1
|
A Novel, Fully Spliced, Accessory Gene in Equine Lentivirus with Distinct Rev-Responsive Element. J Virol 2022; 96:e0098622. [PMID: 36069548 PMCID: PMC9517694 DOI: 10.1128/jvi.00986-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All lentiviruses encode the accessory protein Rev, whose main biological function is to mediate the nuclear export of unspliced and incompletely spliced viral transcripts by binding to a viral cis-acting element (termed the Rev-responsive element, RRE) within the env-encoding region. Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an important model for the study of lentivirus pathogenesis. Here, we identified a novel transcript from the EIAV genome that encoded a viral protein, named Mat, with an unknown function. The transcript mat was fully spliced and comprised parts of the coding regions of MA and TM. Interestingly, the expression of Mat depended on Rev and the chromosome region maintenance 1 (CRM1) pathway. Rev could specifically bind to Mat mRNA to promote its nuclear export. We further identified that the first exon of Mat mRNA, which was located within the Gag-encoding region, acted as an unreported RRE. Altogether, we identified a novel fully spliced transcript mat with an unusual RRE, which interacted with Rev for nuclear export through the CRM1 pathway. These findings updated the EIAV genome structure, highlighted the diversification of posttranscriptional regulation patterns in EIAV, and may help to expand the understanding of gene transcription and expression of lentivirus. IMPORTANCE In lentiviruses, the nuclear export of viral transcripts is an important step in controlling viral gene expression. Generally, the unspliced and incompletely spliced transcripts are exported via the CRM1-dependent export pathway in a process mediated by the viral Rev protein by binding to the Rev-responsive element (RRE) located within the Env-coding region. However, the completely spliced transcripts are exported via an endogenous cellular pathway, which was Rev independent. Here, we identified a novel fully spliced transcript from EIAV and demonstrated that it encoded a viral protein, termed Mat. Interestingly, we determined that the expression of Mat depended on Rev and identified that the first exon of Mat mRNA could specifically bind to Rev and be exported to the cytoplasm, which suggested that the first exon of Mat mRNA was a second RRE of EIAV. These findings provided important insights into the Rev-dependent nuclear export of completely spliced transcripts in lentiviruses.
Collapse
|
2
|
Munis AM. Gene Therapy Applications of Non-Human Lentiviral Vectors. Viruses 2020; 12:v12101106. [PMID: 33003635 PMCID: PMC7599719 DOI: 10.3390/v12101106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recent commercialization of lentiviral vector (LV)-based cell therapies and successful reports of clinical studies have demonstrated the untapped potential of LVs to treat diseases and benefit patients. LVs hold notable and inherent advantages over other gene transfer agents based on their ability to transduce non-dividing cells, permanently transform target cell genome, and allow stable, long-term transgene expression. LV systems based on non-human lentiviruses are attractive alternatives to conventional HIV-1-based LVs due to their lack of pathogenicity in humans. This article reviews non-human lentiviruses and highlights their unique characteristics regarding virology and molecular biology. The LV systems developed based on these lentiviruses, as well as their successes and shortcomings, are also discussed. As the field of gene therapy is advancing rapidly, the use of LVs uncovers further challenges and possibilities. Advances in virology and an improved understanding of lentiviral biology will aid in the creation of recombinant viral vector variants suitable for translational applications from a variety of lentiviruses.
Collapse
Affiliation(s)
- Altar M Munis
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
3
|
Qi X, Wang X, Wang S, Lin Y, Jiang C, Ma J, Zhao L, Lv X, Shen R, Wang F, Kong X, Su Z, Zhou J. Genomic analysis of an effective lentiviral vaccine-attenuated equine infectious anemia virus vaccine EIAV FDDV13. Virus Genes 2010; 41:86-98. [PMID: 20526660 DOI: 10.1007/s11262-010-0491-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/03/2010] [Indexed: 11/26/2022]
Abstract
Chinese equine infectious anemia virus (EIAV) attenuated vaccine is the first lentiviral vaccine with a successful application. In order to understand the correlation of viral genomic mutations with viral attenuation and with induced immunoprotective properties, we analyzed the proviral genome sequences of the EIAV-attenuated vaccine strain EIAV(FDDV13) (EIAV fetal donkey dermal cell-adapted vaccine) and its highly virulent parental strain EIAV(LN40). The sequences of these strains were compared with those of the major foreign EIAV strains. The results indicated a large genetic distance between the Chinese EIAV strain and the major EIAV strains in America and Japan. The Chinese strains belong to an independent phylogenetic branch. The divergence between the entire genome of the Chinese strains and that of other major EIAV strains is approximately 23%. The divergence rate in LTR is over 14%, whereas that in each open reading frame is over 20%. The gp90 exhibited a divergence of 35% in its nucleotide sequence and 40% in its amino acid sequence. The present study found that after long-term passage in vitro, EIAV(FDDV13) has accumulated many stable substitution mutations in each gene. These mutations at multiple sites in multiple genes of the vaccine strain, especially the conserved mutations, provide important references for further understanding the attenuation mechanism of Chinese EIAV-attenuated vaccine and the immunoprotection mechanism of lentiviral vaccines.
Collapse
Affiliation(s)
- Xu Qi
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Covaleda L, Gno BT, Fuller FJ, Payne SL. Identification of cellular proteins interacting with equine infectious anemia virus S2 protein. Virus Res 2010; 151:235-9. [PMID: 20417672 DOI: 10.1016/j.virusres.2010.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/07/2010] [Accepted: 04/15/2010] [Indexed: 11/20/2022]
Abstract
The macrophage-tropic lentivirus, equine infectious anemia virus (EIAV), encodes the small auxiliary protein S2 from a short open reading frame that overlaps the amino terminus of env EIAV S2 is dispensable for virus replication in cultured cells but is required for disease production. S2 is approximately 7 kDa and has no overall amino acid sequence homology to other cellular or viral proteins. Therefore it is likely that S2 plays a role as an adaptor protein. To further investigate S2 function we performed a yeast-2-hybrid screen to identify cellular proteins that interact with EIAV S2. The screen identified two human cellular proteins, amplified in osteosarcoma (OS-9) and proteasome 26S ATPase subunit 3 (PSMC3) that interact with S2. The equine homologues of these proteins were cloned and their interactions with S2 confirmed using co-immunoprecipitation assays. We identified two OS-9 isoforms that interact with S2 and a third splice variant that does not, indicating a region of OS-9 apparently required for the S2 interaction. The roles of these cellular proteins during EIAV infection have not been determined.
Collapse
Affiliation(s)
- Lina Covaleda
- Department of Pathobiology, Texas A&M University, Texas Veterinary Medical College, MS4467, College Station, TX 77843-4467, USA
| | | | | | | |
Collapse
|
5
|
Covaleda L, Fuller FJ, Payne SL. EIAV S2 enhances pro-inflammatory cytokine and chemokine response in infected macrophages. Virology 2009; 397:217-23. [PMID: 19945727 DOI: 10.1016/j.virol.2009.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/06/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Equine infectious anemia virus (EIAV) infection is distinctive in that it causes a rapid onset of clinical disease relative to other retroviruses. In order to understand the interaction dynamics between EIAV and the host immune response, we explored the effects of EIAV and its S2 protein in the regulation of the cytokine and chemokine response in macrophages. EIAV infection markedly altered the expression pattern of a variety of pro-inflammatory cytokines and chemokines monitored in the study. Comparative studies in the cytokine response between EIAV(17) and EIAV(17DeltaS2) infection revealed that S2 enhances the expression of IL-1alpha, IL-1beta, IL-8, MCP-2, MIP-1beta and IP-10. Moreover, S2 specifically induced the expression of the newly discovered cytokine, IL-34. Taken together, these results may help explain the effect of cytokine and chemokine dysregulation in EIAV pathogenesis and suggest a role of S2 in optimizing the host cell environment to promote viral dissemination and replication.
Collapse
Affiliation(s)
- Lina Covaleda
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, MS4467, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|
6
|
Desport M, Ditcham WGF, Lewis JR, McNab TJ, Stewart ME, Hartaningsih N, Wilcox GE. Analysis of Jembrana disease virus replication dynamics in vivo reveals strain variation and atypical responses to infection. Virology 2009; 386:310-6. [PMID: 19230948 DOI: 10.1016/j.virol.2009.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Jembrana disease virus (JDV) is an acute lentiviral infection of Bali cattle in Indonesia. Data generated during a series of cattle infection experiments was examined and significant differences were identified in the mean plasma viral load on the first and second days of the febrile response in cattle infected with JDV(TAB/87) compared to those infected with JDV(PUL/01). The peak and total viral loads >or=10(6) genome copies/ml during the acute stage of the disease were significantly higher in JDV(TAB/87) infected cattle. JDV(PUL/01) infected cattle developed peak rectal temperatures earlier than the JDV(TAB/87) cattle but there were no differences in the duration of the febrile responses observed for the 2 groups of animals. The plasma viremia was above 10(6) genome copies/ml for almost 3 days longer in JDV(TAB/87) compared to JDV(PUL/01) infected cattle. Atypical responses to infection occurred in approximately 15% of experimentally infected animals, characterized by reduced viral loads, lower or absent febrile responses and absence of p26-specific antibody responses. Most of these cattle developed normal Tm-specific antibody responses between 4-12 weeks post-infection.
Collapse
Affiliation(s)
- Moira Desport
- School of Veterinary and Biomedical Science, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Stewart ME, Desport M, Setiyaningsih S, Hartaningsih N, Wilcox GE. Analysis of Jembrana disease virus mRNA transcripts produced during acute infection demonstrates a complex transcription pattern. Virus Res 2008; 135:336-9. [DOI: 10.1016/j.virusres.2008.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/19/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
|
8
|
Fagerness AJ, Flaherty MT, Perry ST, Jia B, Payne SL, Fuller FJ. The S2 accessory gene of equine infectious anemia virus is essential for expression of disease in ponies. Virology 2006; 349:22-30. [PMID: 16503341 DOI: 10.1016/j.virol.2005.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/12/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
Equine infectious anemia virus (EIAV) is a macrophage-tropic lentivirus that persistently infects horses and causes a disease that is characterized by periodic episodes of fever, thrombocytopenia, and viremia. EIAV encodes only four regulatory/accessory genes, (tat, rev, ttm, and S2) and is the least genetically complex of all known lentiviruses. We sought to determine the role of the EIAV S2 accessory gene of EIAV by introducing mutations that would prevent S2 expression on the p19/wenv17 infectious molecular clone. Virus derived from the p19/wenv17 molecular clone is highly virulent and routinely fatal when given in high doses (J. Virol. 72 (1998) 483). In contrast, an S2 deletion mutant on the p19/wenv17 background is unable to induce acute disease and plasma virus loads were reduced by 2.5 to 4.0 logs at 15 days post-infection. The S2 deleted virus failed to produce any detectable clinical signs during a 5-month observation period. These results demonstrate that S2 gene expression is essential for disease expression of EIAV.
Collapse
Affiliation(s)
- Angela J Fagerness
- Department of Public Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606-8401, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Jin S, Issel CJ, Montelaro RC. Serological method using recombinant S2 protein to differentiate equine infectious anemia virus (EIAV)-infected and EIAV-vaccinated horses. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:1120-9. [PMID: 15539516 PMCID: PMC524783 DOI: 10.1128/cdli.11.6.1120-1129.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently reported a highly protective attenuated live virus vaccine for equine infectious anemia virus (EIAV) based on a proviral construct (EIAVUKDeltaS2) with a genetically engineered mutation in the viral S2 gene that eliminates expression of this accessory protein. While the EIAVUKDeltaS2 vaccine provides protection from detectable infection by experimental challenge with highly virulent virus, the potential for commercial application of this vaccine is complicated by the fact that horses inoculated with the EIAVUKDeltaS2 vaccine strain become seropositive in various reference diagnostic assays based on detection of antibodies to virion core or envelope proteins. To address this issue, we describe here the development and optimization of a new serologic EIAV diagnostic enzyme-linked immunosorbent assay (ELISA) to detect serum antibodies to the EIAV S2 protein that are produced in infected horses but not in horses inoculated with the EIAVUKDeltaS2 vaccine virus. The test S2 protein antigen was developed using the S2 gene sequence from the EIAVUK strain of virus and a series of modifications to facilitate production and purification of the diagnostic antigen, designated HS2G. Using this HS2G as antigen, we describe the development of an affinity ELISA that provides a sensitive and specific detection of S2-specific serum antibodies in experimentally and field-infected horses (22 of 24), without detectable reactivity with immune serum from uninfected (12 of 12) or vaccinated (29 of 29) horses. These data indicate that the S2-based diagnostic ELISA has the potential to accurately differentiate horses infected with EIAV from horses inoculated with an attenuated EIAV vaccine strain with a mutant S2 gene.
Collapse
Affiliation(s)
- Sha Jin
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
10
|
Rohll JB, Mitrophanous KA, Martin-Rendon E, Ellard FM, Radcliffe PA, Mazarakis ND, Kingsman SM. Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol 2002; 346:466-500. [PMID: 11883086 DOI: 10.1016/s0076-6879(02)46072-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Jonathan B Rohll
- Department of Biochemistry, Oxford BioMedica (UK) Limited, Oxford OX4 4GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota School of Medicine, Vermillion 57069, USA.
| |
Collapse
|
12
|
Yoon S, Kingsman SM, Kingsman AJ, Wilson SA, Mitrophanous KA. Characterization of the equine infectious anaemia virus S2 protein. J Gen Virol 2000; 81:2189-2194. [PMID: 10950976 DOI: 10.1099/0022-1317-81-9-2189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
S2 is an accessory protein of equine infectious anaemia virus (EIAV), the function of which is unknown. In order to gain insight into the function of S2, the intracellular localization of the protein, its interaction with viral proteins and its incorporation into viral particles have been investigated. Immunolocalization of S2 revealed punctate staining in the cytoplasm and the S2 protein co-precipitated with the EIAV Gag precursor. Despite overexpression of S2 through the use of a codon-optimized sequence, there was no preferential association of S2 with EIAV particles. These data suggest that S2 may function to organize the Gag protein during particle assembly in the cytoplasm but that it is unlikely to be involved in the early stages of the virus life-cycle.
Collapse
Affiliation(s)
- Soonsang Yoon
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK1
| | - Susan M Kingsman
- Oxford BioMedica (UK) Ltd, Oxford Science Park, Oxford OX4 4GA, UK2
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK1
| | - Alan J Kingsman
- Oxford BioMedica (UK) Ltd, Oxford Science Park, Oxford OX4 4GA, UK2
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK1
| | - Stuart A Wilson
- Department of Biomolecular Sciences, UMIST, PO Box 88, Manchester M60 1QD, UK3
| | | |
Collapse
|
13
|
Li F, Leroux C, Craigo JK, Cook SJ, Issel CJ, Montelaro RC. The S2 gene of equine infectious anemia virus is a highly conserved determinant of viral replication and virulence properties in experimentally infected ponies. J Virol 2000; 74:573-9. [PMID: 10590152 PMCID: PMC111574 DOI: 10.1128/jvi.74.1.573-579.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anemia virus (EIAV) is genetically one of the simplest lentiviruses in that the viral genome encodes only three accessory genes, tat, rev, and S2. Although serological analyses demonstrate the expression of the S2 protein in persistently infected horses, the role of this viral gene remains undefined. We recently reported that the S2 gene is not essential for EIAV replication in primary equine macrophages, as EIAV mutants lacking the S2 gene replicate to levels similar to those of the parental virus (F. Li, B. A. Puffer, and R. C. Montelaro, J. Virol. 72:8344-8348, 1998). We now describe in vivo studies that examine the evolution and role of the S2 gene in ponies experimentally infected with EIAV. The results of these studies reveal for the first time that the S2 gene is highly conserved during persistent infection and that deletion of the S2 gene reduces viral virulence and virus replication levels compared to those of the parental virus containing a functional S2 gene. These data indicate that the EIAV S2 gene is in fact an important determinant of viral replication and pathogenic properties in vivo, despite the evident lack of S2 influence on viral replication levels in vitro. Thus, these observations suggest in vivo functions of EIAV S2 that are not adequately reflected in simple infections of cultured cells, including natural target macrophages.
Collapse
Affiliation(s)
- F Li
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 1999; 6:1808-18. [PMID: 10602376 DOI: 10.1038/sj.gt.3301023] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have constructed a non-primate lentiviral vector system based on the equine infectious anaemia virus (EIAV). This system is able to transduce both dividing and non-dividing cells, including primary cultured hippocampal neurons and neurons and glia in the adult rat central nervous system (CNS), at efficiencies comparable with HIV-based vectors. We demonstrate that the only EIAV proteins required for this activity are gag/pol and that the only accessory protein required for vector production is rev. In addition, we show that the pol encoded dUTPase activity that is found in all non-primate lentiviruses is not required. The vectors can be pseudotyped with a range of envelopes including rabies G and MLV 4070A and can be concentrated to high titres. The ability of EIAV to infect mitotically inactive cells makes this vector an attractive alternative to the immunodeficiency viruses for gene therapy.
Collapse
|
15
|
Li F, Puffer BA, Montelaro RC. The S2 gene of equine infectious anemia virus is dispensable for viral replication in vitro. J Virol 1998; 72:8344-8. [PMID: 9733881 PMCID: PMC110207 DOI: 10.1128/jvi.72.10.8344-8348.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anemia virus (EIAV) contains the simplest genome among lentiviruses in that it encodes only three putative regulatory genes (S1, S2, S3) in addition to the canonical gag, pol, and env genes, presumably reflecting its limited tropism to cells of monocyte/macrophage lineage. Tat and Rev functions have been assigned to S1 and S3, respectively, but the specific function for the S2 gene has yet to be determined. Thus, the function of S2 in virus replication in vitro was investigated by using an infectious molecular viral clone, EIAVUK. Various EIAVUK mutants lacking S2 were constructed, and their replication kinetics were examined in several equine cell culture systems, including the natural in vivo target equine macrophage cells. The EIAV S2 mutants showed replication kinetics similar to those of the parental virus in all of the tested primary and transformed equine cell cultures, without any detectable reversion of mutant genomes. The EIAVUK mutants also showed replication kinetics similar to those of the parental virus in an equine blood monocyte differentiation-maturation system. These results demonstrate for the first time that the EIAV S2 gene is not essential and does not appear to affect virus infection and replication properties in target cells in vitro.
Collapse
Affiliation(s)
- F Li
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
16
|
Cook RF, Leroux C, Cook SJ, Berger SL, Lichtenstein DL, Ghabrial NN, Montelaro RC, Issel CJ. Development and characterization of an in vivo pathogenic molecular clone of equine infectious anemia virus. J Virol 1998; 72:1383-93. [PMID: 9445039 PMCID: PMC124617 DOI: 10.1128/jvi.72.2.1383-1393.1998] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Accepted: 10/16/1997] [Indexed: 02/05/2023] Open
Abstract
An infectious nonpathogenic molecular clone (19-2-6A) of equine infectious anemia virus (EIAV) was modified by substitution of a 3.3-kbp fragment amplified by PCR techniques from a pathogenic variant (EIAV(PV)) of the cell culture-adapted strain of EIAV (EIAV(PR)). This substitution consisted of coding sequences for 77 amino acids at the carboxyl terminus of the integrase, the S1 (encoding the second exon of tat), S2, and S3 (encoding the second exon of rev) open reading frames, the complete env gene (including the first exon of rev), and the 3' long terminal repeat (LTR). Modified 19-2-6A molecular clones were designated EIAV(PV3.3), and infection of a single pony (678) with viruses derived from a mixture of five of these molecular clones induced clinical signs of acute equine infectious anemia (EIA) at 23 days postinfection (dpi). As a consequence of this initial study, a single molecular clone, EIAV(PV3.3#3) (redesignated EIAV(UK)), was selected for further study and inoculated into two ponies (613 and 614) and two horses (700 and 764). Pony 614 and the two horses developed febrile responses by 12 dpi, which was accompanied by a 48 to 64% reduction in platelet number, whereas pony 613 did not develop fever (40.6 degrees C) until 76 dpi. EIAV could be isolated from the plasma of these animals by 5 to 7 dpi, and all became seropositive for antibodies to this virus by 21 dpi. Analysis of the complete nucleotide sequence demonstrated that the 3.3-kbp 3' fragment of EIAV(UK) differed from the consensus sequence of EIAV(PV) by just a single amino acid residue in the second exon of the rev gene. Complete homology with the EIAV(PV) consensus sequence was observed in the hypervariable region of the LTR. However, EIAV(UK) was found to contain an unusual 68-bp nucleotide insertion/duplication in a normally conserved region of the LTR sequence. These results demonstrate that substitution of a 3.3-kbp fragment from the EIAV(PV) strain into the infectious nonpathogenic molecular clone 19-2-6A leads to the production of progeny virus particles with the ability to induce clinical signs of EIA. Therefore, EIAV(UK), which is the first pathogenic, cell culture-adapted molecular clone of EIAV to be described, should be of value in identifying viral determinants of pathogenicity.
Collapse
Affiliation(s)
- R F Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington 40546, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim DY, Swenson DH, Cho DY, Taylor HW, Shih DS. Helix-stabilizing agent, CC-1065, enhances suppression of translation by an antisense oligodeoxynucleotide. ANTISENSE RESEARCH AND DEVELOPMENT 1995; 5:149-54. [PMID: 7580119 DOI: 10.1089/ard.1995.5.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The antitumor antibiotic CC-1065 is known to bind at selected sequences in the minor groove of duplex nucleic acids and to hyperstabilize the duplexes against thermal melting. These properties suggested that CC-1065 may enhance translation inhibition by antisense oligonucleotides directed against a specific mRNA. A 585 bp mRNA transcript containing the equine infectious anemia virus (EIAV) S2 gene and a portion of the env gene was prepared. Also, a complementary 20 mer antisense oligodeoxynucleotide (5'-TGTTGGGTAATAGG-GGTTGA-3') was prepared against a target sequence in the mRNA located near the translational initiation sites of the overlapping S2 and env genes. The center of the target sequence had an expected CC-1065 recognition sequence (5'-UAUUA-3'). Translation in the presence of CC-1065 and antisense was markedly suppressed compared with that of antisense alone. Addition of a sense 20 mer strand, with or without CC-1065, had little or no effect on translation. CC-1065 and related compounds may be useful as ligands for enhancing the stability of sense-antisense duplexes and for promoting the inhibition of translation by antisense oligonucleotides.
Collapse
Affiliation(s)
- D Y Kim
- Department of Veterinary Pathology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | | | |
Collapse
|
18
|
Rosin-Arbesfeld R, Mashiah P, Willbold D, Rosch P, Tronick SR, Yaniv A, Gazit A. Biological activity and intracellular location of the Tat protein of equine infectious anemia virus. Gene 1994; 150:307-11. [PMID: 7821797 DOI: 10.1016/0378-1119(94)90443-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Tat protein of equine infectious anemia virus (EIAV) was synthesized in Escherichia coli using the inducible expression plasmid, pET16b, which contains a His.Tag leader, thus allowing for rapid and efficient enrichment of the histidine-tagged protein by metal affinity chromatography. Yields of up to 20 mg of Tat were obtained from 10(11) bacterial cells. The recombinant Tat protein was shown to potently trans-activate the EIAV long terminal repeat (LTR) following its introduction into canine cells by 'scrape loading'. The EIAV Tat protein was found to localize predominantly within the cytoplasm, in contrast to HIV-1 Tat. The availability of large amounts of purified functional EIAV Tat protein should greatly facilitate detailed structure-function analyses.
Collapse
Affiliation(s)
- R Rosin-Arbesfeld
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
19
|
Carroll R, Derse D. Translation of equine infectious anemia virus bicistronic tat-rev mRNA requires leaky ribosome scanning of the tat CTG initiation codon. J Virol 1993; 67:1433-40. [PMID: 8382305 PMCID: PMC237513 DOI: 10.1128/jvi.67.3.1433-1440.1993] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have examined the translational regulation of the equine infectious anemia virus (EIAV) bicistronic tat-rev mRNA. Site-directed mutagenesis of the tat leader region followed by expression of the tat-rev cDNA both in vitro and in transiently transfected cells established that tat translation is initiated exclusively at a CTG codon. Increasing the efficiency of tat translation by altering the CTG initiator to ATG resulted in a dramatic decrease in translation of the downstream (rev) cistron, indicating that leaky scanning of the tat CTG initiation codon permitted translation of the downstream rev cistron. Since the tat leader sequences precede the major EIAV splice donor and are therefore present at the 5' termini of both spliced and unspliced viral mRNAs, the expression of all EIAV structural and regulatory proteins is dependent on leaky scanning of the tat initiator.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cell-Free System
- Chloramphenicol O-Acetyltransferase/genetics
- Codon
- DNA, Recombinant
- Gene Expression Regulation, Viral
- Genes, Viral/genetics
- Genes, rev/genetics
- Genes, tat/genetics
- Genetic Vectors
- Infectious Anemia Virus, Equine/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Peptide Chain Initiation, Translational
- Precipitin Tests
- Protein Biosynthesis
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Viral Structural Proteins/genetics
Collapse
Affiliation(s)
- R Carroll
- Laboratory of Viral Carcinogenesis, National Cancer Institute-Frederick Cancer Research Center, Maryland 21702-1201
| | | |
Collapse
|
20
|
Beisel CE, Edwards JF, Dunn LL, Rice NR. Analysis of multiple mRNAs from pathogenic equine infectious anemia virus (EIAV) in an acutely infected horse reveals a novel protein, Ttm, derived from the carboxy terminus of the EIAV transmembrane protein. J Virol 1993; 67:832-42. [PMID: 8419648 PMCID: PMC237437 DOI: 10.1128/jvi.67.2.832-842.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription of pathogenic equine infectious anemia virus (EIAV) in an acutely infected horse was examined by using the polymerase chain reaction and nucleotide sequencing. Four spliced transcripts were identified in liver tissue, in contrast to the multiplicity of alternatively spliced messages reported for in vitro-propagated human immunodeficiency virus, simian immunodeficiency virus, and, to a lesser extent, EIAV. Nucleotide sequence analysis demonstrated that three of these mRNAs encode known viral proteins: the envelope precursor, the product of the S2 open reading frame, and the regulatory proteins Tat and Rev. The fourth transcript encodes a novel Tat-TM fusion protein, Ttm. Ttm is a 27-kDa protein translated from the putative tat CTG initiation codon and containing the carboxy-terminal portion of TM immediately downstream from the membrane-spanning domain. p27ttm is expressed in EIAV-infected canine cells and was recognized by peptide antisera against both Tat and TM. Cells transfected with ttm cDNA also expressed p27ttm, which appeared to be localized to the endoplasmic reticulum or Golgi apparatus by indirect immunofluorescence. The carboxy terminus of lentiviral TM proteins has previously been shown to influence viral infectivity, growth kinetics, and cytopathology, suggesting that Ttm plays an important role in the EIAV life cycle.
Collapse
Affiliation(s)
- C E Beisel
- Laboratory of Molecular Virology and Carcinogenesis, NCI-Frederick Cancer Research and Development Center, Maryland 21702
| | | | | | | |
Collapse
|
21
|
Alexandersen S, Carpenter S, Christensen J, Storgaard T, Viuff B, Wannemuehler Y, Belousov J, Roth JA. Identification of alternatively spliced mRNAs encoding potential new regulatory proteins in cattle infected with bovine leukemia virus. J Virol 1993; 67:39-52. [PMID: 8380084 PMCID: PMC237335 DOI: 10.1128/jvi.67.1.39-52.1993] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The polymerase chain reaction was used to detect and characterize low-abundance bovine leukemia virus (BLV) mRNAs. In infected cattle we could detect spliced mRNA with a splice pattern consistent with a Tax/Rex mRNA, as well as at least four alternatively spliced RNAs. Two of the alternatively spliced mRNAs encoded hitherto unrecognized BLV proteins, designated RIII and GIV. The Tax/Rex and alternatively spliced mRNAs could be detected at their highest levels in BLV-infected cell cultures; the next highest levels were found in samples from calves experimentally infected at 6 weeks postinoculation. Alternatively spliced mRNAs were also expressed, albeit at lower levels, in naturally infected animals; they were detected by a nested polymerase chain reaction. Interestingly, the GIV mRNA was specifically detected in naturally infected cows with persistent lymphocytosis and in two of five calves at 6 months after experimental infection with BLV. Furthermore, the calf with the strongest signal for GIV had the highest lymphocyte counts. These data may suggest a correlation between expression of the GIV product and development of persistent lymphocytosis. Some of the donor and acceptor sites in the alternatively spliced mRNAs were highly unusual. The biological mechanisms and significance of such a choice of unexpected splice sites are currently unknown.
Collapse
Affiliation(s)
- S Alexandersen
- Department of Pharmacology and Pathobiology, Royal Veterinary and Agricultural University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|