1
|
Imperiale MJ. Polyomavirus miRNAs: the beginning. Curr Opin Virol 2014; 7:29-32. [PMID: 24747718 DOI: 10.1016/j.coviro.2014.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 11/30/2022]
Abstract
Polyomaviruses are small, double stranded DNA viruses that replicate in the nucleus of the infected cell. Since 2005, clear evidence for miRNAs has been presented for a subset of the members of this viral family, each of which express a single miRNA. All the miRNAs share in common the ability to regulate expression of the major viral regulatory protein, large T antigen. Growing evidence suggests that the major role of the miRNA is to control viral replication. In vitro studies suggesting an immmunomodulatory role for the miRNA have not been supported by in vivo infections. Very little is known about cellular targets of the viral miRNAs, however. Thus, much remains to be learned about these interesting non-coding RNAs.
Collapse
Affiliation(s)
- Michael J Imperiale
- Department of Microbiology and Immunology, University of Michigan, 1150 West Medical Center Drive, 5724 Medical Science Building II, Ann Arbor, MI 48109, United States.
| |
Collapse
|
2
|
He S, Yang Z, Skogerbo G, Ren F, Cui H, Zhao H, Chen R, Zhao Y. The properties and functions of virus encoded microRNA, siRNA, and other small noncoding RNAs. Crit Rev Microbiol 2008; 34:175-88. [PMID: 18972284 DOI: 10.1080/10408410802482008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
microRNAs (miRNAs) represent a class of noncoding RNA species, believed to be regulating gene expression by binding to complementary sites in the 3'UTRs of target mRNAs. They play important regulatory roles in various metabolic pathways in most eukaryotes. The recent discovery of virus encoded miRNAs suggests that viruses may be using them to regulate host and viral gene expression. Another class of closely related small interfering RNAs (siRNAs) also has been found within the HIV-1 genome and shown to be exerting a limited impact on virus reproduction. Additionally, an additional type of viral noncoding RNAs named small noncoding RNAs (sncRNAs) ranging from a few tens to a few hundred nucleotides in length, has also been identified. sncRNAs have a wide phylogenesis and high levels of expression, suggesting they may play an important roles in different species. Here we discuss the genomic organization, expression, conservation as well as potential function of virally encoded miRNA, siRNA, and sncRNAs.
Collapse
Affiliation(s)
- Shunmin He
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, CAMS & PUMC, Chinese Academy of Science, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Sabath DE, Broome HE, Prystowsky MB. Glyceraldehyde-3-phosphate dehydrogenase mRNA is a major interleukin 2-induced transcript in a cloned T-helper lymphocyte. Gene 1990; 91:185-91. [PMID: 2145197 DOI: 10.1016/0378-1119(90)90087-8] [Citation(s) in RCA: 317] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A cDNA library was constructed using mRNA from interleukin 2 (IL2)-stimulated cloned murine T lymphocytes to isolate cDNA clones of mRNAs that were induced by IL2 and present at maximal levels in late G1/early S phase of the cell cycle. When the library was screened by differential hybridization, over half of the clones isolated were found to cross-hybridize, indicating that there was a predominant IL2-induced mRNA in these cells. This cDNA was identified as encoding murine glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). The in vitro translation product of this cDNA was a 36-kDa protein using both hybridization-selected RNA and in vitro transcribed RNA. We estimate that GAPDH mRNA comprises approx. 0.7% of total mRNA in the cloned T cells in late G1. GAPDH mRNA is induced two- to fivefold over resting levels upon IL2 stimulation, due in part to an increased rate of transcription. GAPDH enzymatic activity is induced approx. sevenfold over resting levels. The induction of GAPDH mRNA is inhibited only slightly by CHX under conditions in which cell proliferation is inhibited. In addition, the induction of GAPDH is directly due to the effect of IL2, and not in conjunction with any serum components, since IL2 will induce GAPDH mRNA under serum-free conditions. Finally, when genomic DNA is probed with a full-length GAPDH cDNA, a complex pattern of bands is observed, whereas if a 5' end probe is used, a much simpler pattern is obtained, indicating that many of the GAPDH pseudogenes in the murine genome lack 5' sequence information.
Collapse
Affiliation(s)
- D E Sabath
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
4
|
Michaeli T, Pan ZQ, Prives C. An excised SV40 intron accumulates and is stable in Xenopus laevis oocytes. Genes Dev 1988; 2:1012-20. [PMID: 2844625 DOI: 10.1101/gad.2.8.1012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Xenopus laevis oocytes injected with simian virus 40 (SV40) DNA synthesize abundant quantities of viral late region RNA. In a previous analysis of the 5' ends of oocyte SV40 late RNAs, it was observed that, in contrast to the majority of the late RNA species, an abundant class of viral late RNAs, whose 5' ends mapped at or near nucleotide 294, was not polyadenylated. The structure of this RNA class has now been characterized further. We have shown that this species consists of a class of small uncapped RNA molecules with heterogeneous 3' ends mapping between nucleotides 417 and 433. This corresponds well with the position of a 139-nucleotide intron within the leader region of late 16S RNA (nucleotides 294-433). The identification of this RNA class as an excised intron was strongly supported by the fact that it displayed anomalous mobilities on different percentage polyacrylamide gels, a property of lariat introns. Furthermore, incubation of oocyte RNA with a HeLa cell extract with lariat debranching activity converted the small RNA to a class that now migrated as less than or equal to 140 nucleotides in length in 8% gels, consistent with the size of the linear intraleader intron. Additional analysis of this RNA showed that it is primarily nuclear in localization and is probably the most stable viral RNA species in the oocyte. These data suggest that oocytes accumulate large quantities of the 16S intraleader intron because of their failure to debranch this RNA efficiently.
Collapse
Affiliation(s)
- T Michaeli
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | |
Collapse
|
5
|
Hay N, Amster-Choder O, Aloni Y. Efficient and accurate in vitro processing of simian virus 40-associated small RNA. J Virol 1986; 57:402-7. [PMID: 3001362 PMCID: PMC252746 DOI: 10.1128/jvi.57.1.402-407.1986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nuclei were isolated from simian virus 40 (SV40)-infected cells with a hypotonic, detergent-free buffer and incubated in vitro in a high-ionic-strength buffer containing [alpha-32P]UTP. The labeled viral RNAs produced were analyzed by gel electrophoresis together with 3-h-labeled viral RNAs extracted from SV40-infected cells. The in vitro-synthesized RNA contained a major RNA species of 62 to 64 nucleotides that appeared on the gel at the same position as in vivo-synthesized SV40-associated small RNA (SAS-RNA). Analyses of the in vitro-synthesized 62- to 64-nucleotide RNA by hybridization to restriction fragments and by the use of an SAS-RNA deletion mutant clearly identified it as SAS-RNA. The intensity of the band of the in vitro-synthesized SAS-RNA increased with an increase in the labeling time or when a short pulse was followed by a chase. Moreover, the SAS-RNA band disappeared when ITP replaced GTP in the transcription reaction mixture. These results indicate that SAS-RNA is processed from a precursor molecule and that an RNA secondary structure could be an element recognized by the processing enzyme.
Collapse
|
6
|
Attenuation of late simian virus 40 mRNA synthesis is enhanced by the agnoprotein and is temporally regulated in isolated nuclear systems. Mol Cell Biol 1985. [PMID: 2993860 DOI: 10.1128/mcb.5.6.1327] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies were performed to verify the physiological significance of attenuation in the life cycle of simian virus 40 and the role of agnoprotein in this process. For these purposes, nuclei were isolated at various times after infection and incubated in vitro in the presence of [alpha-32P]UTP under the standard conditions which lead to attenuation. Attenuation was evident by the production of a 94-nucleotide attenuator RNA, revealed by gel electrophoresis. In parallel, the synthesis of agnoprotein was studied at various times after infection by labeling the cells for 3 h with [14C]arginine, lysing them, and analyzing the labeled proteins by gel electrophoresis. Both attenuation and the synthesis of agnoprotein were predominant towards the end of the infectious cycle. At earlier times, there was almost no attenuation and no synthesis of agnoprotein. Moreover, there was almost no attenuation even at the latest times after infection in nuclei isolated from cells infected with simian virus 40 deletion mutants that do not synthesize agnoprotein. Finally, analysis by dot blot hybridization showed higher amounts of cytoplasmic viral RNA in cells infected with an agnoprotein gene insertion mutant, delta 79, that does not produce agnoprotein, compared with cells infected with wild-type virus. The present studies indicate that attenuation is temporally regulated and suggest that agnoprotein enhances attenuation in isolated nuclei and that may also enhance it in vivo.
Collapse
|
7
|
Transient gene expression control: effects of transfected DNA stability and trans-activation by viral early proteins. Mol Cell Biol 1985. [PMID: 2987671 DOI: 10.1128/mcb.5.5.1034] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of trans-acting factors and transfected DNA stability on promoter activity were examined with chloramphenicol acetyl transferase (CAT) transient expression analysis. With cotransfection into CV-1P and HeLa cells, simian virus 40 T antigen, adenovirus E1a, and herpes-virus IE proteins were compared for their ability to trans-activate a variety of eucaryotic promoters constructed into CAT plasmids. T antigen and the IE protein were promiscuous activators of all the promoters tested [the simian virus 40 late promoter, the adenovirus E3 promoter, the alpha 2(I) collagen promoter, and the promoter of the Rous sarcoma virus long terminal repeat]. Conversely the E1a protein was specific, activating only the adenovirus E3 promoter and suppressing the basal activity of the other promoters. This specificity of activation by E1a contrasted with the high activity generated by all of the promoter-CAT plasmids when transfected into 293 cells, which endogenously produce E1a protein. Examination of transfected 293 cells determined that they stabilized much greater amounts of plasmid DNA than any other cells tested (CV-1P, COS, NIH-3T3, KB). Thus the high activity of nonadenovirus promoter-CAT plasmids in 293 cells results from the cumulative effect of basal promoter activity from a very large number of gene copies, not from E1a activation. This conclusion was supported by similar transfection analysis of KB cell lines which endogenously produce E1a protein. These cells stabilize plasmid DNA at a level comparable to that of CV-1P cells and, in agreement with the CV-1P cotransfection results, did not activate a nonadenovirus promoter-CAT plasmid. These results indicate that the stability of plasmid DNA must be considered when transient gene expression is being compared between cell lines. The use of relative plasmid copy numbers for the standardization of transient expression results is discussed.
Collapse
|
8
|
Attenuation of late simian virus 40 mRNA synthesis is enhanced by the agnoprotein and is temporally regulated in isolated nuclear systems. Mol Cell Biol 1985; 5:1327-34. [PMID: 2993860 PMCID: PMC366861 DOI: 10.1128/mcb.5.6.1327-1334.1985] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Studies were performed to verify the physiological significance of attenuation in the life cycle of simian virus 40 and the role of agnoprotein in this process. For these purposes, nuclei were isolated at various times after infection and incubated in vitro in the presence of [alpha-32P]UTP under the standard conditions which lead to attenuation. Attenuation was evident by the production of a 94-nucleotide attenuator RNA, revealed by gel electrophoresis. In parallel, the synthesis of agnoprotein was studied at various times after infection by labeling the cells for 3 h with [14C]arginine, lysing them, and analyzing the labeled proteins by gel electrophoresis. Both attenuation and the synthesis of agnoprotein were predominant towards the end of the infectious cycle. At earlier times, there was almost no attenuation and no synthesis of agnoprotein. Moreover, there was almost no attenuation even at the latest times after infection in nuclei isolated from cells infected with simian virus 40 deletion mutants that do not synthesize agnoprotein. Finally, analysis by dot blot hybridization showed higher amounts of cytoplasmic viral RNA in cells infected with an agnoprotein gene insertion mutant, delta 79, that does not produce agnoprotein, compared with cells infected with wild-type virus. The present studies indicate that attenuation is temporally regulated and suggest that agnoprotein enhances attenuation in isolated nuclei and that may also enhance it in vivo.
Collapse
|
9
|
Transient gene expression control: effects of transfected DNA stability and trans-activation by viral early proteins. Mol Cell Biol 1985; 5:1034-42. [PMID: 2987671 PMCID: PMC366819 DOI: 10.1128/mcb.5.5.1034-1042.1985] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The effects of trans-acting factors and transfected DNA stability on promoter activity were examined with chloramphenicol acetyl transferase (CAT) transient expression analysis. With cotransfection into CV-1P and HeLa cells, simian virus 40 T antigen, adenovirus E1a, and herpes-virus IE proteins were compared for their ability to trans-activate a variety of eucaryotic promoters constructed into CAT plasmids. T antigen and the IE protein were promiscuous activators of all the promoters tested [the simian virus 40 late promoter, the adenovirus E3 promoter, the alpha 2(I) collagen promoter, and the promoter of the Rous sarcoma virus long terminal repeat]. Conversely the E1a protein was specific, activating only the adenovirus E3 promoter and suppressing the basal activity of the other promoters. This specificity of activation by E1a contrasted with the high activity generated by all of the promoter-CAT plasmids when transfected into 293 cells, which endogenously produce E1a protein. Examination of transfected 293 cells determined that they stabilized much greater amounts of plasmid DNA than any other cells tested (CV-1P, COS, NIH-3T3, KB). Thus the high activity of nonadenovirus promoter-CAT plasmids in 293 cells results from the cumulative effect of basal promoter activity from a very large number of gene copies, not from E1a activation. This conclusion was supported by similar transfection analysis of KB cell lines which endogenously produce E1a protein. These cells stabilize plasmid DNA at a level comparable to that of CV-1P cells and, in agreement with the CV-1P cotransfection results, did not activate a nonadenovirus promoter-CAT plasmid. These results indicate that the stability of plasmid DNA must be considered when transient gene expression is being compared between cell lines. The use of relative plasmid copy numbers for the standardization of transient expression results is discussed.
Collapse
|
10
|
Aloni Y, Hay N. Attenuation may regulate gene expression in animal viruses and cells. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1985; 18:327-83. [PMID: 2996833 DOI: 10.3109/10409238509086785] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In eukaryotes, an abundant population of promoter-proximal RNA chains have been observed and studied, mainly in whole nuclear RNA, in denovirus type 2, and in SV40. On the basis of these results it has been suggested that a premature termination process resembling attenuation in prokaryotes occurs in eukaryotes. Moreover, these studies have shown that the adenosine analog 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) enhances premature termination, but its mode of action is not understood. The determination of the nucleotide sequences of SV40 and other viruses and cellular genes provide means for elucidating the nucleotide sequences involved in the attenuation mechanism. A model has recently been described in which attenuation and mRNA modulation in a feedback control system quantitatively regulate SV40 gene expression. The suggested mechanism described in this model opens up approaches to the investigation of attenuation and mRNA modulation as a possible mechanism whereby eukaryotes may regulate transcription in a variety of different circumstances.
Collapse
|
11
|
Sequences on the 3' side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site. Mol Cell Biol 1984. [PMID: 6149460 DOI: 10.1128/mcb.4.8.1460] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hexanucleotide AAUAAA has been demonstrated to be part of the signal for cleavage and polyadenylation at appropriate sites on eucaryotic mRNA precursors. Since this sequence is not unique to polyadenylation sites, it cannot be the entire signal for the cleavage event. We have extended the definition of the polyadenylation cleavage signal by examining the cleavage event at the site of polyadenylation for the simian virus 40 late mRNAs. Using viable mutants, we have determined that deletion of sequences between 3 and 60 nucleotides on the 3' side of the AAUAAA decreases the efficiency of utilization of the normal polyadenylation site. These data strongly indicate a second major element of the polyadenylation signal. The phenotype of these deletion mutants is an enrichment of viral late transcripts longer than the normally polyadenylated RNA in infected cells. These extended transcripts appear to have an increased half-life due to the less efficient cleavage at the normal polyadenylation site. The enriched levels of extended transcripts in cells infected with the deletion mutants allowed us to examine regions of the late transcript which normally are difficult to study. The extended transcripts have several discrete 3' ends which we have analyzed in relation to polyadenylation and other RNA processing events. Two of these ends map to nucleotides 2794 and 2848, which lie within a region of extensive secondary structure which marks the putative processing signal for the formation of the simian virus 40-associated small RNA. A third specific 3' end reveals a cryptic polyadenylation site at approximately nucleotides 2980 to 2985, more than 300 nucleotides beyond the normal polyadenylation site. This site appears to be utilized only in mutants with debilitated normal sites. The significance of sequences on the 3' side of an AAUAAA for efficient polyadenylation at a specific site is discussed.
Collapse
|
12
|
Sadofsky M, Alwine JC. Sequences on the 3' side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site. Mol Cell Biol 1984; 4:1460-8. [PMID: 6149460 PMCID: PMC368935 DOI: 10.1128/mcb.4.8.1460-1468.1984] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The hexanucleotide AAUAAA has been demonstrated to be part of the signal for cleavage and polyadenylation at appropriate sites on eucaryotic mRNA precursors. Since this sequence is not unique to polyadenylation sites, it cannot be the entire signal for the cleavage event. We have extended the definition of the polyadenylation cleavage signal by examining the cleavage event at the site of polyadenylation for the simian virus 40 late mRNAs. Using viable mutants, we have determined that deletion of sequences between 3 and 60 nucleotides on the 3' side of the AAUAAA decreases the efficiency of utilization of the normal polyadenylation site. These data strongly indicate a second major element of the polyadenylation signal. The phenotype of these deletion mutants is an enrichment of viral late transcripts longer than the normally polyadenylated RNA in infected cells. These extended transcripts appear to have an increased half-life due to the less efficient cleavage at the normal polyadenylation site. The enriched levels of extended transcripts in cells infected with the deletion mutants allowed us to examine regions of the late transcript which normally are difficult to study. The extended transcripts have several discrete 3' ends which we have analyzed in relation to polyadenylation and other RNA processing events. Two of these ends map to nucleotides 2794 and 2848, which lie within a region of extensive secondary structure which marks the putative processing signal for the formation of the simian virus 40-associated small RNA. A third specific 3' end reveals a cryptic polyadenylation site at approximately nucleotides 2980 to 2985, more than 300 nucleotides beyond the normal polyadenylation site. This site appears to be utilized only in mutants with debilitated normal sites. The significance of sequences on the 3' side of an AAUAAA for efficient polyadenylation at a specific site is discussed.
Collapse
|
13
|
Simian virus 40-infected, interferon-treated cells contain 2‘,5‘-oligoadenylates which do not activate cleavage of RNA. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43468-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Monstein HJ, Hammarström K, Westin G, Zabielski J, Philipson L, Pettersson U. Loci for human U1 RNA: structural and evolutionary implications. J Mol Biol 1983; 167:245-57. [PMID: 6191037 DOI: 10.1016/s0022-2836(83)80334-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Three clones U1-1, U1-6, and U1-8 containing sequences related to human U1 RNA have been studied by sequence analysis. The results show that each of the three clones represents a distinct locus. The U1-6 locus is closely related to the HU1-1 locus, which is believed to represent a functional U1 gene. The U1-1 and U1-8 loci are pseudogenes by definition, since they contain sequences that are closely related to but not identical with the human U1 RNA sequence. The U1-6 locus contains the sequence T-A-T-A-T close to the 5'-end of the U1 sequence but it is unclear if this represents the promoter. When the U1-8 locus was compared to the U1-6 locus, it was observed that the 5'-flanking sequences, except in the immediate vicinity of the pseudogene, are as well-conserved as the U1-related sequence itself, at least up to position -220. The high degree of homology in the 5'-flanking region suggests that U1 genes have a much more strict sequence requirement with regard to 5'-flanking sequences than most other eukaryotic genes. The U1-6 and U1-8 loci contain the sequence T-A-T-G-T-A-G-A-T-G-A between positions -211 and -221. An identical sequence is present in the equivalent position in the HU1-1 locus, and may represent the promoter. The high degree of conservation in the postulated promoter region indicates that pseudogenes like U1-8 possibly could be expressed. A truncated U1-related sequence is present between 106 to 150 nucleotides upstream from the U1 gene/pseudogene in the U1-6, the U1-8 and the HU1-1 loci, suggesting that the U1 genes may have been clustered early in evolution. The U1-1 locus has a strikingly different structure from the U1-8 locus; the pseudogene itself is as closely related to the U1 RNA sequence as is the U1-8 pseudogene but the flanking sequences, both on the 5' and the 3' side, share no detectable homology with the corresponding regions in the U1-6 or U1-8 loci. It may therefore be postulated that small nuclear RNA pseudogenes are created by several different mechanisms.
Collapse
|