1
|
Sudo H, Maru Y. LAPSER1 is a putative cytokinetic tumor suppressor that shows the same centrosome and midbody subcellular localization pattern as p80 katanin. FASEB J 2007; 21:2086-100. [PMID: 17351128 DOI: 10.1096/fj.06-7254com] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prostate cancer is one of the most common cancers in men, with more than 500,000 new worldwide cases reported annually, resulting in 200,000 deaths of mainly older men in developed countries. Existing treatments have not proved very effective in managing prostate cancer, and continuing efforts therefore are ongoing to explore novel targets and strategies for future therapies. LAPSER1 has been identified as a candidate tumor suppressor gene in prostate cancer, but its true functions remain unknown. We report here that LAPSER1 colocalizes to the centrosomes and midbodies in mitotic cells with gamma-tubulin, MKLP1, and p80 katanin, and is involved in cytokinesis. Moreover, RNAi-mediated disruption of LAPSER1, which is accompanied by the mislocalization of p80 katanin, results in malformation of the central spindle. Significantly, the enhanced expression of LAPSER1 induces binucleation and renders the cells resistant to oncogenic transformation. In cells transformed by the v-Fps oncogene, overexpressed LAPSER1 induces abortive cytokinesis, followed by mitotic catastrophe in a p80 katanin-dependent manner. Cells that are rescued from this apoptotic pathway with Z-VAD-fmk display karyokinesis. These results suggest that LAPSER1 participates in cytokinesis by interacting with p80 katanin, the disruption of which may potentially cause genetic instability and cancer.
Collapse
Affiliation(s)
- Haruka Sudo
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | |
Collapse
|
2
|
Maru Y, Peters KL, Afar DE, Shibuya M, Witte ON, Smithgall TE. Tyrosine phosphorylation of BCR by FPS/FES protein-tyrosine kinases induces association of BCR with GRB-2/SOS. Mol Cell Biol 1995; 15:835-42. [PMID: 7529874 PMCID: PMC231961 DOI: 10.1128/mcb.15.2.835] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The human bcr gene encodes a protein with serine/threonine kinase activity, CDC24/dbl homology, a GAP domain, and an SH2-binding region. However, the precise physiological functions of BCR are unknown. Coexpression of BCR with the cytoplasmic protein-tyrosine kinase encoded by the c-fes proto-oncogene in Sf-9 cells resulted in stable BCR-FES protein complex formation and tyrosine phosphorylation of BCR. Association involves the SH2 domain of FES and a novel binding domain localized to the first 347 amino acids of the FES N-terminal region. Deletion of the homologous N-terminal BCR-binding domain from v-fps, a fes-related transforming oncogene, abolished transforming activity and tyrosine phosphorylation of BCR in vivo. Tyrosine phosphorylation of BCR in v-fps-transformed cells induced its association with GRB-2/SOS, the RAS guanine nucleotide exchange factor complex. These data provide evidence that BCR couples the cytoplasmic protein-tyrosine kinase and RAS signaling pathways.
Collapse
Affiliation(s)
- Y Maru
- Department of Genetics, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Johnson KA, Stone JC. Delineation of functional determinants in the transforming protein of Fujinami sarcoma virus. J Virol 1990; 64:3337-49. [PMID: 2352326 PMCID: PMC249574 DOI: 10.1128/jvi.64.7.3337-3349.1990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We analyzed linker insertion mutations throughout the 3' region of the v-fps gene of Fujinami sarcoma virus to identify tyrosine kinase transforming protein (P130gag-fps) determinants that are important for catalysis and transforming activity and, in particular, to define residues that participate in substrate selection. Mutations that encode kinase-active, transformation-defective v-fps alleles were recovered, defining sites in the transforming protein that may normally facilitate kinase-substrate interaction. Additionally, one region within the catalytic domain of the transforming protein (amino acid residues 1012 to 1020) that tolerates peptide insertions without loss of transforming activity was discovered, although the insertion mutations in this region of v-fps exhibited qualitatively abnormal transforming function. Transformed rat cell lines that express these mutations displayed unusual phenotypes, including giant cells and cells with an extremely fusiform shape. Furthermore, the insertion mutations in this region were temperature sensitive, transformed cells assumed a flat morphology, cellular protein phosphotyrosine was reduced, and the kinase activity of the transforming protein was decreased when cells were incubated at 40.5 degrees C. Point mutations that specify the ancestral chicken c-fps sequence in the insertion-tolerant region were also introduced into v-fps. These back mutations led to a modest decrease in kinase activity, decreased tumorigenic potential in chickens, and an unexpected increase in transforming activity in rat cells. These results indicate that the insertion-tolerant region of P130gag-fps influences the biologic activity and thermostability of the kinase.
Collapse
|
4
|
The myristylation signal of p60v-src functionally complements the N-terminal fps-specific region of P130gag-fps. Mol Cell Biol 1989. [PMID: 2747647 DOI: 10.1128/mcb.9.5.2214] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The P130gag-fps protein-tyrosine kinase of Fujinami sarcoma virus contains an N-terminal fps-specific domain (Nfps) that is important for oncogenicity. The N-terminal 14 amino acids of p60v-src, which direct myristylation and membrane association, can replace the gag-Nfps sequences of P130gag-fps (residues 1 to 635), producing a highly transforming src-fps polypeptide. Conversely, gag-Nfps can restore modest transforming activity to a nonmyristylated v-src polypeptide. These results emphasize the modular construction of protein-tyrosine kinases and indicate that Nfps, possibly in conjunction with gag, functions in the subcellular localization of P130gag-fps.
Collapse
|
5
|
Brooks-Wilson AR, Ball E, Pawson T. The myristylation signal of p60v-src functionally complements the N-terminal fps-specific region of P130gag-fps. Mol Cell Biol 1989; 9:2214-9. [PMID: 2747647 PMCID: PMC363016 DOI: 10.1128/mcb.9.5.2214-2219.1989] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The P130gag-fps protein-tyrosine kinase of Fujinami sarcoma virus contains an N-terminal fps-specific domain (Nfps) that is important for oncogenicity. The N-terminal 14 amino acids of p60v-src, which direct myristylation and membrane association, can replace the gag-Nfps sequences of P130gag-fps (residues 1 to 635), producing a highly transforming src-fps polypeptide. Conversely, gag-Nfps can restore modest transforming activity to a nonmyristylated v-src polypeptide. These results emphasize the modular construction of protein-tyrosine kinases and indicate that Nfps, possibly in conjunction with gag, functions in the subcellular localization of P130gag-fps.
Collapse
Affiliation(s)
- A R Brooks-Wilson
- Division of Molecular and Developmental Biology, Mount Sinai Hospital Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
6
|
Weinmaster GA, Hunter T. Investigation of the role of P130gag-fps in transformation: generation and use of a temperature-sensitive mutant P130gag-fps. J Virol 1988; 62:3849-54. [PMID: 2843679 PMCID: PMC253531 DOI: 10.1128/jvi.62.10.3849-3854.1988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Changing Glu-1025 to Asp in Fujinami sarcoma virus P130gag-fps made the protein temperature sensitive for transformation and protein-tyrosine kinase activity. Another mutant, Phe-1073 P130gag-fps, lacking the major autophosphorylation site, has an extended latent period for transformation (G. A. Weinmaster, M. J. Zoller, M. Smith, E. Hinze, and T. Pawson, Cell 37:559-568, 1984). By introducing the Asp-1025 lesion into Phe-1073 P130gag-fps, we showed that this mutant protein is required for the maintenance of the transformed phenotype of Phe-1073 P130gag-fps-expressing cells.
Collapse
Affiliation(s)
- G A Weinmaster
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92138
| | | |
Collapse
|
7
|
Coll J, Dozier C, Saule S, Henry C, Quatannens B, Debuire B, Stehelin D. Mapping by in vitro constructs of the P100gag-mil region, accounting for induction of chicken neuroretina cell proliferation. J Virol 1988; 62:2808-16. [PMID: 3260632 PMCID: PMC253715 DOI: 10.1128/jvi.62.8.2808-2816.1988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The v-mil oncogene of the avian retrovirus MH2 is expressed as a fusion protein with viral gag determinants in infected cells. This P100gag-mil protein accounts for the proliferation of chicken embryo neuroretina cells (CNR) induced by MH2 in vitro. We constructed a series of mutants by in-frame deletions in different parts of the gag and mil domains and tested their ability to induce CNR growth. We show that gag sequences, as well as 200-base-pair 5' mil sequences, were not required to induce such a proliferation. However, gag sequences seem to contribute to a full proliferation of growing CNR. In contrast, deletions in the kinase domain abolish this induction. In particular, by deleting only 9 nucleotides localized around the unique SphI site of v-mil, we produced a totally inactive mutant (BalSp). This mutant directs the synthesis of a v-mil protein lacking the dipeptide Tyr-Leu, which is conserved in almost all the members of the large protein kinase family, and a histidine residue highly conserved in Ser-Thr protein kinase members.
Collapse
Affiliation(s)
- J Coll
- Institut National de la Santé et de la Recherche Médicale U 186, Institut Pasteur de Lille, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Weinmaster GA, Middlemas DS, Hunter T. A major site of tyrosine phosphorylation within the SH2 domain of Fujinami sarcoma virus P130gag-fps is not required for protein-tyrosine kinase activity or transforming potential. J Virol 1988; 62:2016-25. [PMID: 2452898 PMCID: PMC253286 DOI: 10.1128/jvi.62.6.2016-2025.1988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphorylation of the major autophosphorylation site (Tyr-1073) within Fujinami sarcoma virus P130gag-fps activates both the intrinsic protein-tyrosine kinase activity and transforming potential of the protein. In this report, a second site of autophosphorylation Tyr-836 was identified. This tyrosine residue is found within a noncatalytic domain (SH2) of P130gag-fps that is required for full protein-kinase activity in both rat and chicken cells. Autophosphorylation of this tyrosine residue implies that the SH2 region lies near the active site in the catalytic domain in the native protein and thus possibly regulates its enzymatic activity. Four mutations have occurred within the SH2 domain between the c-fps and v-fps proteins. Tyr-836 is one of these changes, being a Cys in c-fps. Site-directed mutagenesis was used to investigate the function of this autophosphorylation site. Substitution of Tyr-836 with a Phe had no apparent effect on the transforming ability or protein-tyrosine kinase activity of P130gag-fps in rat-2 cells. Mutagenesis of both autophosphorylation sites (Tyr-1073 and Tyr-836) did not reveal any cooperation between these two phosphorylation sites. The implications of the changes within the SH2 region for v-fps function and activation of the c-fps oncogenic potential are discussed.
Collapse
Affiliation(s)
- G A Weinmaster
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92138
| | | | | |
Collapse
|
9
|
Abstract
Twelve independent isolates of avian sarcoma viruses (ASVs) can be divided into four groups according to the transforming genes harbored in the viral genomes. The first group is represented by viruses containing the transforming sequence, src, inserted in the viral genome as an independent gene; the other three groups of viruses contain transforming genes fps, yes or ros fused to various length of the truncated structural gene gag. These transforming sequences have been obtained by avian retroviruses from chicken cellular DNA by recombination. The src-containing viruses code for an independent polypeptide, p60src; and the representative fps, yes and ros-containing ASVs code for P140/130gag-fps, P90gag-yes and P68gag-ros fusion polypeptides respectively. All of these transforming proteins are associated with the tyrosine-specific protein kinase activity capable of autophosphorylation and phosphorylating certain foreign substrates. p60src and P68gag-ros are integral cellular membrane proteins and P140/130gag-fps and P90gag-yes are only loosely associated with the plasma membrane. Cells transformed by ASVs contain many newly phosphorylated proteins and in most cases have an elevated level of total phosphotyrosine. However, no definitive correlation between phosphorylation of a particular substrate and transformation has been established except that a marked increase of the tyrosine phosphorylation of a 34,000 to 37,000 dalton protein is observed in most ASV transformed cells. The kinase activity of ASV transforming proteins appears to be essential, but not sufficient for transformation. The N-terminal domain of p60src required for myristylation and membrane binding is also crucial for transformation. By contrast, the gag portion of the FSV P130gag-fps is dispensable for in vitro transformation and removal of it has only an attenuating effect on in vivo tumorigenicity. The products of cellular src, fps and yes proto-oncogenes have been identified and shown to also have tyrosine-specific protein kinase activity. The transforming potential of c-src and c-fps has been studied and shown that certain structural changes are necessary to convert them into transforming genes. Among the cellular proto-oncogenes related to the four ASV transforming genes, c-ros most likely codes for a growth factor receptor-like molecule. It is possible that the oncogene products of ASVs act through certain membrane receptor(s) or enzyme(s), such as protein kinase C, in the process of cell transformation.
Collapse
Affiliation(s)
- L H Wang
- Rockefeller University, New York, NY 10021
| | | |
Collapse
|
10
|
Pawson T, Greer P, Moran M, Meckling-Hansen K, Brooks-Wilson A, Sadowski I. Structure-function relationships in cellular and viral fps/fes cytoplasmic protein-tyrosine kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 234:55-64. [PMID: 3063089 DOI: 10.1007/978-1-4757-1980-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- T Pawson
- Division of Molecular and Developmental Biology, Mt. Sinai Hospital Research Institute, Toronto, Ont., Canada
| | | | | | | | | | | |
Collapse
|
11
|
Chen LH, Hatada E, Wheatley W, Lee WH. Single amino acid substitution, from Glu1025 to Asp, of the fps oncogenic protein causes temperature sensitivity in transformation and kinase activity. Virology 1986; 155:106-19. [PMID: 2877522 DOI: 10.1016/0042-6822(86)90172-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have sequenced 2.7 kilobases of v-fps DNA encoding the transforming protein, p140, of the temperature-sensitive (ts) FL-15 clone of avian Fujinami sarcoma virus. Ten single nucleotide differences were found when compared with the v-fps sequence of the temperature-resistant (tr) clone, FSV-2. Of these differences, five encoded altered amino acids within the 5' fps domain, only one encoded an altered amino acid in the 3' kinase domain, and four were silent. Among the five amino acid changes in the 5' fps domain, four were identical to the corresponding residues of c-fps, and the remaining one, a change from His to Arg at amino acid number 559, was located in the middle of a stretch of five consecutive histidine residues. These sequence comparisons suggested that only two amino acid changes, His to Arg at amino acid 559 and Glu to Asp at amino acid 1025, were likely to be responsible for the temperature sensitivity of the v-fps protein. Two recombinants, pFL-11 containing the 5' alterations and pFL-12 containing the single 3' mutation, were constructed in vitro to determine the precise ts lesion. It was found that both the recombinant pFL-12 and the parental pFL-5 were ts by three criteria: cell morphology, colony formation, and kinase activity. In contrast, the recombinant pFL-11 was ts in morphology, but not in colony formation, and was partially ts in kinase activity. pFSV 2-2 itself was temperature resistant by these criteria. We conclude that, first, the mutation of Glu to Asp at amino acid number 1025 can cause a complete ts phenotype, implying that this residue is located at a critical position of the v-fps oncogenic protein. Secondly, the change from His to Arg at amino acid position 559 results in a partial temperature sensitivity, providing the genetic evidence for a second functional domain of the v-fps oncogenic protein.
Collapse
|