1
|
Perera JDR, Carufe KEW, Glazer PM. Peptide nucleic acids and their role in gene regulation and editing. Biopolymers 2021; 112:e23460. [PMID: 34129732 DOI: 10.1002/bip.23460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
The unique properties of peptide nucleic acid (PNA) makes it a desirable candidate to be used in therapeutic and biotechnological interventions. It has been broadly utilized for numerous applications, with a major focus in regulation of gene expression, and more recently in gene editing. While the classic PNA design has mainly been employed to date, chemical modifications of the PNA backbone and nucleobases provide an avenue to advance the technology further. This review aims to discuss the recent developments in PNA based gene manipulation techniques and the use of novel chemical modifications to improve the current state of PNA mediated gene targeting.
Collapse
Affiliation(s)
- J Dinithi R Perera
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kelly E W Carufe
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Peptide Nucleic Acids and Gene Editing: Perspectives on Structure and Repair. Molecules 2020; 25:molecules25030735. [PMID: 32046275 PMCID: PMC7037966 DOI: 10.3390/molecules25030735] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Unusual nucleic acid structures are salient triggers of endogenous repair and can occur in sequence-specific contexts. Peptide nucleic acids (PNAs) rely on these principles to achieve non-enzymatic gene editing. By forming high-affinity heterotriplex structures within the genome, PNAs have been used to correct multiple human disease-relevant mutations with low off-target effects. Advances in molecular design, chemical modification, and delivery have enabled systemic in vivo application of PNAs resulting in detectable editing in preclinical mouse models. In a model of β-thalassemia, treated animals demonstrated clinically relevant protein restoration and disease phenotype amelioration, suggesting a potential for curative therapeutic application of PNAs to monogenic disorders. This review discusses the rationale and advances of PNA technologies and their application to gene editing with an emphasis on structural biochemistry and repair.
Collapse
|
3
|
Mojžíšek M. Triplex Forming Oligonucleotides – Tool for Gene Targeting. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2018.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review deals with the antigene strategy whereby an oligonucleotide binds to the major or minor groove of double helical DNA where it forms a local triple helix. Preoccupation of this article is triplex-forming oligonucleotides (TFO). These are short, synthetic single-stranded DNAs that recognize polypurine:polypyrimidine regions in double stranded DNA in a sequence-specific manner and form triplex. Therefore, the mechanisms for DNA recognition by triple helix formation are discussed, together with main characteristics of TFO and also major obstacles that remain to be overcome are highlighted. TFOs can selectively inhibit gene expression at the transcriptional level or repair genetic defect by direct genome modification in human cells. These qualities makes TFO potentially powerful therapeutic tool for gene repair and/or expression regulation.
Collapse
|
4
|
Hartono YD, Xu Y, Karshikoff A, Nilsson L, Villa A. Modeling p K Shift in DNA Triplexes Containing Locked Nucleic Acids. J Chem Inf Model 2018. [PMID: 29537270 DOI: 10.1021/acs.jcim.7b00741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The protonation states for nucleic acid bases are difficult to assess experimentally. In the context of DNA triplex, the protonation state of cytidine in the third strand is particularly important, because it needs to be protonated in order to form Hoogsteen hydrogen bonds. A sugar modification, locked nucleic acid (LNA), is widely used in triplex forming oligonucleotides to target sites in the human genome. In this study, the parameters for LNA are developed in line with the CHARMM nucleic acid force field and validated toward the available structural experimental data. In conjunction, two computational methods were used to calculate the protonation state of the third strand cytidine in various DNA triplex environments: λ-dynamics and multiple pH regime. Both approaches predict p K of this cytidine shifted above physiological pH when cytidine is in the third strand in a triplex environment. Both methods show an upshift due to cytidine methylation, and a small downshift when the sugar configuration is locked. The predicted p K values for cytidine in DNA triplex environment can inform the design of better-binding oligonucleotides.
Collapse
Affiliation(s)
- Yossa Dwi Hartono
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden.,Division of Structural Biology and Biochemistry, School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
| | - You Xu
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden
| | - Andrey Karshikoff
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition , Karolinska Institutet , SE-141 83 Huddinge , Sweden
| |
Collapse
|
5
|
Hartono Y, Pabon-Martinez YV, Uyar A, Wengel J, Lundin KE, Zain R, Smith CIE, Nilsson L, Villa A. Role of Pseudoisocytidine Tautomerization in Triplex-Forming Oligonucleotides: In Silico and in Vitro Studies. ACS OMEGA 2017; 2:2165-2177. [PMID: 30023656 PMCID: PMC6044803 DOI: 10.1021/acsomega.7b00347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/02/2017] [Indexed: 06/08/2023]
Abstract
Pseudoisocytidine (ΨC) is a synthetic cytidine analogue that can target DNA duplex to form parallel triplex at neutral pH. Pseudoisocytidine has mainly two tautomers, of which only one is favorable for triplex formation. In this study, we investigated the effect of sequence on ΨC tautomerization using λ-dynamics simulation, which takes into account transitions between states. We also performed in vitro binding experiments with sequences containing ΨC and furthermore characterized the structure of the formed triplex using molecular dynamics simulation. We found that the neighboring methylated or protonated cytidine promotes the formation of the favorable tautomer, whereas the neighboring thymine or locked nucleic acid has a poor effect, and consecutive ΨC has a negative influence. The deleterious effect of consecutive ΨC in a triplex formation was confirmed using in vitro binding experiments. Our findings contribute to improving the design of ΨC-containing triplex-forming oligonucleotides directed to target G-rich DNA sequences.
Collapse
Affiliation(s)
- Yossa
Dwi Hartono
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
- Division
of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Y. Vladimir Pabon-Martinez
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Arzu Uyar
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| | - Jesper Wengel
- Department
of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, 5230 Odense M, Denmark
| | - Karin E. Lundin
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Rula Zain
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
- Department
of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - C. I. Edvard Smith
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Lennart Nilsson
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| | - Alessandra Villa
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| |
Collapse
|
6
|
Saleh AF, Fellows MD, Ying L, Gooderham NJ, Priestley CC. The Lack of Mutagenic Potential of a Guanine-Rich Triplex Forming Oligonucleotide in Physiological Conditions. Toxicol Sci 2016; 155:101-111. [PMID: 27660205 DOI: 10.1093/toxsci/kfw179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Triplex forming oligonucleotides (TFOs) bind in the major groove of DNA duplex in a sequence-specific manner imparted by Hoogsteen hydrogen bonds. There have been several reports demonstrating the ability of guanine-rich TFOs to induce targeted mutagenesis on an exogenous plasmid or an endogenous chromosomal locus. In particular, a 30mer guanine-rich triplex forming oligonucleotide, AG30, optimally designed to target the supFG1 reporter gene was reported to be mutagenic in the absence of DNA reactive agents in cultured cells and in vivo Here, we investigated the mutagenic potential of AG30 using the supFG1 shuttle vector forward mutation assay under physiological conditions. We also assessed the triplex binding potential of AG30 alongside cytotoxic and mutagenic assessment. In a cell free condition, AG30 was able to bind its polypurine target site in the supFG1 gene in the absence of potassium chloride and also aligned with a 5-fold increase in the mutant frequency when AG30 was pre-incubated with the supFG1 plasmid in the absence of potassium prior to transfection into COS-7 cells. However, when we analyzed triplex formation of AG30 and the supFG1 target duplex at physiological potassium levels, triplex formation was inhibited due to the formation of competing secondary structures. Subsequent assessment of mutant frequency under physiological conditions, by pre-transfecting COS-7 cells with the supFG1 plasmid prior to AG30 treatment led to a very small increase (1.4-fold) in the mutant frequency. Transfection of cells with even higher concentrations of AG30 did result in an elevated mutagenic response but this was also seen with a scrambled sequence, and was therefore considered unlikely to be biologically relevant as an associated increase in cytotoxicity was also apparent. Our findings also provide further assurance on the low potential of triplex-mediated mutation as a consequence of unintentional genomic DNA binding by therapeutic antisense oligonucleotides.
Collapse
Affiliation(s)
- Amer F Saleh
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Mick D Fellows
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Liming Ying
- Molecular medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Catherine C Priestley
- Genetic Toxicology, Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire, United Kingdom;
| |
Collapse
|
7
|
Sauer NJ, Mozoruk J, Miller RB, Warburg ZJ, Walker KA, Beetham PR, Schöpke CR, Gocal GFW. Oligonucleotide-directed mutagenesis for precision gene editing. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:496-502. [PMID: 26503400 PMCID: PMC5057361 DOI: 10.1111/pbi.12496] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 05/23/2023]
Abstract
Differences in gene sequences, many of which are single nucleotide polymorphisms, underlie some of the most important traits in plants. With humanity facing significant challenges to increase global agricultural productivity, there is an urgent need to accelerate the development of these traits in plants. oligonucleotide-directed mutagenesis (ODM), one of the many tools of Cibus' Rapid Trait Development System (RTDS(™) ) technology, offers a rapid, precise and non-transgenic breeding alternative for trait improvement in agriculture to address this urgent need. This review explores the application of ODM as a precision genome editing technology, with emphasis on using oligonucleotides to make targeted edits in plasmid, episomal and chromosomal DNA of bacterial, fungal, mammalian and plant systems. The process of employing ODM by way of RTDS technology has been improved in many ways by utilizing a fluorescence conversion system wherein a blue fluorescent protein (BFP) can be changed to a green fluorescent protein (GFP) by editing a single nucleotide of the BFP gene (CAC→TAC; H66 to Y66). For example, dependent on oligonucleotide length, applying oligonucleotide-mediated technology to target the BFP transgene in Arabidopsis thaliana protoplasts resulted in up to 0.05% precisely edited GFP loci. Here, the development of traits in commercially relevant plant varieties to improve crop performance by genome editing technologies such as ODM, and by extension RTDS, is reviewed.
Collapse
|
8
|
Bahal R, Gupta A, Glazer PM. Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Abstract
Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also cause chromosomal fragility and stimulate gross chromosomal rearrangements, i.e., deletions, duplications, inversions, translocations and more complex shuffles. More recently, it has become clear that inherently unstable DNA repeats dramatically elevate mutation rates in surrounding DNA segments and that these mutations can occur up to ten kilobases away from the repetitive tract, a phenomenon we call repeat-induced mutagenesis (RIM). This review describes experimental data that led to the discovery and characterization of RIM and discusses the molecular mechanisms that could account for this phenomenon.
Collapse
Affiliation(s)
- Kartik A Shah
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
10
|
Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 2011; 93:1197-208. [PMID: 21501652 DOI: 10.1016/j.biochi.2011.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/01/2011] [Indexed: 12/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
11
|
Sargent RG, Kim S, Gruenert DC. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides 2011; 21:55-75. [PMID: 21417933 DOI: 10.1089/oli.2010.0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.
Collapse
Affiliation(s)
- R Geoffrey Sargent
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California 94115, USA
| | | | | |
Collapse
|
12
|
Dobrikov MI. Site-specific photosensitised modification of nucleic acids with biradical and electrophilic reagents. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1999v068n11abeh000524] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Rathinavelan T, Yathindra N. Base triplet nonisomorphism strongly influences DNA triplex conformation: Effect of nonisomorphic G∗︁ GC and A∗︁ AT triplets and bending of DNA triplexes. Biopolymers 2006; 82:443-61. [PMID: 16493655 DOI: 10.1002/bip.20484] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Structural understanding of DNA triplexes is grossly inadequate despite their efficacy as therapeutic agents. Lack of structural similarity (isomorphism) of base triplets that figure in different DNA triplexes brings in an added complexity. Recently, we have shown that the residual twist (Deltat degrees ) and the radial difference (Deltar A) adequately define base triplet nonisomorphism in structural terms and allow assessment of their role in conferring stability as well as sequence-dependent structural variations in DNA triplexes. To further corroborate these, molecular dynamics (MD) simulations are carried out on DNA triplexes comprising nonisomorphic G* GC and A* AT base triplets under different sequential contexts. Base triplet nonisomorphism between G* GC and A* AT triplets is dominated by Deltat degrees (9.8 degrees ), in view of small Deltar (0.2 A), and is in contrast to G* GC and T* AT triplets where both Deltat degrees (10.6 degrees ) and Deltar (1.1A) are prominent. Results show that Deltat degrees alone enforces mechanistic influence on the triplex-forming purine strand so as to favor a zigzag conformation with alternating conformational features that include high (40 degrees ) and low (20 degrees ) helical twists, and high anti(G) and anti(A) glycosyl conformation. Higher thermal stability of this triplex compared to that formed with G* GC and T* AT triplets can be traced to enhanced base-stacking and counterion interactions. Surprisingly, it is found for the first time that the presence of a nonisomorphic G* GC or A* AT base triplet interrupting an otherwise mini A* AT or G* GC isomorphic triplex can induce a bend/curvature in a DNA triplex. These observations should prove useful in the design of triplex-forming oligonucleotides and in the understanding the binding affinities of this triplex with proteins.
Collapse
Affiliation(s)
- T Rathinavelan
- Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-600 025, India
| | | |
Collapse
|
14
|
Ping YH, Rana TM. Mechanism of site-specific psoralen photoadducts formation in triplex DNA directed by psoralen-conjugated oligonucleotides. Biochemistry 2005; 44:2501-9. [PMID: 15709762 DOI: 10.1021/bi0488707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triplex-formation oligonucleotides attached with a photoreactive psoralen molecule (psoTFO) can be used to induce site-specific DNA damage and to control gene expression. Inhibition of transcription by psoralen-cross-linked triplexes results in both arrest and termination of RNA Pol II transcriptional complexes during elongation. To understand the relationship between triplex psoralen cross-linking products and the fate of RNA Pol II elongation complexes, it is important to delineate the mechanism for creating site-specific psoralen photoadducts in a target duplex DNA. To investigate the mechanism of photoadduct-formation by psoralen photo-cross-linking, triplex structures were generated by targeting a DNA duplex with psoTFOs of different lengths. The psoralen photoadducts were then analyzed after UV irradiation, which initiates the psoralen cross-linking reaction. Our results demonstrated that UV irradiation of triplexes formed between a psoTFO and a DNA duplex generated two distinct groups of psoralen photoadducts: monoadducts and psoralen interstrand cross-link products. The formation of these psoralen photoadducts was also photoreversible through exposure to short wavelength UV irradiation. The length of a psoTFO was shown to establish the position at which psoralen was added to the target DNA duplex and determined which photoadducts products formed predominantly. Kinetic experiments that monitored the formation of the psoralen photoadducts also suggested that the length of the psoTFO influenced which photoadducts were preferentially formed at faster rates. Taken together, these studies provide new insight into the mechanism associated with the formation of psoralen photoadducts that are directed by psoTFO during triplex formation.
Collapse
Affiliation(s)
- Yueh-Hsin Ping
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605,USA
| | | |
Collapse
|
15
|
Nagatsugi F, Sasaki S. Chemical tools for targeted mutagenesis of DNA based on triple helix formation. Biol Pharm Bull 2004; 27:463-7. [PMID: 15056848 DOI: 10.1248/bpb.27.463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of methods for targeted mutagenesis shows promise as an alternative form of gene therapy. Triple helix-forming oligonucleotides (TFOs) provide an attractive strategy for inducing mutations. Especially, alkylation of nucleobases with functionalized TFOs would have potential for site-directed mutation. Several studies have demonstrated that treatment of mammalian cells with TFOs can be exploited to introduce desired sequence changes and point mutations. This review summarizes targeted mutagenesis using reactive TFOs, including studies with photo reactive psolaren derivatives as well as a new reactive derivative recently developed by our group.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
16
|
Chen Z, Xu XS, Harrison J, Wang G. Defining the function of xeroderma pigmentosum group F protein in psoralen interstrand cross-link-mediated DNA repair and mutagenesis. Biochem J 2004; 379:71-8. [PMID: 14728600 PMCID: PMC1224063 DOI: 10.1042/bj20031143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 11/10/2003] [Accepted: 01/16/2004] [Indexed: 11/17/2022]
Abstract
Many commonly used drugs, such as psoralen and cisplatin, can generate a very unique type of DNA damage, namely ICL (interstrand cross-link). An ICL can severely block DNA replication and transcription and cause programmed cell death. The molecular mechanism of repairing the ICL damage has not been well established. We have studied the role of XPF (xeroderma pigmentosum group F) protein in psoralen-induced ICL-mediated DNA repair and mutagenesis. The results obtained from our mutagenesis studies revealed a very similar mutation frequency in both human normal fibroblast cells and XPF cells. The mutation spectra generated in both cells, however, were very different: most of the mutations generated in the normal fibroblast cells were T167-->A transversions, whereas most of the mutations generated in the XPF cells were T167-->G transversions. When a wild-type XPF gene cDNA was stably transfected into the XPF cells, the T167-->A mutations were increased and the T167-->G mutations were decreased. We also determined the DNA repair capability of the XPF cells using both the host-cell reactivation and the in vitro DNA repair assays. The results obtained from the host-cell reactivation experiments revealed an effective reactivation of a luciferase reporter gene from the psoralen-damaged plasmid in the XPF cells. The results obtained from the in vitro DNA repair experiments demonstrated that the XPF nuclear extract is normal in introducing dual incisions during the nucleotide excision repair process. These results suggest that the XPF protein has important roles in the psoralen ICL-mediated DNA repair and mutagenesis.
Collapse
MESH Headings
- Base Sequence
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cells, Cultured/radiation effects
- Cross-Linking Reagents/pharmacology
- DNA Adducts/metabolism
- DNA Damage
- DNA Repair/genetics
- DNA Repair/physiology
- DNA, Complementary/genetics
- DNA, Recombinant/drug effects
- DNA, Recombinant/genetics
- DNA, Recombinant/radiation effects
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/radiation effects
- Genes, Reporter
- Genes, Suppressor
- Genes, Synthetic/drug effects
- Genes, Synthetic/radiation effects
- Humans
- Luciferases/biosynthesis
- Luciferases/genetics
- Molecular Sequence Data
- Mutagenesis
- Mutagenesis, Site-Directed
- Oligonucleotides/pharmacology
- Photochemistry
- Plasmids/drug effects
- Plasmids/radiation effects
- RNA, Transfer/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Transfection
- Trioxsalen/analogs & derivatives
- Trioxsalen/pharmacology
- Ultraviolet Rays
- Xeroderma Pigmentosum/genetics
- Xeroderma Pigmentosum/metabolism
- Xeroderma Pigmentosum/pathology
Collapse
Affiliation(s)
- Zhiwen Chen
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
17
|
Carbone GM, McGuffie E, Napoli S, Flanagan CE, Dembech C, Negri U, Arcamone F, Capobianco ML, Catapano CV. DNA binding and antigene activity of a daunomycin-conjugated triplex-forming oligonucleotide targeting the P2 promoter of the human c-myc gene. Nucleic Acids Res 2004; 32:2396-410. [PMID: 15121897 PMCID: PMC419437 DOI: 10.1093/nar/gkh527] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Triplex-forming oligonucleotides (TFO) that bind DNA in a sequence-specific manner might be used as selective repressors of gene expression and gene-targeted therapeutics. However, many factors, including instability of triple helical complexes in cells, limit the efficacy of this approach. In the present study, we tested whether covalent linkage of a TFO to daunomycin, which is a potent DNA-intercalating agent and anticancer drug, could increase stability of the triple helix and activity of the oligonucleotide in cells. The 11mer daunomycin-conjugated GT (dauno-GT11) TFO targeted a sequence upstream of the P2 promoter, a site known to be critical for transcription of the c-myc gene. Band-shift assays showed that the dauno-GT11 formed triplex DNA with enhanced stability compared to the unmodified TFO. Band shift and footprinting experiments demonstrated that binding of dauno-GT11 was highly sequence-specific with exclusive binding to the 11 bp target site in the c-myc promoter. The daunomycin-conjugated TFO inhibited transcription in vitro and reduced c-myc promoter activity in prostate and breast cancer cells. The daunomycin-conjugated TFO was taken up by cells with a distinctive intracellular distribution compared to free daunomycin. However, cationic lipid-mediated delivery was required for enhanced cellular uptake, nuclear localization and biological activity of the TFO in cells. Dauno-GT11 reduced transcription of the endogenous c-myc gene in cells, but did not affect expression of non-target genes, such as ets-1 and ets-2, which contained very similar target sequences in their promoters. Daunomycin-conjugated control oligonucleotides unable to form triplex DNA with the target sequence did not have any effect in these assays, indicating that daunomycin was not directly responsible for the activity of daunomycin-conjugated TFO. Thus, attachment of daunomycin resulted in increased triplex stability and biological activity of the 11mer GT-rich TFO without compromising its specificity. These results encourage further testing of this approach to develop novel antigene therapeutics.
Collapse
Affiliation(s)
- Giuseppina M Carbone
- Laboratory of Experimental Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Via Vela 6, 6500 Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Uil TG, Haisma HJ, Rots MG. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities. Nucleic Acids Res 2003; 31:6064-78. [PMID: 14576293 PMCID: PMC275457 DOI: 10.1093/nar/gkg815] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger proteins. These different types of designer molecules with their different principles of engineered sequence specificity are reviewed in this paper. Furthermore, we explore and discuss the potential of these molecules as therapeutic modulators of endogenous gene function, focusing on modulation by stable gene modification and by regulation of gene transcription.
Collapse
Affiliation(s)
- Taco G Uil
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
19
|
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to polypurine/polypyrimidine regions in DNA in a sequence-specific manner. The specificity of this binding raises the possibility of using triplex formation for directed genome modification, with the ultimate goal of repairing genetic defects in human cells. Several studies have demonstrated that treatment of mammalian cells with TFOs can provoke DNA repair and recombination, in a manner that can be exploited to introduce desired sequence changes. This review will summarize recent advances in this field while also highlighting major obstacles that remain to be overcome before the application of triplex technology to therapeutic gene repair can be achieved.
Collapse
Affiliation(s)
- Michael M Seidman
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
20
|
Nagatsugi F, Sasaki S, Miller PS, Seidman MM. Site-specific mutagenesis by triple helix-forming oligonucleotides containing a reactive nucleoside analog. Nucleic Acids Res 2003; 31:e31. [PMID: 12626730 PMCID: PMC152885 DOI: 10.1093/nar/gng031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The specific recognition of homopurine-homo pyrimidine regions in duplex DNA by triplex-forming oligonucleotides (TFOs) provides an attractive strategy for genetic manipulation. Alkylation of nucleobases with functionalized TFOs would have the potential for site-directed mutagenesis. Recently, we demonstrated that a TFO bearing 2-amino-6-vinylpurine derivative, 1, achieves triplex-mediated reaction with high selectivity toward the cytosine of the G-C target site. In this report, we have investigated the use of this reagent to target mutations to a specific site in a shuttle vector plasmid, which replicates in mammalian cells. TFOs bearing 1 produced adducts at the complementary position of 1 and thereby introduced mutations at that site during replication/repair of the plasmid in mammalian cells. Reagents that produce covalent cytosine modifications are relatively rare. These TFOs enable the preparation of templates carrying targeted cytosine adducts for in vitro and in vivo studies. The ability to target mutations may prove useful as a tool for studying DNA repair, and as a technique for gene therapy and genetic engineering.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, CREST (JST), Japan
| | | | | | | |
Collapse
|
21
|
Macris MA, Glazer PM. Transcription dependence of chromosomal gene targeting by triplex-forming oligonucleotides. J Biol Chem 2003; 278:3357-62. [PMID: 12431993 DOI: 10.1074/jbc.m206542200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) recognize and bind to specific DNA sequences and have been used to modify gene function in cells. To study factors that might influence triplex formation at chromosomal sites in mammalian cells, we developed a restriction protection assay to detect triplex-directed psoralen crosslinks in genomic DNA prepared from TFO-transfected cells. Using this assay, we detected binding of a G-rich TFO to a chromosomal site even in the absence of transcription when high concentrations of the TFO were used for transfection. However, experimental induction of transcription at the target site, via an ecdysone-responsive promoter, resulted in substantial increases (3-fold or more) in target site crosslinking, especially at low TFO concentrations. When RNA polymerase activity was inhibited, even in the ecdysone-induced cells, the level of TFO binding was significantly decreased, indicating that transcription through the target region, and not just transcription factor binding, is necessary for the enhanced chromosomal targeting by TFOs. These findings provide evidence that physiologic activity at a chromosomal target site can influence its accessibility to TFOs and suggest that gene targeting by small molecules may be most effective at highly expressed chromosomal loci.
Collapse
Affiliation(s)
- Margaret A Macris
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
22
|
Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 2002; 161:1169-75. [PMID: 12136019 PMCID: PMC1462166 DOI: 10.1093/genetics/161.3.1169] [Citation(s) in RCA: 570] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc-finger nucleases (ZFNs) are hybrids between a nonspecific DNA-cleavage domain and a DNA-binding domain composed of Cys(2)His(2) zinc fingers. Because zinc fingers can be manipulated to recognize a broad range of sequences, these enzymes have the potential to direct cleavage to arbitrarily chosen targets. We have tested this idea by designing a pair of ZFNs that recognize a unique site in the yellow (y) gene of Drosophila. When these nucleases were expressed in developing larvae, they led to somatic mutations specifically in the y gene. These somatic mosaics were observed in approximately one-half of the males expressing both nucleases. Germline y mutations were recovered from 5.7% of males, but from none of the females, tested. DNA sequences were determined and showed that all of the mutations were small deletions and/or insertions located precisely at the designed target. These are exactly the types of alterations expected from nonhomologous end joining (NHEJ) following double-strand cleavage of the target. This approach promises to permit generation of directed mutations in many types of cells and organisms.
Collapse
Affiliation(s)
- Marina Bibikova
- Department of Biochemistry, University of Utah School of Medicine, Medical Research and Education Building, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
23
|
Vasquez KM, Christensen J, Li L, Finch RA, Glazer PM. Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proc Natl Acad Sci U S A 2002; 99:5848-53. [PMID: 11972036 PMCID: PMC122865 DOI: 10.1073/pnas.082193799] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) plays a central role in maintaining genomic integrity by detecting and repairing a wide variety of DNA lesions. Xeroderma pigmentosum complementation group A protein (XPA) is an essential component of the repair machinery, and it is thought to be involved in the initial step as a DNA damage recognition and/or confirmation factor. Human replication protein A (RPA) and XPA have been reported to interact to form a DNA damage recognition complex with greater specificity for damaged DNA than XPA alone. The mechanism by which these two proteins recognize such a wide array of structures resulting from different types of DNA damage is not known. One possibility is that they recognize a common feature of the lesions, such as distortions of the helical backbone. We have tested this idea by determining whether human XPA and RPA proteins can recognize the helical distortions induced by a DNA triple helix, a noncanonical DNA structure that has been shown to induce DNA repair, mutagenesis, and recombination. We measured binding of XPA and RPA, together or separately, to substrates containing triplexes with three, two, or no strands covalently linked by psoralen conjugation and photoaddition. We found that RPA alone recognizes all covalent triplex structures, but also forms multivalent nonspecific DNA aggregates at higher concentrations. XPA by itself does not recognize the substrates, but it binds them in the presence of RPA. Addition of XPA decreases the nonspecific DNA aggregate formation. These results support the hypothesis that the NER machinery is targeted to helical distortions and demonstrate that RPA can recognize damaged DNA even without XPA.
Collapse
Affiliation(s)
- Karen M Vasquez
- Department of Carcinogenesis, University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Park Road 1-C, Smithville, TX 78957, USA.
| | | | | | | | | |
Collapse
|
24
|
Vasquez KM, Dagle JM, Weeks DL, Glazer PM. Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides. J Biol Chem 2001; 276:38536-41. [PMID: 11504712 DOI: 10.1074/jbc.m101797200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) bind specifically to duplex DNA and provide a strategy for site-directed modification of genomic DNA. Recently we demonstrated TFO-mediated targeted gene knockout following systemic administration in animals. However, a limitation to this approach is the requirement for a polypurine tract (typically 15-30 base pairs (bp)) in the target DNA to afford high affinity third strand binding, thus restricting the number of sites available for effective targeting. To overcome this limitation, we have investigated the ability of chemically modified TFOs to target a short (10 bp) site in a chromosomal locus in mouse cells and induce site-specific mutations. We report that replacement of the phosphodiester backbone with cationic phosphoramidate linkages, either N,N-diethylethylenediamine or N,N-dimethylaminopropylamine, in a 10-nucleotide, psoralen-conjugated TFO confers substantial increases in binding affinity in vitro and is required to achieve targeted modification of a chromosomal reporter gene in mammalian cells. The triplex-directed, site-specific induction of mutagenesis in the chromosomal target was charge- and modification-dependent, with the activity of N,N-diethylethylenediamine > N,N-dimethylaminopropylamine phosphodiester, resulting in 10-, 6-, and <2-fold induction of target gene mutagenesis, respectively. Similarly, N,N-diethylethylenediamine and N,N-dimethylaminopropylamine TFOs were found to enhance targeting at a 16-bp G:C bp-rich target site in a chromatinized episomal target in monkey COS cells, although this longer site was also targetable by a phosphodiester TFO. These results indicate that replacement of phosphodiester bonds with positively charged N,N-diethylethylenediamine linkages enhances intracellular activity and allows targeting of relatively short polypurine sites, thereby substantially expanding the number of potential triplex target sites in the genome.
Collapse
Affiliation(s)
- K M Vasquez
- Department of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | |
Collapse
|
25
|
Casey BP, Glazer PM. Gene targeting via triple-helix formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:163-92. [PMID: 11525382 DOI: 10.1016/s0079-6603(01)67028-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A report on a recent workshop entitled "Gene-Targeted Drugs: Function and Delivery" conveys a justified optimism for the eventual feasibility and therapeutic benefit of gene-targeting strategies. Although multiple approaches are being explored, this chapter focuses primarily on the uses of triplex-forming oligonucleotides (TFOs). TFOs are molecules that bind in the major groove of duplex DNA and by so doing can produce triplex structures. They bind to the purine-rich strand of the duplex through Hoogsteen or reverse Hoogsteen hydrogen bonding. They exist in two sequence motifs, either pyrimidine or purine. Improvements in delivery of these TFOs are reducing the quantities required for an effective intracellular concentration. New TFO chemistries are increasing the half-life of these oligos and expanding the range of sequences that can be targeted. Alone or conjugated to active molecules, TFOs have proven to be versatile agents both in vitro and in vivo. Foremost, TFOs have been employed in antigene strategies as an alternative to antisense technology. Conversely, they are also being investigated as possible upregulators of transcription. TFOs have also been shown to produce mutagenic events, even in the absence of tethered mutagens. TFOs can increase rates of recombination between homologous sequences in close proximity. Directed sequence changes leading to gene correction have been achieved through the use of TFOs. Because it is theorized that these modifications are due to the instigation of DNA repair mechanisms, an important area of TFO research is the study of triple-helix recognition and repair.
Collapse
Affiliation(s)
- B P Casey
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
26
|
Biet E, Maurisse R, Dutreix M. Stimulation of RecA-mediated D-loop formation by oligonucleotide-directed triple-helix formation: guided homologous recombination (GOREC). Biochemistry 2001; 40:1779-86. [PMID: 11327840 DOI: 10.1021/bi001605a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligonucleotide-directed triple helix formation provides an elegant rational basis for gene-specific DNA targeting and has been widely used to interfere with gene expression ("antigene" strategies) and as a molecular tool for biological studies. Various strategies have been developed to introduce sequence modifications in genomes. However, the low efficiency of the overall process in eucaryotic cells impairs efficient recovery of recombinant genomes. Since one limiting step in homologous recombination is the targeting to the homologous sequence, we have tested the contribution of an oligonucleotide-directed triple helix formation on the RecA-dependent association of an oligonucleotide and its homologous target on duplex DNA (D-loop formation). For this study, the recombinant ssDNA fragment was noncovalently associated to a triple helix-forming oligonucleotide. The physicochemical and biochemical characteristics of the triple helix and D-loop structures formed by the complex molecules in the presence or in the absence of RecA protein were determined. We have demonstrated that the triple helix-forming oligonucleotide increases the efficiency of D-loop formation and the RecA protein speeds up also the triple helix formation. The so-called "GOREC" (for guided homologous recombination) approach can be developed as a novel tool to improve the efficiency of directed mutagenesis and gene alteration in living organisms.
Collapse
Affiliation(s)
- E Biet
- Laboratoire de Biophysique, UMR 8646 CNRS-Muséum National d'Histoire Naturelle, INSERM U201, 43 rue Cuvier, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
27
|
Abstract
An oligonucleotide composed of a contiguous stretch of RNA and DNA residues has been developed to facilitate correction of single-base mutations of episomal and chromosomal targets in mammalian cells. We demonstrated that an RNA-DNA oligonucleotide (RDO) induced heritable correction of a point mutation in the tyrosinase gene at the level of genomic sequence, protein, and phenotype of albino mouse melanocytes and albino mouse skin. Such RDOs might hold promise as a therapeutic method for the treatment of skin diseases. However, the general application of RDO technology has been hampered by the absence of a standardized system to measure the gene conversion in a particular cell type in a rapid and reproducible manner. For this purpose, we established an in vitro system in which nuclear extracts from mammalian cells showed RDO-mediated gene correction of a shuttle vector containing a point mutation in the E. coli beta-galactosidase gene. This sensitive and convenient assay has been utilized to optimize the design of RDOs and to compare frequencies of gene conversion among different cell types. The general application of the RDO for site-specific gene correction or mutation would benefit from such mechanistic studies.
Collapse
Affiliation(s)
- O Igoucheva
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | |
Collapse
|
28
|
Upegui-Gonzalez LC, François JC, Ly A, Trojan J. The approach of triple helix formation in control of gene expression and the treatment of tumors expressing IGF-I. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:319-32. [PMID: 10810636 DOI: 10.1007/0-306-46817-4_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
29
|
Barre FX, Ait-Si-Ali S, Giovannangeli C, Luis R, Robin P, Pritchard LL, Helene C, Harel-Bellan A. Unambiguous demonstration of triple-helix-directed gene modification. Proc Natl Acad Sci U S A 2000; 97:3084-8. [PMID: 10716704 PMCID: PMC16196 DOI: 10.1073/pnas.97.7.3084] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Triple-helix-forming oligonucleotides (TFOs), which can potentially modify target genes irreversibly, represent promising tools for antiviral therapies. However, their effectiveness on endogenous genes has yet to be unambiguously demonstrated. To monitor endogenous gene modification by TFOs in a yeast model, we inactivated an auxotrophic marker gene by inserting target sequences of interest into its coding region. The genetically engineered yeast cells then were treated with psoralen-linked TFOs followed by UV irradiation, thus generating highly mutagenic covalent crosslinks at the target site whose repair could restore gene function; the number of revertants and spectrum of mutations generated were quantified. Results showed that a phosphoramidate TFO indeed reaches its target sequence, forms crosslinks, and generates mutations at the expected site via a triplex-mediated mechanism: (i) under identical conditions, no mutations were generated by the same TFO at two other loci in the target strain, nor in an isogenic control strain carrying a modified target sequence incapable of supporting triple-helix formation; (ii) for a given target sequence, whether the triplex was formed in vivo on an endogenous gene or in vitro on an exogenous plasmid, the nature of the mutations generated was identical, and consistent with the repair of a psoralen crosslink at the target site. Although the mutation efficiency was probably too low for therapeutic applications, our results confirm the validity of the triple-helix approach and provide a means of evaluating the effectiveness of new chemically modified TFOs and analogs.
Collapse
Affiliation(s)
- F X Barre
- Centre National de la Recherche Scientifique UPR 9079, 7 rue Guy Moquet, B.P.8, 94801 Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Triple-helix-forming oligonucleotides (TFOs), which can potentially modify target genes irreversibly, represent promising tools for antiviral therapies. However, their effectiveness on endogenous genes has yet to be unambiguously demonstrated. To monitor endogenous gene modification by TFOs in a yeast model, we inactivated an auxotrophic marker gene by inserting target sequences of interest into its coding region. The genetically engineered yeast cells then were treated with psoralen-linked TFOs followed by UV irradiation, thus generating highly mutagenic covalent crosslinks at the target site whose repair could restore gene function; the number of revertants and spectrum of mutations generated were quantified. Results showed that a phosphoramidate TFO indeed reaches its target sequence, forms crosslinks, and generates mutations at the expected site via a triplex-mediated mechanism: (i) under identical conditions, no mutations were generated by the same TFO at two other loci in the target strain, nor in an isogenic control strain carrying a modified target sequence incapable of supporting triple-helix formation; (ii) for a given target sequence, whether the triplex was formed in vivo on an endogenous gene or in vitro on an exogenous plasmid, the nature of the mutations generated was identical, and consistent with the repair of a psoralen crosslink at the target site. Although the mutation efficiency was probably too low for therapeutic applications, our results confirm the validity of the triple-helix approach and provide a means of evaluating the effectiveness of new chemically modified TFOs and analogs.
Collapse
|
31
|
Xu XS, Glazer PM, Wang G. Activation of human gamma-globin gene expression via triplex-forming oligonucleotide (TFO)-directed mutations in the gamma-globin gene 5' flanking region. Gene 2000; 242:219-28. [PMID: 10721715 DOI: 10.1016/s0378-1119(99)00522-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human beta-globin disorders, such as sickle cell anemia and beta-thalassemia, are relatively common genetic diseases cause by mutations in the beta-globin gene. Increasing gamma-globin gene expression has been found to greatly reduce the disease symptom. However, the gamma-globin gene is developmentally regulated and normally expressed at high levels only during the fetal stage of human development. We have explored the possibility of activating the gamma-globin gene expression by triplex-forming oligonucleotide (TFO)-directed targeted mutagenesis. Using a psoralen-conjugated TFO designed to bind to a site overlapping with an Oct-1 binding site at the -280 region of the gamma-globin gene, targeted mutagenesis of the Oct-1 binding site has been achieved by transfecting the in-vitro-formed plasmid-oligo complex into human normal fibroblast (NF) cells. The mutation frequency at the target site was estimated to be 20% by direct DNA sequencing analysis. In-vitro protein binding assays indicated that these mutations reduced Oct-1 binding to the target site. In-vivo gene expression assays demonstrated activation of gamma-globin gene expression from these mutations in mouse erythroleukemia (MEL) cells. The levels of the gamma-globin gene expression increased by as much as fourfold in mutants with single base changes. These results suggest that the -280 region of the Agamma-globin gene negatively regulates the gamma-globin gene expression, and mutations at the Oct-1 binding site can lead to activation of the gamma-globin gene and generate the hereditary persistence of fetal hemoglobin (HPFH) condition. This study may provide a novel approach for gene therapy of sickle cell disease. The data may also have implications in gene therapy for other diseases including genetic diseases and cancers by introducing mutations into transcription factor binding sites to alter the levels of target gene expression.
Collapse
Affiliation(s)
- X S Xu
- Department of Structural and Cellular, University of South Alabama College of Medicine, Mobile 36688, USA
| | | | | |
Collapse
|
32
|
Mezhevaya K, Winters TA, Neumann RD. Gene targeted DNA double-strand break induction by (125)I-labeled triplex-forming oligonucleotides is highly mutagenic following repair in human cells. Nucleic Acids Res 1999; 27:4282-90. [PMID: 10518622 PMCID: PMC148705 DOI: 10.1093/nar/27.21.4282] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A parallel binding motif 16mer triplex-forming oligonucleotide (TFO) complementary to a polypurine-polypyrimidine target region near the 3'-end of the SupF gene of plasmid pSP189 was labeled with [5-(125)I]dCMP at position 15. Following triplex formation and decay accumulation, radiation-induced site-specific double-strand breaks (DSBs) were produced in the pSP189 SupF gene. Bulk damaged DNA and the isolated site-specific DSB-containing DNA were separately transfected into human WI38VA13 cells and allowed to repair prior to recovery and analysis of mutants. Bulk damaged DNA had a relatively low mutation frequency of 2.7 x 10(-3). In contrast, the isolated linear DNA containing site-specific DSBs had an unusually high mutation frequency of 7.9 x 10(-1). This was nearly 300-fold greater than that observed for the bulk damaged DNA mixture, and >1.5 x 10(4)-fold greater than background. The mutation spectra displayed a high proportion of deletion mutants targeted to the(125)I binding position within the SupF gene for both bulk damaged DNA and isolated linear DNA. Both spectra were characterized by complex mutations with mixtures of changes. However, mutations recovered from the linear site-specific DSB-containing DNA presented a much higher proportion of complex deletion mutations.
Collapse
Affiliation(s)
- K Mezhevaya
- Department of Nuclear Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
33
|
Chan PP, Lin M, Faruqi AF, Powell J, Seidman MM, Glazer PM. Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide. J Biol Chem 1999; 274:11541-8. [PMID: 10206960 DOI: 10.1074/jbc.274.17.11541] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to polypurine/polypyrimidine regions in DNA in a sequence-specific manner and provoke DNA repair. We have coupled a TFO to a short donor fragment of DNA that shares homology to a selected gene as a strategy to mediate gene targeting and correction. In this bifunctional oligonucleotide, the TFO domain is designed to bind the target gene and stimulate repair and recombination, with the donor domain positioned for recombination and information transfer. A series of these tethered donor-TFO (TD-TFO) molecules with donor domains of 40-44 nucleotides and TFO domains in both the purine and pyrimidine triplex motifs were tested for their ability to mediate either gene correction or mutation of a supF reporter gene contained in a SV40 shuttle vector in mammalian cells. In vitro binding assays revealed that the attachment of the donor domain via a flexible linker did not significantly alter the binding affinity of the TFO domain for the polypurine site in the supF target DNA, with equilibrium dissociation constants in the 10(-8) M range. Experiments in which the target vector and the linked TD-TFOs were pre-incubated in vitro and co-transfected into cells led to conversion frequencies approaching 1%, 4-fold greater than with the two domains unlinked. When cells that had been previously transfected with the SV40 vector were electroporated with the TD-TFOs, frequencies of base pair-specific gene correction were seen in the range of 0.04%, up to 50-fold over background and at least 3-fold over either domain alone or in unlinked combinations. Sequence conversion by the TD-TFOs was achieved using either single- or double-stranded donor domains and either triplex motif. Substitution of either domain in the TD-TFO with control sequences yielded reagents with diminished activity, as did mixtures of unlinked TFO and donor DNA segments. The boost in activity provided by the attached TFO domain was reduced in cells deficient in the nucleotide excision repair factor XPA but was restored in a subclone of these cells expressing XPA cDNA, suggesting a role for nucleotide excision repair in the pathway of triple helix-stimulated gene conversion. The ability to correct or mutate a specific target site in mammalian cells using the TD-TFO strategy may provide a useful tool for research and possibly for therapeutic applications.
Collapse
Affiliation(s)
- P P Chan
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lacroix L, Lacoste J, Reddoch JF, Mergny JL, Levy DD, Seidman MM, Matteucci MD, Glazer PM. Triplex formation by oligonucleotides containing 5-(1-propynyl)-2'-deoxyuridine: decreased magnesium dependence and improved intracellular gene targeting. Biochemistry 1999; 38:1893-901. [PMID: 10026270 DOI: 10.1021/bi982290q] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligonucleotides capable of sequence-specific triple helix formation have been proposed as DNA binding ligands useful for modulation of gene expression and for directed genome modification. However, the effectiveness of such triplex-forming oligonucleotides (TFOs) depends on their ability to bind to their target sites within cells, and this can be limited under physiologic conditions. In particular, triplex formation in the pyrimidine motif is favored by unphysiologically low pH and high magnesium concentrations. To address these limitations, a series of pyrimidine TFOs were tested for third-strand binding under a variety of conditions. Those containing 5-(1-propynyl)-2'-deoxyuridine (pdU) and 5-methyl-2'-deoxycytidine (5meC) showed superior binding characteristics at neutral pH and at low magnesium concentrations, as determined by gel mobility shift assays and thermal dissociation profiles. Over a range of Mg2+ concentrations, pdU-modified TFOs formed more stable triplexes than did TFOs containing 2'-deoxythymidine. At 1 mM Mg2+, a DeltaTm of 30 degreesC was observed for pdU- versus T-containing 15-mers (of generic sequence 5' TTTTCTTTTTTCTTTTCT 3') binding to the cognate A:T bp rich site, indicating that pdU-containing TFOs are capable of substantial binding even at physiologically low Mg2+ concentrations. In addition, the pdU-containing TFOs were superior in gene targeting experiments in mammalian cells, yielding 4-fold higher mutation frequencies in a shuttle vector-based mutagenesis assay designed to detect mutations induced by third-strand-directed psoralen adducts. These results suggest the utility of the pdU substitution in the pyrimidine motif for triplex-based gene targeting experiments.
Collapse
Affiliation(s)
- L Lacroix
- Department of Therapeutic Radiology and Genetics, Yale University, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Barre FX, Giovannangeli C, Hélène C, Harel-Bellan A. Covalent crosslinks introduced via a triple helix-forming oligonucleotide coupled to psoralen are inefficiently repaired. Nucleic Acids Res 1999; 27:743-9. [PMID: 9889268 PMCID: PMC148242 DOI: 10.1093/nar/27.3.743] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Triple helix-forming oligonucleotides (TFOs) represent potentially powerful tools to artificially modulate gene activity. In particular, they can be used to specifically introduce a lesion into a selected target sequence: interstrand crosslinks and monoadducts can be introduced via TFOs coupled to psoralen. The efficiency of these strategies depends on the cell ability to repair these lesions, an issue which is still controversial. Here we show, using psoralen-coupled TFOs and the yeast as a convenient cellular test system, that interstrand crosslinks are quantitatively poorly repaired, resulting in an efficient modification of target gene activity. In addition, these lesions result in the introduction of mutations in a high proportion of cells. We show that these mutations are generated by the Error-Prone Repair pathway, alone or in combination with Nucleotide Excision Repair. Taken together, these results suggest that TFOs coupled to psoralen could be used to inactivate a gene with significant efficiency.
Collapse
Affiliation(s)
- F X Barre
- CNRS UPR 9079, Institut de Recherche sur le Cancer, 7 rue Guy Moquet, 94801 Villejuif, France andLaboratoire de Biophysique, INSERM U 201, CNRS URA481, MHN, Paris, France
| | | | | | | |
Collapse
|
36
|
|
37
|
Raha M, Lacroix L, Glazer PM. Mutagenesis Mediated by Triple Helix–Forming Oligonucleotides Conjugated to Psoralen: Effects of Linker Arm Length and Sequence Context. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb05201.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Gamper HB, Kutyavin IV, Rhinehart RL, Lokhov SG, Reed MW, Meyer RB. Modulation of Cm/T, G/A, and G/T triplex stability by conjugate groups in the presence and absence of KCl. Biochemistry 1997; 36:14816-26. [PMID: 9398203 DOI: 10.1021/bi971339+] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apparent equilibrium association constants were determined by gel mobility shift analysis for triple strand formation between a duplex target containing a 21 base long A-rich homopurine run and several end-modified C(m)/T (pyrimidine motif; C(m) = 5-methylcytosine), G/A (purine motif), and G/T (purine-pyrimidine motif) triplex-forming oligonucleotides (TFOs). Incubations were carried out for 24 h at 37 degrees C in 20 mM HEPES, pH 7.2, 10 mM MgCl2, and 1 mM spermine. The purine motif triplex was the most stable (Ka = 6.2 x 10(8) M-1) even though the TFO self-associated as a linear duplex. Conjugation of a terminal hexanol or cholesterol group to the G/A-containing TFO reduced triplex stability by 1.6- or 13-fold, whereas an aminohexyl group or intercalating agent (acridine or psoralen) increased triplex stability by 1.3- or 13-fold. These end groups produced similar effects in C(m)/T and G/T triplexes, although the magnitude of the effect sometimes differed. Addition of 140 mM KCl to mimic physiological conditions decreased stability of the G/A triplex by 1900-fold, making it less stable than the C(m)/T triplex. The inhibitory effect of KCl on G/A triplex formation could be partially compensated for by conjugating the TFO to an intercalating agent (30-350-fold stabilization) or by adding the triplex selective intercalator coralyne (1000-fold stabilization). Although the G/T triplex responded similarly to these agents, the stability of the C(m)/T triplex was unaffected by the presence of coralyne and was only enhanced 1.4-2.8-fold when the TFO was linked to an intercalating agent. In physiological buffer supplemented with 40 microM coralyne, the G/A triplex (Ka = 3.0 x 10(8) M-1) was more stable than the C(m)/T and G/T triplexes by factors of 300 and 12, respectively.
Collapse
Affiliation(s)
- H B Gamper
- Epoch Pharmaceuticals, Inc., Bothell, Washington 98021, USA
| | | | | | | | | | | |
Collapse
|
39
|
Segal DJ, Faruqi AF, Glazer PM, Carroll D. Processing of targeted psoralen cross-links in Xenopus oocytes. Mol Cell Biol 1997; 17:6645-52. [PMID: 9343428 PMCID: PMC232518 DOI: 10.1128/mcb.17.11.6645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Psoralen cross-links have been shown to be both mutagenic and recombinagenic in bacterial, yeast, and mammalian cells. Double-strand breaks (DSBs) have been implicated as intermediates in the removal of psoralen cross-links. Recent work has suggested that site-specific mutagenesis and recombination might be achieved through the use of targeted psoralen adducts. The fate of plasmids containing psoralen adducts was evaluated in Xenopus oocytes, an experimental system that has well-characterized recombination capabilities and advantages in the analysis of intermediates in DNA metabolism. Psoralen adducts were delivered to a specific site by a triplex-forming oligonucleotide. These lesions are clearly recognized and processed in oocytes, since mutagenesis was observed at the target site. The spectrum of induced mutations was compared with that found in similar studies in mammalian cells. Plasmids carrying multiple random adducts were preferentially degraded, perhaps due to the introduction of DSBs. However, when DNAs carrying site-specific adducts were examined, no plasmid loss was observed and removal of cross-links was found to be very slow. Sensitive assays for DSB-dependent homologous recombination were performed with substrates with one or two cross-link sites. No adduct-stimulated recombination was observed with a single lesion, and only very low levels were observed with paired lesions, even when a large proportion of the cross-links was removed by the oocytes. We conclude that DSBs or other recombinagenic structures are not efficiently formed at psoralen adducts in Xenopus oocytes. While psoralen is not a promising reagent for stimulating site-specific recombination, it is effective in inducing targeted mutations.
Collapse
Affiliation(s)
- D J Segal
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | | | |
Collapse
|
40
|
Belousov ES, Afonina IA, Podyminogin MA, Gamper HB, Reed MW, Wydro RM, Meyer RB. Sequence-specific targeting and covalent modification of human genomic DNA. Nucleic Acids Res 1997; 25:3440-4. [PMID: 9254701 PMCID: PMC146908 DOI: 10.1093/nar/25.17.3440] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We compare two techniques which enable selective, nucleotide-specific covalent modification of human genomic DNA, as assayed by quantitative ligation- mediated PCR. In the first, a purine motif triplex-forming oligonucleotide with a terminally appended chlorambucil was shown to label a target guanine residue adjacent to its binding site in 80% efficiency at 0.5 microM. Efficiency was higher in the presence of the triplex-stabilizing intercalator coralyne. In the second method, an oligonucleotide targeting a site containing all four bases and bearing chlorambucil on an interior base was shown to efficiently react with a specific nucleotide in the target sequence. The targeted sequence in these cases was in the DQbeta1*0302 allele of the MHC II locus.
Collapse
Affiliation(s)
- E S Belousov
- Epoch Pharmaceuticals, Inc., 1725 220th Street SE, #104, Bothell, WA 98021, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Beaulieu M, Barbeau B, Rassart E. Triplex-forming oligonucleotides with unexpected affinity for a nontargeted GA repeat sequence. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:125-30. [PMID: 9149848 DOI: 10.1089/oli.1.1997.7.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined the affinity and the specificity of triplex formation for different purine ODNs directed against two portions of a purine sequence derived from the mouse fli-1 gene. As expected, the ODNs antiparallel to the purine strand of their target can form triplex DNA. One parallel ODN showed binding to its target sequence. We explain this unusual binding by an interaction of the ODN with a GA repetition present in the sequence. We further examined the interaction of this ODN with a target composed of 14 GA repetitions. Unexpectedly, one ODN shows higher affinity for a partially complementary GA target relative to its completely complementary target. For another ODN, the binding to the GA target is weaker and might involve skipping of bases in a way that resembles alternate strand triplex formation.
Collapse
Affiliation(s)
- M Beaulieu
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
42
|
Faruqi AF, Seidman MM, Segal DJ, Carroll D, Glazer PM. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol Cell Biol 1996; 16:6820-8. [PMID: 8943337 PMCID: PMC231685 DOI: 10.1128/mcb.16.12.6820] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy has been hindered by the low frequency of homologous recombination in mammalian cells. To stimulate recombination, we investigated the use of triple-helix-forming oligonucleotides (TFOs) to target DNA damage to a selected site within cells. By treating cells with TFOs linked to psoralen, recombination was induced within a simian virus 40 vector carrying two mutant copies of the supF tRNA reporter gene. Gene conversion events, as well as mutations at the target site, were also observed. The variety of products suggests that multiple cellular pathways can act on the targeted damage, and data showing that the triple helix can influence these pathways are presented. The ability to specifically induce recombination or gene conversion within mammalian cells by using TFOs may provide a new research tool and may eventually lead to novel applications in gene therapy.
Collapse
Affiliation(s)
- A F Faruqi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | |
Collapse
|
43
|
Guieysse AL, Praseuth D, Grigoriev M, Harel-Bellan A, Hélène C. Detection of covalent triplex within human cells. Nucleic Acids Res 1996; 24:4210-6. [PMID: 8932374 PMCID: PMC146220 DOI: 10.1093/nar/24.21.4210] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Triple helix-forming oligonucleotides covalently linked to psoralen can be specifically cross-linked to both strands of DNA at the triplex-duplex junction following UV irradiation. We have previously shown that a 15mer psoralen-oligonucleotide conjugate forming a triple helix on the promoter of the alpha subunit gene of the interleukin-2 receptor inhibits transcription of reporter plasmids transfected into living cells after irradiation. In the present work, we directly demonstrate covalent triple helix formation at the target site inside cells. A primer extension assay using Taq polymerase was developed to quantitate the DNA which had reacted with the psoralen of the triple helix-forming oligonucleotide. Photoaddition of the psoralen at the DNA target site was demonstrated, not only when the preformed triplex was electroporated inside cells, but also when the oligonucleotide was added to the culture medium after plasmid electroporation and before irradiation of the cells.
Collapse
Affiliation(s)
- A L Guieysse
- Laboratoire de Biophysique, INSERM U.201, CNRS URA 481, Paris, France.
| | | | | | | | | |
Collapse
|
44
|
Vasquez KM, Wensel TG, Hogan ME, Wilson JH. High-efficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene. Biochemistry 1996; 35:10712-9. [PMID: 8718860 DOI: 10.1021/bi960881f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Targeting damage to specific sites in the genome represents an attractive approach to manipulating gene function in mammalian cells. To test the applicability of triple-helix formation as a means for achieving precisely timed site-specific damage within a mammalian gene, a triplex-forming oligodeoxyribonucleotide (TFO) that binds with high affinity to a specific site within the hamster adenine phosphoribosyltransferase (APRT) gene was modified with the photochemically reactive psoralen derivative 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT). The modified TFO, psorTFO1, bound with high affinity to a target site within intron 1 of the APRT gene. Upon irradiation, photomonoadducts (i.e., covalent adducts of psorTFO1 to one strand of the target duplex) were formed with high efficiency (approximately 50%). Introduction of 5'-TpA sequences (the preferred site for psoralen-induced photo-cross-links) at or near the triplex junction leads to increased efficiency of total photoadduct formation and to efficient formation of products that had the electrophoretic mobility on denaturing PAGE expected for three-stranded photo-cross-links (i.e., products containing psorTFO1 covalently linked to both strands of the duplex). Their identities as cross-links were verified by (1) identical electrophoretic mobility of products formed with either duplex strand radiolabeled and (2) coprecipitation of the radiolabeled duplex strand with its complementary biotinylated strand following denaturation. In addition, the cross-links were completely reversible upon irradiation at 254 nm, as expected for psoralen-mediated cross-links. The yield and distribution of photoadducts depended on 5'-TpA position. The most efficient photoadduct formation (approximately 90%) and photo-cross-link formation (approximately 90% of total photoadducts) were observed for a 5'-TpA adjacent to the triplex junction, with significant, but lower, cross-linking efficiency within three base pairs of the junction. Molecular models of the psoralen-conjugated triplex with its six-carbon linker suggested a simple explanation for this distance dependence: facile intercalation near the triplex/duplex junction, with increasing strain required for intercalation at more distant sites. These results indicate that psorTFO1 allows for DNA damage with high precision and high efficiency, and the likely proportion of monoadducts and cross-links can be estimated from the target sequence.
Collapse
Affiliation(s)
- K M Vasquez
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
45
|
Podyminogin MA, Meyer RB, Gamper HB. RecA-catalyzed, sequence-specific alkylation of DNA by cross-linking oligonucleotides. Effects of length and nonhomologous base substitutions. Biochemistry 1996; 35:7267-74. [PMID: 8679556 DOI: 10.1021/bi9529465] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Oligodeoxyribonucleotides (ODNs) bearing the reactive nitrogen mustard chlorambucil have been used as sequence-directed affinity labeling reagents to investigate the length and homology requirements for RecA-catalyzed alkylation of double-stranded DNA. The cross-linkage reaction, which takes place at the N-7 position of a targeted complementary strand guanine following strand exchange, was highly sequence specific with both a 272 bp DNA fragment and a linearized plasmid. Alkylation required the ODN to be at least 26 nucleotides long and to possess homology to the target in the vicinity of the modification site. The extent of alkylation was improved by using longer ODNs, with a 50-mer giving over 50% reaction. Mismatches inhibited alkylation when they perturbed the structure of the strand exchange product near the targeted guanine. Longer heterology also inhibited alkylation when it prevented strand exchange. Our inability to detect cross-linkage in stable synaptic complexes unable to undergo complete strand exchange is best explained by a model for homologous alignment in which the presynaptic filament approaches from the minor groove of the duplex. Since the N-7 position of guanine is in the major groove, it is inaccessible to the tethered chlorambucil group of the ODN during the search for homology. The reaction specificity of chlorambucil-bearing ODNs suggests that they may have general use as recombinase-mediated DNA targeting agents.
Collapse
|
46
|
Pfannschmidt C, Schaper A, Heim G, Jovin TM, Langowski J. Sequence-specific labeling of superhelical DNA by triple helix formation and psoralen crosslinking. Nucleic Acids Res 1996; 24:1702-9. [PMID: 8649989 PMCID: PMC145834 DOI: 10.1093/nar/24.9.1702] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Site-specific labeling of covalently closed circular DNA was achieved by using triple helix-forming oligonucleotides 10, 11 and 27 nt in length. The sequences consisted exclusively of pyrimidines (C and T) with a reactive psoralen at the 5'-end and a biotin at the 3'-end. The probes were directed to different target sites on the plasmids pUC18 (2686 bp), pUC18/4A (2799 bp) and pUC1 8/4A-H 1 (2530 bp). After triple helix formation at acid pH the oligonucleotides were photocrosslinked to the target DNAs via the psoralen moiety, endowing the covalent adduct with unconditional stability, e.g. under conditions unfavorable for preservation of the triplex, such as neutral pH. Complex formation was monitored after polyacrylamide gel electrophoresis by streptavidin-alkaline phosphatase (SAP)-induced chemiluminescence. The yield of triple helix increased with the molar ratio of oligonucleotide to target and the length of the probe sequence (27mer > 11mer). The covalent adduct DNA were visualized by scanning force microscopy (SFM) using avidin or streptavidin as protein tags for the biotin group on the oligonucleotide probes. We discuss the versatility of triple helix DNA complexes for studying the conformation of superhelical DNA.
Collapse
|
47
|
Raha M, Wang G, Seidman MM, Glazer PM. Mutagenesis by third-strand-directed psoralen adducts in repair-deficient human cells: high frequency and altered spectrum in a xeroderma pigmentosum variant. Proc Natl Acad Sci U S A 1996; 93:2941-6. [PMID: 8610147 PMCID: PMC39739 DOI: 10.1073/pnas.93.7.2941] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Psoralen-conjugated triple-helix-forming oligonucleotides have been used to generate site-specific mutations within mammalian cells. To investigate factors influencing the efficiency of oligonucleotide-mediated gene targeting, the processing of third-strand-directed psoralen adducts was compared in normal and repair-deficient human cells. An unusually high mutation frequency and an altered mutation pattern were seen in xeroderma pigmentosum variant (XPV) cells compared with normal, xeroderma pigmentosum group A (XPA), and Fanconi anemia cells. In XPV, targeted mutations were produced in the supF reporter gene carried in a simian virus 40 vector at a frequency of 30%, 3-fold above that in normal or Fanconi anemia cells and 6-fold above that in XPA. The mutations generated by targeted psoralen crosslinks and monoadducts in the XPV cells formed a pattern distinct from that in the other three cell lines, with mutations occurring not just at the damaged site but also at adjacent base pairs. Hence, the XPV cells may have an abnormality in trans-lesion bypass synthesis during repair and/or replication, implicating a DNA polymerase or an accessory factor as a basis of the defect in XPV. These results may help to elucidate the repair deficiency in XPV, and they raise the possibility that genetic manipulation via triplex-targeted mutagenesis may be enhanced by modulation of the XPV-associated activity in normal cells.
Collapse
Affiliation(s)
- M Raha
- Department of Therepeutic Radiology, Yale University School of Medicine, New Haven CT 06520-8040,USA
| | | | | | | |
Collapse
|
48
|
Yoon K, Cole-Strauss A, Kmiec EB. Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA.DNA oligonucleotide. Proc Natl Acad Sci U S A 1996; 93:2071-6. [PMID: 8700887 PMCID: PMC39911 DOI: 10.1073/pnas.93.5.2071] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An experimental strategy to facilitate correction of single-base mutations of episomal targets in mammalian cells has been developed. The method utilizes a chimeric oligonucleotide composed of a contiguous stretch of RNA and DNA residues in a duplex conformation with double hairpin caps on the ends. The RNA/DNA sequence is designed to align with the sequence of the mutant locus and to contain the desired nucleotide change. Activity of the chimeric molecule in targeted correction was tested in a model system in which the aim was to correct a point mutation in the gene encoding the human liver/bone/kidney alkaline phosphatase. When the chimeric molecule was introduced into cells containing the mutant gene on an extrachromosomal plasmid, correction of the point mutation was accomplished with a frequency approaching 30%. These results extend the usefulness of the oligonucleotide-based gene targeting approaches by increasing specific targeting frequency. This strategy should enable the design of antiviral agents.
Collapse
Affiliation(s)
- K Yoon
- Department of Pharmacology, Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
49
|
Miller PS, Bi G, Kipp SA, Fok V, DeLong RK. Triplex formation by a psoralen-conjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine. Nucleic Acids Res 1996; 24:730-6. [PMID: 8604317 PMCID: PMC145696 DOI: 10.1093/nar/24.4.730] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Oligodeoxyribonucleotides containing thymidine and 8-oxo-2'-deoxyadenosine can form pyr.pur.pyr type triplexes with double-stranded DNA. Unlike triplexes whose third strands contain thymidine and deoxycytidine, the stability of these triplexes is independent of pH. We have prepared d-ps-TAAATAAATTTTTAT-L [I(A)], where A is 8-oxo-2'-deoxyadenosine, ps is 4'-hydroxymethyl-4,5',8- trimethylpsoralen and L is a 6-amino-2-(hydroxymethyl)hexyl linker. The oligomer is designed to interact with a homopurine sequence in the promoter region of the human gene coding for the 92 kDa form of collagenase type IV. Oligomer I(A) and oligomer I(C), which contains 2'-deoxycytidine in place of 8-oxo-2'-deoxycytidine, both form stable triplexes at pH 6.2, but only I(A) forms a stable triplex with a model duplex DNA target at pH 7.5, as determined by UV melting experiments. Triplex formation is stabilized by the presence of the psoralen group. Upon irradiation both I(A) and I(C) form photoadducts with the DNA target at pH 6.2, but only I(A) forms a photoadduct at pH 7.5. In these photoreactions oligomer I(A) appears to selectively form a photoadduct with a C in the purine-rich strand of the duplex target. Although a T residue is present in the pyrimidine-rich strand of the target at the duplex/triplex junction, essentially no adduct formation takes place with this strand, nor is interstrand cross-linking observed. The extent of photoadduct formation decreases with increasing temperature, behavior which is consistent with the UV melting curve of the triplex. A tetramethylrhodamine derivative of I(A) was prepared and found to cross-link less extensively than I(A) itself. Oligomer I(A) is completely resistant to hydrolysis when incubated for 24h in the presence of 10% fetal bovine serum at 37 degree C, although it is hydrolyzed by S1 nuclease. The properties of oligomer I(A) suggest that 8-oxo- containing oligomers may find utility as antigene oligonucleotide reagents.
Collapse
Affiliation(s)
- P S Miller
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
50
|
Wang G, Seidman MM, Glazer PM. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 1996; 271:802-5. [PMID: 8628995 DOI: 10.1126/science.271.5250.802] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
When mammalian cells were treated with triplex-forming oligonucleotides of sufficient binding affinity, mutations were specifically induced in a simian virus 40 vector contained within the cells. Triplex-induced mutagenesis was not detected in xeroderma pigmentosum group A cells nor in Cockayne's syndrome group B cells, indicating a requirement for excision repair and for transcription-coupled repair, respectively, in the process. Triplex formation was also found to stimulate DNA repair synthesis in human cell extracts, in a pattern correlating with the inhibition of transcription in such extracts. These findings may have implications for therapeutic applications of triplex DNA and raise the possibility that naturally occurring triple helices are a source of genetic instability.
Collapse
Affiliation(s)
- G Wang
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | | | | |
Collapse
|