauffenberg-Allee 83, 60438 Frankfurt/M, Germany
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Martin Hähnke
- Signals GmbH & Co. KG, Graf-von-Stauffenberg-Allee 83, 60438 Frankfurt/M, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Fabian Hiller
- Signals GmbH & Co. KG, Graf-von-Stauffenberg-Allee 83, 60438 Frankfurt/M, Germany
| | - Katharina F Hohmann
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Henry Jonker
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Bozana Knezic
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Tom Landgraf
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Le Luo
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Klara R Mertinkus
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Christina Muhs
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Mihajlo Novakovic
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Dennis J Pyper
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Nusrat S Qureshi
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Magdalena Riad
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Tali Scherf
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | | | - Robbin Schnieders
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Alvaro Simba-Lahuasi
- School of Medicine, Catholic University of Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Maria A Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Heidi Zetzsche
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| |
Collapse
|
12
|
Martina Z, Christina H, Le L, Jesse DC, Liang YC, Christian SM, Monaghan AG, Kennedy AA, Yesselman JD, Gifford RR, Tai AW, Kutluay SB, Li ML, Brewer G, Tolbert BS, Hargrove AE. Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.05.409821. [PMID: 33299997 PMCID: PMC7724665 DOI: 10.1101/2020.12.05.409821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, has rendered our understanding of coronavirus biology more essential than ever. Small molecule chemical probes offer to both reveal novel aspects of virus replication and to serve as leads for antiviral therapeutic development. The RNA-biased amiloride scaffold was recently tuned to target a viral RNA structure critical for translation in enterovirus 71, ultimately uncovering a novel mechanism to modulate positive-sense RNA viral translation and replication. Analysis of CoV RNA genomes reveal many conserved RNA structures in the 5'-UTR and proximal region critical for viral translation and replication, including several containing bulge-like secondary structures suitable for small molecule targeting. Following phylogenetic conservation analysis of this region, we screened an amiloride-based small molecule library against a less virulent human coronavirus, OC43, to identify lead ligands. Amilorides inhibited OC43 replication as seen in viral plaque assays. Select amilorides also potently inhibited replication competent SARS-CoV-2 as evident in the decreased levels of cell free virions in cell culture supernatants of treated cells. Reporter screens confirmed the importance of RNA structures in the 5'-end of the viral genome for small molecule activity. Finally, NMR chemical shift perturbation studies of the first six stem loops of the 5'-end revealed specific amiloride interactions with stem loops 4, 5a, and 6, all of which contain bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Taken together, the use of multiple orthogonal approaches allowed us to identify the first small molecules aimed at targeting RNA structures within the 5'-UTR and proximal region of the CoV genome. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA-targeted antivirals.
Collapse
Affiliation(s)
- Zafferani Martina
- Chemistry Department, Duke University, 124 Science Drive; Durham, NC USA 27705
| | - Haddad Christina
- Department of Chemistry, Case Western Reserve University, Cleveland OH 441106
| | - Luo Le
- Department of Chemistry, Case Western Reserve University, Cleveland OH 441106
| | | | - Yuan-Chiu Liang
- Department of Chemistry, Case Western Reserve University, Cleveland OH 441106
| | - Shema Mugisha Christian
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Adeline G. Monaghan
- Chemistry Department, Duke University, 124 Science Drive; Durham, NC USA 27705
| | - Andrew A. Kennedy
- Department of Internal Medicine and Department of Microbiology & Immunology, University of Michigan, 1150 W Medical Center Dr, Ann Arbor MI 48109
| | - Joseph D. Yesselman
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Robert R. Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow, UK, G61 1QH
| | - Andrew W. Tai
- Department of Internal Medicine and Department of Microbiology & Immunology, University of Michigan, 1150 W Medical Center Dr, Ann Arbor MI 48109
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ USA 08854
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ USA 08854
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland OH 441106
| | - Amanda E. Hargrove
- Chemistry Department, Duke University, 124 Science Drive; Durham, NC USA 27705
| |
Collapse
|
13
|
Santos IDA, Grosche VR, Bergamini FRG, Sabino-Silva R, Jardim ACG. Antivirals Against Coronaviruses: Candidate Drugs for SARS-CoV-2 Treatment? Front Microbiol 2020; 11:1818. [PMID: 32903349 PMCID: PMC7438404 DOI: 10.3389/fmicb.2020.01818] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a group of viruses from the family Coronaviridae that can infect humans and animals, causing mild to severe diseases. The ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a global threat, urging the development of new therapeutic strategies. Here we present a selection of relevant compounds that have been described from 2005 until now as having in vitro and/or in vivo antiviral activities against human and/or animal CoVs. We also present compounds that have reached clinical trials as well as further discussing the potentiality of other molecules for application in (re)emergent CoVs outbreaks. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential SARS-CoV-2 drug candidates.
Collapse
Affiliation(s)
- Igor de Andrade Santos
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Victória Riquena Grosche
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
- Institute of Biosciences, Language and Exact Sciences, São Paulo State University, São José do Rio Preto, Brazil
| | | | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
- Institute of Biosciences, Language and Exact Sciences, São Paulo State University, São José do Rio Preto, Brazil
| |
Collapse
|
14
|
Rangan R, Zheludev IN, Hagey RJ, Pham EA, Wayment-Steele HK, Glenn JS, Das R. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look. RNA (NEW YORK, N.Y.) 2020; 26:937-959. [PMID: 32398273 PMCID: PMC7373990 DOI: 10.1261/rna.076141.120] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 05/11/2023]
Abstract
As the COVID-19 outbreak spreads, there is a growing need for a compilation of conserved RNA genome regions in the SARS-CoV-2 virus along with their structural propensities to guide development of antivirals and diagnostics. Here we present a first look at RNA sequence conservation and structural propensities in the SARS-CoV-2 genome. Using sequence alignments spanning a range of betacoronaviruses, we rank genomic regions by RNA sequence conservation, identifying 79 regions of length at least 15 nt as exactly conserved over SARS-related complete genome sequences available near the beginning of the COVID-19 outbreak. We then confirm the conservation of the majority of these genome regions across 739 SARS-CoV-2 sequences subsequently reported from the COVID-19 outbreak, and we present a curated list of 30 "SARS-related-conserved" regions. We find that known RNA structured elements curated as Rfam families and in prior literature are enriched in these conserved genome regions, and we predict additional conserved, stable secondary structures across the viral genome. We provide 106 "SARS-CoV-2-conserved-structured" regions as potential targets for antivirals that bind to structured RNA. We further provide detailed secondary structure models for the extended 5' UTR, frameshifting stimulation element, and 3' UTR. Lastly, we predict regions of the SARS-CoV-2 viral genome that have low propensity for RNA secondary structure and are conserved within SARS-CoV-2 strains. These 59 "SARS-CoV-2-conserved-unstructured" genomic regions may be most easily accessible by hybridization in primer-based diagnostic strategies.
Collapse
Affiliation(s)
- Ramya Rangan
- Biophysics Program, Stanford University, Stanford, California 94305, USA
| | - Ivan N Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Rachel J Hagey
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, California 94305, USA
| | - Edward A Pham
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, California 94305, USA
| | | | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford School of Medicine, Stanford, California 94305, USA
- Palo Alto Veterans Administration, Palo Alto, California 94304, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, California 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
15
|
Rangan R, Zheludev IN, Das R. RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.27.012906. [PMID: 32511306 PMCID: PMC7217285 DOI: 10.1101/2020.03.27.012906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As the COVID-19 outbreak spreads, there is a growing need for a compilation of conserved RNA genome regions in the SARS-CoV-2 virus along with their structural propensities to guide development of antivirals and diagnostics. Using sequence alignments spanning a range of betacoronaviruses, we rank genomic regions by RNA sequence conservation, identifying 79 regions of length at least 15 nucleotides as exactly conserved over SARS-related complete genome sequences available near the beginning of the COVID-19 outbreak. We then confirm the conservation of the majority of these genome regions across 739 SARS-CoV-2 sequences reported to date from the current COVID-19 outbreak, and we present a curated list of 30 'SARS-related-conserved' regions. We find that known RNA structured elements curated as Rfam families and in prior literature are enriched in these conserved genome regions, and we predict additional conserved, stable secondary structures across the viral genome. We provide 106 'SARS-CoV-2-conserved-structured' regions as potential targets for antivirals that bind to structured RNA. We further provide detailed secondary structure models for the 5´ UTR, frame-shifting element, and 3´ UTR. Last, we predict regions of the SARS-CoV-2 viral genome have low propensity for RNA secondary structure and are conserved within SARS-CoV-2 strains. These 59 'SARS-CoV-2-conserved-unstructured' genomic regions may be most easily targeted in primer-based diagnostic and oligonucleotide-based therapeutic strategies.
Collapse
Affiliation(s)
- Ramya Rangan
- Biophysics Program, Stanford University, Stanford CA 94305
| | - Ivan N. Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford CA 94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford CA 94305
- Department of Physics, Stanford University, Stanford CA 94305
| |
Collapse
|
16
|
Shen Z, Wang G, Yang Y, Shi J, Fang L, Li F, Xiao S, Fu ZF, Peng G. A conserved region of nonstructural protein 1 from alphacoronaviruses inhibits host gene expression and is critical for viral virulence. J Biol Chem 2019; 294:13606-13618. [PMID: 31350335 PMCID: PMC6746460 DOI: 10.1074/jbc.ra119.009713] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Coronaviruses are enveloped, single-stranded RNA viruses that are distributed worldwide. They include transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and the human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), many of which seriously endanger human health and well-being. Only alphacoronaviruses and betacoronaviruses harbor nonstructural protein 1 (nsp1), which performs multiple functions in inhibiting antiviral host responses. The role of the C terminus of betacoronavirus nsp1 in virulence has been characterized, but the location of the alphacoronavirus nsp1 region that is important for virulence remains unclear. Here, using TGEV nsp1 as a model to explore the function of this protein in alphacoronaviruses, we demonstrate that alphacoronavirus nsp1 inhibits host gene expression. Solving the crystal structure of full-length TGEV at 1.85-Å resolution and conducting several biochemical analyses, we observed that a specific motif (amino acids 91-95) of alphacoronavirus nsp1 is a conserved region that inhibits host protein synthesis. Using a reverse-genetics system based on CRISPR/Cas9 technology to construct a recombinant TGEV in which this specific nsp1 motif was altered, we found that this mutation does not affect virus replication in cell culture but significantly reduces TGEV pathogenicity in pigs. Taken together, our findings suggest that alphacoronavirus nsp1 is an essential virulence determinant, providing a potential paradigm for the development of a new attenuated vaccine based on modified nsp1.
Collapse
Affiliation(s)
- Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yiling Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota 55108
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Length effects on the dynamic process of cellular uptake and exocytosis of single-walled carbon nanotubes in murine macrophage cells. Sci Rep 2017; 7:1518. [PMID: 28490792 PMCID: PMC5431871 DOI: 10.1038/s41598-017-01746-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/07/2017] [Indexed: 12/25/2022] Open
Abstract
Cellular uptake and exocytosis of SWCNTs are fundamental processes determining their intracellular concentration and effects. Despite the great potential of acid-oxidized SWCNTs in biomedical field, understanding of the influencing factors on these processes needs to be deepened. Here, we quantitatively investigated uptake and exocytosis of SWCNTs in three lengths-630 (±171) nm (L-SWCNTs), 390 (±50) nm (M-SWCNTs), and 195 (±63) nm (S-MWCNTs) in macrophages. The results showed that the cellular accumulation of SWCNTs was a length-independent process and non-monotonic in time, with the most SWCNTs (3950 fg/cell) accumulated at 8 h and then intracellular SWCNTs dropped obviously with time. The uptake rate of SWCNTs decreased with increasing concentration, suggesting that intracellular SWCNTs accumulation is a saturable process. After refreshing culture medium, we found increasing SWCNTs in supernatant and decreasing intracellular SWCNTs over time, confirming the exocytosis occurred. Selective inhibition of endocytosis pathways showed that the internalization of SWCNTs involves several pathways, in the order of macropinocytosis> caveolae-mediated endocytosis> clathrin-dependent endocytosis. Intriguingly, clathrin-mediated endocytosis is relatively important for internalizing shorter SWCNTs. The dynamic processes of SWCNTs uptake and exocytosis and the mechanisms revealed by this study may render a better understanding on SWCNT toxicity and facilitate the design of CNT products with mitigated toxicity and desired functions.
Collapse
|
18
|
Abstract
Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.
Collapse
Affiliation(s)
- R Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - M Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - M Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
19
|
Dissection of amino-terminal functional domains of murine coronavirus nonstructural protein 3. J Virol 2015; 89:6033-47. [PMID: 25810552 DOI: 10.1128/jvi.00197-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Coronaviruses, the largest RNA viruses, have a complex program of RNA synthesis that entails genome replication and transcription of subgenomic mRNAs. RNA synthesis by the prototype coronavirus mouse hepatitis virus (MHV) is carried out by a replicase-transcriptase composed of 16 nonstructural protein (nsp) subunits. Among these, nsp3 is the largest and the first to be inserted into the endoplasmic reticulum. nsp3 comprises multiple structural domains, including two papain-like proteases (PLPs) and a highly conserved ADP-ribose-1″-phosphatase (ADRP) macrodomain. We have previously shown that the ubiquitin-like domain at the amino terminus of nsp3 is essential and participates in a critical interaction with the viral nucleocapsid protein early in infection. In the current study, we exploited atypical expression schemes to uncouple PLP1 from the processing of nsp1 and nsp2 in order to investigate the requirements of nsp3 domains for viral RNA synthesis. In the first strategy, a mutant was created in which replicase polyprotein translation initiated with nsp3, thereby establishing that complete elimination of nsp1 and nsp2 does not abolish MHV viability. In the second strategy, a picornavirus autoprocessing element was used to separate a truncated nsp1 from nsp3. This provided a platform for further dissection of amino-terminal domains of nsp3. From this, we found that catalytic mutation of PLP1 or complete deletion of PLP1 and the adjacent ADRP domain was tolerated by the virus. These results showed that neither the PLP1 domain nor the ADRP domain of nsp3 provides integral activities essential for coronavirus genomic or subgenomic RNA synthesis. IMPORTANCE The largest component of the coronavirus replicase-transcriptase complex, nsp3, contains multiple modules, many of which do not have clearly defined functions in genome replication or transcription. These domains may play direct roles in RNA synthesis, or they may have evolved for other purposes, such as to combat host innate immunity. We initiated a dissection of MHV nsp3 aimed at identifying those activities or structures in this huge molecule that are essential to replicase activity. We found that both PLP1 and ADRP could be entirely deleted, provided that the requirement for proteolytic processing by PLP1 was offset by an alternative mechanism. This demonstrated that neither PLP1 nor ADRP plays an essential role in coronavirus RNA synthesis.
Collapse
|
20
|
Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3' and 5' ends. Virus Res 2015; 206:120-33. [PMID: 25736566 PMCID: PMC4476908 DOI: 10.1016/j.virusres.2015.02.025] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 01/19/2023]
Abstract
Coronaviruses (CoVs) are an important cause of illness in humans and animals. Most human coronaviruses commonly cause relatively mild respiratory illnesses; however two zoonotic coronaviruses, SARS-CoV and MERS-CoV, can cause severe illness and death. Investigations over the past 35 years have illuminated many aspects of coronavirus replication. The focus of this review is the functional analysis of conserved RNA secondary structures in the 5' and 3' of the betacoronavirus genomes. The 5' 350 nucleotides folds into a set of RNA secondary structures which are well conserved, and reverse genetic studies indicate that these structures play an important role in the discontinuous synthesis of subgenomic RNAs in the betacoronaviruses. These cis-acting elements extend 3' of the 5'UTR into ORF1a. The 3'UTR is similarly conserved and contains all of the cis-acting sequences necessary for viral replication. Two competing conformations near the 5' end of the 3'UTR have been shown to make up a potential molecular switch. There is some evidence that an association between the 3' and 5'UTRs is necessary for subgenomic RNA synthesis, but the basis for this association is not yet clear. A number of host RNA proteins have been shown to bind to the 5' and 3' cis-acting regions, but the significance of these in viral replication is not clear. Two viral proteins have been identified as binding to the 5' cis-acting region, nsp1 and N protein. A genetic interaction between nsp8 and nsp9 and the region of the 3'UTR that contains the putative molecular switch suggests that these two proteins bind to this region.
Collapse
Affiliation(s)
- Dong Yang
- Department of Microbiology, Immunology & Biochemistry, The University of Tennessee Health Science Center College of Medicine, Memphis, TN 38163, USA
| | - Julian L Leibowitz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, College Station, TX 77843-1114, USA.
| |
Collapse
|
21
|
Majumder M, Mitchell D, Merkulov S, Wu J, Guan BJ, Snider MD, Krokowski D, Yee VC, Hatzoglou M. Residues required for phosphorylation of translation initiation factor eIF2α under diverse stress conditions are divergent between yeast and human. Int J Biochem Cell Biol 2014; 59:135-41. [PMID: 25541374 DOI: 10.1016/j.biocel.2014.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 01/28/2023]
Abstract
PERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase. It was demonstrated previously in S. cerevisiae that single point mutations in eIF2α's N-terminus severely impaired phosphorylation at Ser51. To assess whether similar recognition patterns are present in mammalian eIF2α, we expressed human eIF2α's with these mutations in mouse embryonic fibroblasts and assessed their phosphorylation under diverse stress conditions. Some of the mutations prevented the stress-induced phosphorylation of eIF2α by all mammalian kinases, thus defining amino acid residues in eIF2α (Gly 30, Leu 50, and Asp 83) that are required for substrate recognition. We also identified residues that were less critical or not required for recognition by the mammalian kinases (Ala 31, Met 44, Lys 79, and Tyr 81), even though they were essential for recognition of the yeast eIF2α by GCN2. We propose that mammalian eIF2α kinases evolved to maximize their interactions with the evolutionarily conserved Ser51 residue of eIF2α in response to diverse stress conditions, thus adding to the complex signaling pathways that mammalian cells have over simpler organisms.
Collapse
Affiliation(s)
- Mithu Majumder
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Daniel Mitchell
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Sergei Merkulov
- Virogene Technology, 11000 Cedar Ave., Cleveland, OH, United States
| | - Jing Wu
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Bo-Jhih Guan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Martin D Snider
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Dawid Krokowski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Vivien C Yee
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Maria Hatzoglou
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
22
|
Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res 2014; 202:89-100. [PMID: 25432065 PMCID: PMC4444399 DOI: 10.1016/j.virusres.2014.11.019] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/16/2023]
Abstract
Novel strategies to inhibit host gene expression by coronavirus nonstructural protein 1. Summarizes the conserved and divergent functions of Alpha and Betacoronavirus nsp1. Provides a mechanistic insight into the unique properties of SARS coronavirus nsp1.
The recent emergence of two highly pathogenic human coronaviruses (CoVs), severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, has ignited a strong interest in the identification of viral factors that determine the virulence and pathogenesis of CoVs. The nonstructural protein 1 (nsp1) of CoVs has attracted considerable attention in this regard as a potential virulence factor and a target for CoV vaccine development because of accumulating evidence that point to its role in the downregulation of host innate immune responses to CoV infection. Studies have revealed both functional conservation and mechanistic divergence among the nsp1 of different mammalian CoVs in perturbing host gene expression and antiviral responses. This review summarizes the current knowledge about the biological functions of CoV nsp1 that provides an insight into the novel strategies utilized by this viral protein to modulate host and viral gene expression during CoV infection.
Collapse
Affiliation(s)
- Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| | - Sydney I Ramirez
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| | - Kumari G Lokugamage
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, United States.
| |
Collapse
|
23
|
Yang D, Liu P, Wudeck EV, Giedroc DP, Leibowitz JL. SHAPE analysis of the RNA secondary structure of the Mouse Hepatitis Virus 5' untranslated region and N-terminal nsp1 coding sequences. Virology 2014; 475:15-27. [PMID: 25462342 PMCID: PMC4280293 DOI: 10.1016/j.virol.2014.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/21/2013] [Accepted: 11/03/2014] [Indexed: 12/30/2022]
Abstract
SHAPE technology was used to analyze RNA secondary structure of the 5' most 474 nts of the MHV-A59 genome encompassing the minimal 5' cis-acting region required for defective interfering RNA replication. The structures generated were in agreement with previous characterizations of SL1 through SL4 and two recently predicted secondary structure elements, S5 and SL5A. SHAPE provided biochemical support for four additional stem-loops not previously functionally investigated in MHV. Secondary structure predictions for 5' regions of MHV-A59, BCoV and SARS-CoV were similar despite high sequence divergence. The pattern of SHAPE reactivity of in virio genomic RNA, ex virio genomic RNA, and in vitro synthesized RNA was similar, suggesting that binding of N protein or other proteins to virion RNA fails to protect the RNA from reaction with lipid permeable SHAPE reagent. Reverse genetic experiments suggested that SL5C and SL6 within the nsp1 coding sequence are not required for viral replication.
Collapse
Affiliation(s)
- Dong Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, 407 Reynolds Medical Building, 1114 TAMU, College Station, TX 77843-1114, USA
| | - Pinghua Liu
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, 407 Reynolds Medical Building, 1114 TAMU, College Station, TX 77843-1114, USA
| | - Elyse V Wudeck
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, 407 Reynolds Medical Building, 1114 TAMU, College Station, TX 77843-1114, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Julian L Leibowitz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, 407 Reynolds Medical Building, 1114 TAMU, College Station, TX 77843-1114, USA.
| |
Collapse
|
24
|
Madhugiri R, Fricke M, Marz M, Ziebuhr J. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res 2014; 194:76-89. [PMID: 25307890 PMCID: PMC7114417 DOI: 10.1016/j.virusres.2014.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023]
Abstract
Review of current knowledge of cis-acting RNA elements essential to coronavirus replication. Identification of RNA structural elements in alphacoronavirus terminal genome regions. Discussion of intra- and intergeneric conservation of genomic cis-acting RNA elements in alpha- and betacoronaviruses.
Coronavirus genome replication is mediated by a multi-subunit protein complex that is comprised of more than a dozen virally encoded and several cellular proteins. Interactions of the viral replicase complex with cis-acting RNA elements located in the 5′ and 3′-terminal genome regions ensure the specific replication of viral RNA. Over the past years, boundaries and structures of cis-acting RNA elements required for coronavirus genome replication have been extensively characterized in betacoronaviruses and, to a lesser extent, other coronavirus genera. Here, we review our current understanding of coronavirus cis-acting elements located in the terminal genome regions and use a combination of bioinformatic and RNA structure probing studies to identify and characterize putative cis-acting RNA elements in alphacoronaviruses. The study suggests significant RNA structure conservation among members of the genus Alphacoronavirus but also across genus boundaries. Overall, the conservation pattern identified for 5′ and 3′-terminal RNA structural elements in the genomes of alpha- and betacoronaviruses is in agreement with the widely used replicase polyprotein-based classification of the Coronavirinae, suggesting co-evolution of the coronavirus replication machinery with cognate cis-acting RNA elements.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
25
|
Su YP, Fan YH, Brian DA. Dependence of coronavirus RNA replication on an NH2-terminal partial nonstructural protein 1 in cis. J Virol 2014; 88:8868-82. [PMID: 24872586 PMCID: PMC4136265 DOI: 10.1128/jvi.00738-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/21/2014] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Genomes of positive (+)-strand RNA viruses use cis-acting signals to direct both translation and replication. Here we examine two 5'-proximal cis-replication signals of different character in a defective interfering (DI) RNA of the bovine coronavirus (BCoV) that map within a 322-nucleotide (nt) sequence (136 nt from the genomic 5' untranslated region and 186 nt from the nonstructural protein 1 [nsp1]-coding region) not found in the otherwise-identical nonreplicating subgenomic mRNA7 (sgmRNA7). The natural DI RNA is structurally a fusion of the two ends of the BCoV genome that results in a single open reading frame between a partial nsp1-coding region and the entire N gene. (i) In the first examination, mutation analyses of a recently discovered long-range RNA-RNA base-paired structure between the 5' untranslated region and the partial nsp1-coding region showed that it, possibly in concert with adjacent stem-loops, is a cis-acting replication signal in the (+) strand. We postulate that the higher-order structure promotes (+)-strand synthesis. (ii) In the second examination, analyses of multiple frame shifts, truncations, and point mutations within the partial nsp1-coding region showed that synthesis of a PEFP core amino acid sequence within a group A lineage betacoronavirus-conserved NH2-proximal WAPEFPWM domain is required in cis for DI RNA replication. We postulate that the nascent protein, as part of an RNA-associated translating complex, acts to direct the DI RNA to a critical site, enabling RNA replication. We suggest that these results have implications for viral genome replication and explain, in part, why coronavirus sgmRNAs fail to replicate. IMPORTANCE cis-Acting RNA and protein structures that regulate (+)-strand RNA virus genome synthesis are potential sites for blocking virus replication. Here we describe two: a previously suspected 5'-proximal long-range higher-order RNA structure and a novel nascent NH2-terminal protein component of nsp1 that are common among betacoronaviruses of group A lineage.
Collapse
Affiliation(s)
- Yu-Pin Su
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, USA
| | - Yi-Hsin Fan
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, USA
| | - David A Brian
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, USA
| |
Collapse
|
26
|
Identification of cis-acting elements on positive-strand subgenomic mRNA required for the synthesis of negative-strand counterpart in bovine coronavirus. Viruses 2014; 6:2938-59. [PMID: 25080125 PMCID: PMC4147681 DOI: 10.3390/v6082938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 01/06/2023] Open
Abstract
It has been demonstrated that, in addition to genomic RNA, sgmRNA is able to serve as a template for the synthesis of the negative-strand [(−)-strand] complement. However, the cis-acting elements on the positive-strand [(+)-strand] sgmRNA required for (−)-strand sgmRNA synthesis have not yet been systematically identified. In this study, we employed real-time quantitative reverse transcription polymerase chain reaction to analyze the cis-acting elements on bovine coronavirus (BCoV) sgmRNA 7 required for the synthesis of its (−)-strand counterpart by deletion mutagenesis. The major findings are as follows. (1) Deletion of the 5'-terminal leader sequence on sgmRNA 7 decreased the synthesis of the (−)-strand sgmRNA complement. (2) Deletions of the 3' untranslated region (UTR) bulged stem-loop showed no effect on (−)-strand sgmRNA synthesis; however, deletion of the 3' UTR pseudoknot decreased the yield of (−)-strand sgmRNA. (3) Nucleotides positioned from −15 to −34 of the sgmRNA 7 3'-terminal region are required for efficient (−)-strand sgmRNA synthesis. (4) Nucleotide species at the 3'-most position (−1) of sgmRNA 7 is correlated to the efficiency of (−)-strand sgmRNA synthesis. These results together suggest, in principle, that the 5'- and 3'-terminal sequences on sgmRNA 7 harbor cis-acting elements are critical for efficient (−)-strand sgmRNA synthesis in BCoV.
Collapse
|
27
|
The 3'-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative- and positive-strand RNA synthesis. PLoS One 2014; 9:e98422. [PMID: 24852421 PMCID: PMC4031142 DOI: 10.1371/journal.pone.0098422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/02/2014] [Indexed: 01/21/2023] Open
Abstract
The synthesis of the negative-strand [(−)-strand] complement of the ∼30 kilobase, positive-strand [(+)-strand] coronaviral genome is a necessary early step for genome replication. The identification of cis-acting elements required for (−)-strand RNA synthesis in coronaviruses, however, has been hampered due to insufficiencies in the techniques used to detect the (−)-strand RNA species. Here, we employed a method of head-to-tail ligation and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) to detect and quantitate the synthesis of bovine coronavirus (BCoV) defective interfering (DI) RNA (−) strands. Furthermore, using the aforementioned techniques along with Northern blot assay, we specifically defined the cis-acting RNA elements within the 3′-terminal 55 nucleotides (nts) which function in the synthesis of (−)- or (+)-strand BCoV DI RNA. The major findings are as follows: (i) nts from -5 to -39 within the 3′-terminal 55 nts are the cis-acting elements responsible for (−)-strand BCoV DI RNA synthesis, (ii) nts from −3 to −34 within the 3′-terminal 55 nts are cis-acting elements required for (+)-strand BCoV DI RNA synthesis, and (iii) the nucleotide species at the 3′-most position (−1) is important, but not critical, for both (−)- and (+)-strand BCoV DI RNA synthesis. These results demonstrate that the 3′-terminal 55 nts in BCoV DI RNA harbor cis-acting RNA elements required for both (−)- and (+)-strand DI RNA synthesis and extend our knowledge on the mechanisms of coronavirus replication. The method of head-to-tail ligation and qRT-PCR employed in the study may also be applied to identify other cis-acting elements required for (−)-strand RNA synthesis in coronaviruses.
Collapse
|
28
|
Reselection of a genomic upstream open reading frame in mouse hepatitis coronavirus 5'-untranslated-region mutants. J Virol 2013; 88:846-58. [PMID: 24173235 DOI: 10.1128/jvi.02831-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An AUG-initiated upstream open reading frame (uORF) encoding a potential polypeptide of 3 to 13 amino acids (aa) is found within the 5' untranslated region (UTR) of >75% of coronavirus genomes based on 38 reference strains. Potential CUG-initiated uORFs are also found in many strains. The AUG-initiated uORF is presumably translated following genomic 5'-end cap-dependent ribosomal scanning, but its function is unknown. Here, in a reverse-genetics study with mouse hepatitis coronavirus, the following were observed. (i) When the uORF AUG-initiating codon was replaced with a UAG stop codon along with a U112A mutation to maintain a uORF-harboring stem-loop 4 structure, an unimpaired virus with wild-type (WT) growth kinetics was recovered. However, reversion was found at all mutated sites within five virus passages. (ii) When the uORF was fused with genomic (main) ORF1 by converting three in-frame stop codons to nonstop codons, a uORF-ORF1 fusion protein was made, and virus replicated at WT levels. However, a frameshifting G insertion at virus passage 7 established a slightly 5'-extended original uORF. (iii) When uAUG-eliminating deletions of 20, 30, or 51 nucleotides (nt) were made within stem-loop 4, viable but debilitated virus was recovered. However, a C80U mutation in the first mutant and an A77G mutation in the second appeared by passage 10, which generated alternate uORFs that correlated with restored WT growth kinetics. In vitro, the uORF-disrupting nondeletion mutants showed enhanced translation of the downstream ORF1 compared with the WT. These results together suggest that the uORF represses ORF1 translation yet plays a beneficial but nonessential role in coronavirus replication in cell culture.
Collapse
|
29
|
Dornseifer S, Sczakiel G. Computational identification of biologically functional non-hairpin GC-helices in human Argonaute mRNA. BMC Bioinformatics 2013; 14:122. [PMID: 23574946 PMCID: PMC3626786 DOI: 10.1186/1471-2105-14-122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/25/2013] [Indexed: 02/02/2023] Open
Abstract
Background Perfectly formed duplex elements in RNA occur within folding units, often as a part of hairpin motifs which can be reliably predicted by various RNA folding algorithms. Double helices with consecutive Watson-Crick base-pairing may also be formed between distant RNA segments thereby facilitating long-range interactions of long-chain RNA that may be biologically functional. Here we addressed the potential formation of RNA duplex motifs by long-range RNA-RNA interactions of distantly located matching sequence elements of a single long-chain RNA. Results We generated a Python-based software tool that identifies consecutive RNA duplex elements at any given length and nucleotide content formed by distant sequences. The software tool, dubbed RNAslider, is built on the theoretical RNA structure prediction algorithm Mfold. Source code and sample data sets are available on demand. We found that a small ratio of human genes including the Argonaute (Ago)-like gene family encode mRNAs containing highly GC-rich non-hairpin duplex elements (GC-helix) of equal to or more than 8 base pairs in length and we provide experimental evidence for their biological significance. Conclusion GC-helices are observed preferentially within the 5′-region of mRNAs in an evolutionarily conserved fashion indicating their potential biological role. This view is supported experimentally by post-transcriptional regulation of gene expression of a fusion transcript containing 5′-sequences of human mRNAAgo2 harbouring GC-helices and down-stream coding sequences of Renilla luciferase.
Collapse
Affiliation(s)
- Simon Dornseifer
- Institut für Molekulare Medizin, Center for Structural and Cell Biology in Medicine (CSCM), Universität zu Lübeck, Ratzeburger Allee 160, Lübeck D-23538, Germany
| | | |
Collapse
|