1
|
René B, Mauffret O, Fossé P. Retroviral nucleocapsid proteins and DNA strand transfers. BIOCHIMIE OPEN 2018; 7:10-25. [PMID: 30109196 PMCID: PMC6088434 DOI: 10.1016/j.biopen.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
An infectious retroviral particle contains 1000-1500 molecules of the nucleocapsid protein (NC) that cover the diploid RNA genome. NC is a small zinc finger protein that possesses nucleic acid chaperone activity that enables NC to rearrange DNA and RNA molecules into the most thermodynamically stable structures usually those containing the maximum number of base pairs. Thanks to the chaperone activity, NC plays an essential role in reverse transcription of the retroviral genome by facilitating the strand transfer reactions of this process. In addition, these reactions are involved in recombination events that can generate multiple drug resistance mutations in the presence of anti-HIV-1 drugs. The strand transfer reactions rely on base pairing of folded DNA/RNA structures. The molecular mechanisms responsible for NC-mediated strand transfer reactions are presented and discussed in this review. Antiretroviral strategies targeting the NC-mediated strand transfer events are also discussed.
Collapse
Affiliation(s)
- Brigitte René
- LBPA, ENS Paris-Saclay, UMR 8113, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Olivier Mauffret
- LBPA, ENS Paris-Saclay, UMR 8113, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Philippe Fossé
- LBPA, ENS Paris-Saclay, UMR 8113, CNRS, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| |
Collapse
|
2
|
Chen Y, Maskri O, Chaminade F, René B, Benkaroun J, Godet J, Mély Y, Mauffret O, Fossé P. Structural Insights into the HIV-1 Minus-strand Strong-stop DNA. J Biol Chem 2016; 291:3468-82. [PMID: 26668324 DOI: 10.1074/jbc.m115.708099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 11/06/2022] Open
Abstract
An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3'-end of the genomic RNA with the complementary r region at the 3'-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex).
Collapse
Affiliation(s)
- Yingying Chen
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France, the School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China, and
| | - Ouerdia Maskri
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Françoise Chaminade
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Brigitte René
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Jessica Benkaroun
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Julien Godet
- the Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Yves Mély
- the Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Olivier Mauffret
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Philippe Fossé
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France,
| |
Collapse
|
3
|
Hergott CB, Mitra M, Guo J, Wu T, Miller JT, Iwatani Y, Gorelick RJ, Levin JG. Zinc finger function of HIV-1 nucleocapsid protein is required for removal of 5'-terminal genomic RNA fragments: a paradigm for RNA removal reactions in HIV-1 reverse transcription. Virus Res 2013; 171:346-55. [PMID: 23149014 PMCID: PMC3578084 DOI: 10.1016/j.virusres.2012.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/27/2012] [Accepted: 08/20/2012] [Indexed: 11/28/2022]
Abstract
During (-) strong-stop DNA [(-) SSDNA] synthesis, RNase H cleavage of genomic viral RNA generates small 5'-terminal RNA fragments (14-18 nt) that remain annealed to the DNA. Unless these fragments are removed, the minus-strand transfer reaction, required for (-) SSDNA elongation, cannot occur. Here, we describe the mechanism of 5'-terminal RNA removal and the roles of HIV-1 nucleocapsid protein (NC) and RNase H cleavage in this process. Using an NC-dependent system that models minus-strand transfer, we show that the presence of short terminal fragments pre-annealed to (-) SSDNA has no impact on strand transfer, implying efficient fragment removal. Moreover, in reactions with an RNase H(-) reverse transcriptase mutant, NC alone is able to facilitate fragment removal, albeit less efficiently than in the presence of both RNase H activity and NC. Results obtained from novel electrophoretic gel mobility shift and Förster Resonance Energy Transfer assays, which each directly measure RNA fragment release from a duplex in the absence of DNA synthesis, demonstrate for the first time that the architectural integrity of NC's zinc finger (ZF) domains is absolutely required for this reaction. This suggests that NC's helix destabilizing activity (associated with the ZFs) facilitates strand exchange through the displacement of these short terminal RNAs by the longer 3' acceptor RNA, which forms a more stable duplex with (-) SSDNA. Taken together with previously published results, we conclude that NC-mediated fragment removal is linked mechanistically with selection of the correct primer for plus-strand DNA synthesis and tRNA removal step prior to plus-strand transfer. Thus, HIV-1 has evolved a single mechanism for these RNA removal reactions that are critical for successful reverse transcription.
Collapse
MESH Headings
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gene Expression Regulation, Viral
- HIV-1/chemistry
- HIV-1/genetics
- HIV-1/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcription
- Zinc Fingers
- gag Gene Products, Human Immunodeficiency Virus/chemistry
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Christopher B. Hergott
- Section on Viral Gene Regulation, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| | - Mithun Mitra
- Section on Viral Gene Regulation, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| | - Jianhui Guo
- Section on Viral Gene Regulation, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| | - Tiyun Wu
- Section on Viral Gene Regulation, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| | - Jennifer T. Miller
- Reverse Transcriptase Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Yasumasa Iwatani
- Section on Viral Gene Regulation, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Judith G. Levin
- Section on Viral Gene Regulation, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| |
Collapse
|
4
|
Song M, Basu VP, Hanson MN, Roques BP, Bambara RA. Proximity and branch migration mechanisms in HIV-1 minus strand strong stop DNA transfer. J Biol Chem 2007; 283:3141-3150. [PMID: 18073206 DOI: 10.1074/jbc.m707343200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 minus strand transfer was measured using a genomic donor-acceptor template system in vitro. Donor RNA D199, having the minimum region required for minus strong stop DNA synthesis, was previously shown to transfer with 35% efficiency to an acceptor RNA representing the 3' repeat region. Donor D520, having an additional 321-nucleotide segment extending into gag, transferred at 75% efficiency. In this study each transfer step was analyzed to account for the difference. Measurement of terminal transfer indicated that the 3' terminus of the cDNA generated using D520 is more accessible for transfer than that of D199. Nevertheless, acceptor competition experiments demonstrated that D520 has a greater preference for invasion-driven versus terminal transfer than D199. Competition mapping showed that the base of the transactivation response element is the primary invasion site for D520, important for efficient acceptor invasion. Acceptors complementary to the invasion and terminal transfer sites, but not the region between, allowed assessment of the significance of hybrid propagation by branch migration. These bipartite acceptors showed that with D520, invasion raises the local concentration of the acceptor for efficient terminal transfer by a proximity effect. However, with D199, invasion is relatively inefficient, and the cDNA 3' terminus is not very accessible. For most transfers that occurred, the acceptor accessed the cDNA 3' end by branch migration. Results suggest that both proximity and branch migration mechanisms contribute to transfers, with the proportion determined by donor-cDNA structure. D520 transfers better because it has greater accessibility for both invasion and terminus transfer.
Collapse
Affiliation(s)
- Min Song
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Vandana P Basu
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Mark N Hanson
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Bernard P Roques
- Departement de Pharmacochimie Moleculaire et Structurale, INSERM U266, CNRS UMR 8600, Faculte de Pharmacie, 4, Avenue De l'Observatoire, 75270 Paris Cedex 06, France
| | - Robert A Bambara
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642.
| |
Collapse
|
5
|
Estable MC. In search of a function for the most frequent naturally-occurring length polymorphism (MFNLP) of the HIV-1 LTR: retaining functional coupling, of Nef and RBF-2, at RBEIII? Int J Biol Sci 2007; 3:318-27. [PMID: 17589566 PMCID: PMC1893116 DOI: 10.7150/ijbs.3.318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/07/2007] [Indexed: 11/05/2022] Open
Abstract
Although the prototypical HIV-1 LTR sequences were determined 22 years ago from the initial isolate, elucidating which transcription factors are critical to replication in vivo, has been difficult. One approach has been to examine HIV-1 LTRs that have gone through the gamut of in vivo mutation and selection, in search of absolutely conserved sequences. In this vein, RBEIII sequences are virtually 100% conserved in naturally occurring HIV-1 LTRs. This is because when they are mutated, the MFNLP recreates an RBEIII site. Here, I enumerate some retroviral mutation mechanisms, which could generate the MFNLP. I then review the literature corresponding to the MFNLP, highlighting the discovery in 1999, that RBEIII and MFNLP sequences, bind USF and TFII-I cooperatively, within the context of earlier and later work that suggests a role in HIV-1 activation, through T-cell receptor engagement and the MAPK cascade. One exception to the nearly absolute conservation of RBEIII, has been a group of long term non progressors (LTNP). These patients harbor deletions to the Nef gene. However, the Nef gene overlaps with the LTR, and the LTNP deletions abrogate RBEIII, in the absence of an MFNLP. I suggest that the MFNLP retains functional coupling between the MAPK-mediated effects of Nef and the HIV-1 LTR, through RBEIII. I propose that difficult-to-revert-mutations, to either Nef or RBEIII, result in the convergent LTNP Nef/LTR deletions recently observed. The potential exploitation of this highly conserved protein-binding site, for chimeric transcription factor repression (CTFR) of HIV-1, functionally striving to emulate the LTNP deletions, is further discussed.
Collapse
|
6
|
Brandt S, Grunwald T, Lucke S, Stang A, Überla K. Functional replacement of the R region of simian immunodeficiency virus-based vectors by heterologous elements. J Gen Virol 2006; 87:2297-2307. [PMID: 16847126 DOI: 10.1099/vir.0.81883-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Substitution of lentiviral cis-acting elements by heterologous sequences might allow the safety of lentiviral vectors to be enhanced by reducing the risk of homologous recombination and vector mobilization. Therefore, a substitution and deletion analysis of the R region of simian immunodeficiency virus (SIV)-based vectors was performed and the effect of the modifications on packaging and transfer by SIV and human immunodeficiency virus type 1 (HIV-1) particles was analysed. Deletion of the first 7 nt of R reduced vector titres by 10- to 20-fold, whilst deletion of the entire R region led to vector titres that were 1500-fold lower. Replacement of the R region of SIV-based vectors by HIV-1 or Moloney murine sarcoma virus R regions partially restored vector titres. A non-retroviral cellular sequence was also functional, although to a lesser extent. In the absence of tat, modification of the R region had only minor effects on cytoplasmic RNA stability, steady-state levels of vector RNA and packaging, consistent with the known primary function of R during reverse transcription. Although the SIV R region of SIV-based vectors could be replaced functionally by heterologous sequences, the same modifications of R led to a severe replication defect in the context of a replication-competent SIV. As SIV-based vectors containing the HIV-1 R region were transferred less efficiently by HIV-1 particles than wild-type SIV vectors, a match between R and cis-acting elements of the vector construct seems to be more important than a match between R and the Gag or Pol proteins of the vector particle.
Collapse
Affiliation(s)
- Sabine Brandt
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Susann Lucke
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Alexander Stang
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
7
|
Ramezani A, Hawley TS, Hawley RG. Stable gammaretroviral vector expression during embryonic stem cell-derived in vitro hematopoietic development. Mol Ther 2006; 14:245-54. [PMID: 16731046 PMCID: PMC2389876 DOI: 10.1016/j.ymthe.2006.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/12/2006] [Accepted: 04/15/2006] [Indexed: 01/14/2023] Open
Abstract
Unlike conventional gammaretroviral vectors, the murine stem cell virus (MSCV) can efficiently express transgenes in undifferentiated embryonic stem cells (ESCs). However, a dramatic extinction of expression is observed when ESCs are subjected to in vitro hematopoietic differentiation. Here we report the construction of a self-inactivating vector from MSCV, MSinSB, which transmits an intron embedded within the internal transgene cassette to transduced cells. The internal transgene transcriptional unit in MSinSB comprises the composite cytomegalovirus immediate early enhancer-chicken beta-actin promoter and associated 5' splice site positioned upstream of the natural 3' splice site of the gammaretroviral envelope gene, and is configured such that the transgene translational initiation sequence is coincident with the envelope ATG. MSinSB could be produced at titers approaching 10(6) transducing units/ml and directed higher levels of transgene expression in ESCs than a splicing-optimized MSCV-derived vector, MSGV1. Moreover, when transduced ESCs were differentiated into hematopoietic cells in vitro, MSinSB remained transcriptionally active in greater than 90% of the cells, whereas MSGV1 expression was almost completely shut off. Persistent high-level expression of the MSinSB gammaretroviral vector was also demonstrated in murine bone marrow transplant recipients and following in vitro myelomonocytic differentiation of human CD34(+) cord blood stem/progenitor cells.
Collapse
Affiliation(s)
- Ali Ramezani
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC
| | - Teresa S. Hawley
- Flow Cytometry Core Facility, The George Washington University Medical Center, Washington, DC
| | - Robert G. Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC
| |
Collapse
|
8
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 289] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
9
|
Chen Y, Balakrishnan M, Roques BP, Bambara RA. Acceptor RNA cleavage profile supports an invasion mechanism for HIV-1 minus strand transfer. J Biol Chem 2005; 280:14443-52. [PMID: 15657044 DOI: 10.1074/jbc.m412190200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously proposed that HIV-1 minus strand transfer occurs by an acceptor invasion-initiated multi-step mechanism. During synthesis of minus strong stop DNA, reverse transcriptase (RT) transiently pauses at the base of TAR before continuing synthesis. Pausing promotes RT-RNase H cleavage of the donor RNA, exposing regions of the cDNA. The acceptor RNA then invades at these locations to interact with the minus strong stop DNA. Whereas primer extension continues on the donor RNA, the cDNA-acceptor hybrid expands by branch migration until transfer of the primer terminus is completed. We present results here showing that the interaction of the acceptor RNA and the cDNA can be determined by examining the time-dependent cleavage of the acceptor RNA by RNase H. Our approach utilizes a combination of RT-RNase H and Escherichia coli RNase H to allow assessment of acceptor-cDNA interactions at high sensitivity. Results show an initial interaction of the acceptor RNA with cDNA at the base of TAR. We observe a time-dependent shift in RNase H susceptibility along the length of the acceptor toward the 5' end, suggesting hybrid propagation from the initial invasion point. Control experiments validate that the RNase H cleavage profile represents the formation and expansion of the acceptor-DNA interaction and that the process is promoted by the nucleocapsid. Observations with this new approach lend additional support to the proposed multistep transfer mechanism.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, New York 14642, USA
| | | | | | | |
Collapse
|
10
|
Chen Y, Balakrishnan M, Roques BP, Bambara RA. Steps of the acceptor invasion mechanism for HIV-1 minus strand strong stop transfer. J Biol Chem 2003; 278:38368-75. [PMID: 12878597 DOI: 10.1074/jbc.m305700200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Minus strand strong stop transfer is obligatory for completion of HIV-1 minus strand synthesis. We previously showed evidence for an acceptor invasion-initiated mechanism for minus strand transfer. In the present study, we examined the major acceptor invasion initiation site using a minus strand transfer system in vitro, containing the 97-nucleotide full-length R region. A series of DNA oligonucleotides complementary to different regions of the cDNA was designed to interfere with transfer. Oligomers covering the region around the base of the TAR hairpin were most effective in inhibiting transfer, suggesting that the hairpin base is a preferred site for acceptor invasion. The strong pausing of reverse transcriptase at the base of the TAR and the concomitant RNase H cleavages 10-19 nucleotides behind the pause site correlated with the location of the invasion site. Oligomers closer to the 5'-end of R also inhibited transfer, though less effectively, presumably by blocking strand exchange and branch migration. We propose that pausing of reverse transcriptase at the base of TAR increases RNase H cleavages, creating gaps for acceptor invasion and transfer initiation. Strand exchange then propagates by branch migration, displacing the fragmented donor RNA, including the fragment at the 5' terminus. The primer terminus switches to the acceptor, completing the transfer. Nucleocapsid (NC) protein stimulated transfer efficiency by 5-7-fold. NC enhanced RNase H cleavages close to the TAR base, creating more effective invasion sites for efficient transfer. Most likely, NC also stimulates transfer by promoting strand exchange invasion and branch migration.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
11
|
Marr SF, Telesnitsky A. Mismatch extension during strong stop strand transfer and minimal homology requirements for replicative template switching during Moloney murine leukemia virus replication. J Mol Biol 2003; 330:657-74. [PMID: 12850138 PMCID: PMC7173232 DOI: 10.1016/s0022-2836(03)00597-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reverse transcription requires two replicative template switches, called minus and plus strand strong stop transfer, and can include additional, recombinogenic switches. Donor and acceptor template homology facilitates both replicative and recombinogenic transfers, but homology-independent determinants may also contribute. Here, improved murine leukemia virus-based assays were established and the effects of varying extents of mismatches and complementarity between primer and acceptor template regions were assessed. Template switch accuracy was addressed by examining provirus structures, and efficiency was measured using a competitive titer assay. The results demonstrated that limited mismatch extension occurred readily during both minus and plus strand transfer. A strong bias for correct targeting to the U3/R junction and against use of alternate regions of homology was observed during minus strand transfer. Transfer to the U3/R junction was as accurate with five bases of complementarity as it was with an intact R, and as few as 3nt targeted transfer to a limited extent. In contrast, 12 base recombinogenic acceptors were utilized poorly and no accurate switch was observed when recombination acceptors retained only five bases of complementarity. These findings confirm that murine leukemia virus replicative and recombinogenic template switches differ in homology requirements, and support the notion that factors other than primer-template complementarity may contribute to strong stop acceptor template recognition.
Collapse
|
12
|
Chen Y, Balakrishnan M, Roques BP, Fay PJ, Bambara RA. Mechanism of minus strand strong stop transfer in HIV-1 reverse transcription. J Biol Chem 2003; 278:8006-17. [PMID: 12499370 DOI: 10.1074/jbc.m210959200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retrovirus minus strand strong stop transfer (minus strand transfer) requires reverse transcriptase-associated RNase H, R sequence homology, and viral nucleocapsid protein. The minus strand transfer mechanism in human immunodeficiency virus-1 was examined in vitro with purified protein and substrates. Blocking donor RNA 5'-end cleavage inhibited transfers when template homology was 19 nucleotides (nt) or less. Cleavage of the donor 5'-end occurred prior to formation of transfer products. This suggests that when template homology is short, transfer occurs through a primer terminus switch-initiated mechanism, which requires cleavage of the donor 5' terminus. On templates with 26-nt and longer homology, transfer occurred before cleavage of the donor 5' terminus. Transfer was unaffected when donor 5'-end cleavages were blocked but was reduced when internal cleavages within the donor were restricted. Based on the overall data, we conclude that in human immunodeficiency virus-1, which contains a 97-nt R sequence, minus strand transfer occurs through an acceptor invasion-initiated mechanism. Transfer is initiated at internal regions of the homologous R sequence without requiring cleavage at the donor 5'-end. The acceptor invades at gaps created by reverse transcriptase-RNase H in the donor-cDNA hybrid. The fragmented donor is eventually strand-displaced by the acceptor, completing the transfer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biochemistry and Biophysics, University of Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
13
|
Pfeiffer JK, Telesnitsky A. Effects of limiting homology at the site of intermolecular recombinogenic template switching during Moloney murine leukemia virus replication. J Virol 2001; 75:11263-74. [PMID: 11689606 PMCID: PMC114711 DOI: 10.1128/jvi.75.23.11263-11274.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A Moloney murine leukemia virus-based single-replication-cycle assay was developed to study the effects of limiting the extent of template and primer strand complementarity on recombinogenic template switching. This system mimicked forced copy choice recombination in which nascent DNA transfers from the end of a donor template to an acceptor position on the other copackaged RNA. When acceptor target regions with different extents of complementarity to the transferring DNA were tested, efficient recombination occurred with as few as 14 complementary nucleotides. The frequencies of correct targeting, transfer-associated errors, mismatch extension, and transfer before reaching the end of the donor template were determined. All four molecular events occurred, with their proportions varying depending on the nature of acceptor/transferring DNA complementarity. When complementarity was severely limited, recombination was inefficient and most products resulted from aberrant second-strand transfer rather than from forced template switching between RNAs. Other classes of reverse transcription products, including some that resulted from template switching between virus and host sequences, were also observed when homology between the acceptor and donor was limited.
Collapse
Affiliation(s)
- J K Pfeiffer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
14
|
Moumen A, Polomack L, Roques B, Buc H, Negroni M. The HIV-1 repeated sequence R as a robust hot-spot for copy-choice recombination. Nucleic Acids Res 2001; 29:3814-21. [PMID: 11557813 PMCID: PMC55921 DOI: 10.1093/nar/29.18.3814] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Template switching during reverse transcription is crucial for retroviral replication. While strand transfer on the terminal repeated sequence R is essential to achieve reverse transcription, template switching from internal regions of the genome (copy choice) leads to genetic recombination. We have developed an experimental system to study copy-choice recombination in vitro along the HIV-1 genome. We identify here several genomic regions, including the R sequence, where copy choice occurred at high rates. The frequency of copy choice occurring in a given region of template was strongly influenced by the surrounding sequences, an observation that suggests a pivotal role of the folding of template RNA in the process. The sequence R, instead, constituted an exception to this rule since it was a strong hot-spot for copy choice in the different sequence contexts tested. We suggest therefore that the structure of this region has been optimised during viral evolution to ensure efficient template switching independently from the sequences that might surround it.
Collapse
Affiliation(s)
- A Moumen
- Unité de Régulation Enzymatique des Activités Cellulaires, FRE 2364-CNRS, Département de Biologie Moléculaire and URA 1960-CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | | | | | |
Collapse
|
15
|
Abstract
As a consequence of being diploid, retroviruses have a high recombination rate. Naturally occurring retroviruses contain two repeat sequences (R regions) flanking either end of their RNA genomes, and recombination between these two R regions occurs at a high rate. We deduced that recombination may occur between two sequences within the same RNA molecule (intramolecular) as well as between sequences present within two separate RNA molecules (intermolecular). Intramolecular recombination would usually result in a deletion within the progeny provirus. In this report, we demonstrate that intramolecular recombination between two identical sequences occurred within a chimeric RNA vector. In addition, high rates of recombination between two identical sequences within the same RNA molecule resulted mostly from intramolecular recombination.
Collapse
Affiliation(s)
- J Zhang
- Department of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536-0096, USA.
| | | |
Collapse
|
16
|
Hooker CW, Lott WB, Harrich D. Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol 2001; 75:3095-104. [PMID: 11238836 PMCID: PMC114103 DOI: 10.1128/jvi.75.7.3095-3104.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early HIV-1 reverse transcription can be separated into initiation and elongation phases. Here we show, using PCR analysis of negative-strand strong-stop DNA [(-)ssDNA] synthesis in intact virus, that different reverse transcriptase (RT) inhibitors affect distinct phases of early natural endogenous reverse transcription (NERT). The effects of nevirapine on NERT were consistent with a mechanism of action including both specific and nonspecific binding events. The nonspecific component of this inhibition targeted the elongation reaction, whereas the specific effect seemed principally to be directed at very early events (initiation or the initiation-elongation switch). In contrast, foscarnet and the nucleoside analog ddATP inhibited both early and late (-)ssDNA synthesis in a similar manner. We also examined compounds that targeted other viral proteins and found that Ro24-7429 (a Tat antagonist) and rosmarinic acid (an integrase inhibitor) also directly inhibited RT. Our results indicate that NERT can be used to identify and evaluate compounds that directly target the reverse transcription complex.
Collapse
Affiliation(s)
- C W Hooker
- HIV-1 and Hepatitis C Units, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston, St. Lucia, Queensland, Australia
| | | | | |
Collapse
|
17
|
Dang Q, Hu WS. Effects of homology length in the repeat region on minus-strand DNA transfer and retroviral replication. J Virol 2001; 75:809-20. [PMID: 11134294 PMCID: PMC113977 DOI: 10.1128/jvi.75.2.809-820.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homology between the two repeat (R) regions in the retroviral genome mediates minus-strand DNA transfer during reverse transcription. We sought to define the effects of R homology lengths on minus-strand DNA transfer. We generated five murine leukemia virus (MLV)-based vectors that contained identical sequences but different lengths of the 3' R (3, 6, 12, 24 and 69 nucleotides [nt]); 69 nt is the full-length MLV R. After one round of replication, viral titers from the vector with a full-length downstream R were compared with viral titers generated from the other four vectors with reduced R lengths. Viral titers generated from vectors with R lengths reduced to one-third (24 nt) or one-sixth (12 nt) that of the wild type were not significantly affected; however, viral titers generated from vectors with only 3- or 6-nt homology in the R region were significantly lower. Because expression and packaging of the RNA were similar among all the vectors, the differences in the viral titers most likely reflected the impact of the homology lengths on the efficiency of minus-strand DNA transfer. The molecular nature of minus-strand DNA transfer was characterized in 63 proviruses. Precise R-to-R transfer was observed in most proviruses generated from vectors with 12-, 24-, or 69-nt homology in R, whereas aberrant transfers were predominantly used to generate proviruses from vectors with 3- or 6-nt homology. Reverse transcription using RNA transcribed from an upstream promoter, termed read-in RNA transcripts, resulted in most of the aberrant transfers. These data demonstrate that minus-strand DNA transfer is homology driven and a minimum homology length is required for accurate and efficient minus-strand DNA transfer.
Collapse
Affiliation(s)
- Q Dang
- Department of Microbiology and Immunology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
18
|
Cheslock SR, Anderson JA, Hwang CK, Pathak VK, Hu WS. Utilization of nonviral sequences for minus-strand DNA transfer and gene reconstitution during retroviral replication. J Virol 2000; 74:9571-9. [PMID: 11000228 PMCID: PMC112388 DOI: 10.1128/jvi.74.20.9571-9579.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minus-strand DNA transfer, an essential step in retroviral reverse transcription, is mediated by the two repeat (R) regions in the viral genome. It is unclear whether R simply serves as a homologous sequence to mediate the strand transfer or contains specific sequences to promote strand transfer. To test the hypothesis that the molecular mechanism by which R mediates strand transfer is based on homology rather than specific sequences, we examined whether nonviral sequences can be used to facilitate minus-strand DNA transfer. The green fluorescent protein (GFP) gene was divided into GF and FP fragments, containing the 5' and 3' portions of GFP, respectively, with an overlapping F fragment (85 bp). FP and GF were inserted into the 5' and 3' long terminal repeats, respectively, of a murine leukemia virus-based vector. Utilization of the F fragment to mediate minus-strand DNA transfer should reconstitute GFP during reverse transcription. Flow cytometry analyses demonstrated that GFP was expressed in 73 to 92% of the infected cells, depending on the structure of the viral construct. This indicated that GFP was reconstituted at a high frequency; molecular characterization further confirmed the accurate reconstitution of GFP. These data indicated that nonviral sequences could be used to efficiently mediate minus-strand DNA transfer. Therefore, placement and homology, not specific sequence context, are the important elements in R for minus-strand DNA transfer. In addition, these experiments demonstrate that minus-strand DNA transfer can be used to efficiently reconstitute genes for gene therapy applications.
Collapse
Affiliation(s)
- S R Cheslock
- Department of Microbiology and Immunology, West Virginia University, Morgantown, West Virginia, 26506, USA
| | | | | | | | | |
Collapse
|
19
|
Ohi Y, Clever JL. Sequences in the 5' and 3' R elements of human immunodeficiency virus type 1 critical for efficient reverse transcription. J Virol 2000; 74:8324-34. [PMID: 10954531 PMCID: PMC116342 DOI: 10.1128/jvi.74.18.8324-8334.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of human immunodeficiency virus type 1 (HIV-1) contains two direct repeats (R) of 97 nucleotides at each end. These elements are of critical importance during the first-strand transfer of reverse transcription, during which the minus-strand strong-stop DNA (-sssDNA) is transferred from the 5' end to the 3' end of the genomic RNA. This transfer is critical for the synthesis of the full-length minus-strand cDNA. These repeats also contain a variety of other functional domains involved in many aspects of the viral life cycle. In this study, we have introduced a series of mutations into the 5', the 3', or both R sequences designed to avoid these other functional domains. Using a single-round infectivity assay, we determined the ability of these mutants to undergo the various steps of reverse transcription utilizing a semiquantitative PCR analysis. We find that mutations within the first 10 nucleotides of either the 5' or the 3' R sequence resulted in virions that were markedly defective for reverse transcription in infected cells. These mutations potentially introduce mismatches between the full-length -sssDNA and 3' acceptor R. Even mutations that would create relatively small mismatches, as little as 3 bp, resulted in inefficient reverse transcription. In contrast, virions containing identically mutated R elements were not defective for reverse transcription or infectivity. Using an endogenous reverse transcription assay with disrupted virus, we show that virions harboring the 5' or the 3' R mutations were not intrinsically defective for DNA synthesis. Similarly sized mismatches slightly further downstream in either the 5', the 3', or both R sequences were not detrimental to continued reverse transcription in infected cells. These data are consistent with the idea that certain mismatches within 10 nucleotides downstream of the U3-R junction in HIV-1 cause defects in the stability of the cDNA before or during the first-strand transfer of reverse transcription leading to the rapid disappearance of the -sssDNA in infected cells. These data also suggest that the great majority of first-strand transfers in HIV-1 occur after the copying of virtually the entire 5' R.
Collapse
Affiliation(s)
- Y Ohi
- Department of Microbiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
20
|
Mikkelsen JG, Pedersen FS. Genetic reassortment and patch repair by recombination in retroviruses. J Biomed Sci 2000; 7:77-99. [PMID: 10754383 DOI: 10.1007/bf02256615] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Retroviral particles contain a diploid RNA genome which serves as template for the synthesis of double-stranded DNA in a complex process guided by virus-encoded reverse transcriptase. The dimeric nature of the genome allows the proceeding polymerase to switch templates during copying of the copackaged RNA molecules, leading to the generation of recombinant proviruses that harbor genetic information derived from both parental RNAs. Template switching abilities of reverse transcriptase facilitate the development of mosaic retroviruses with altered functional properties and thereby contribute to the restoration and evolution of retroviruses facing altering selective forces of their environment. This review focuses on the genetic patchwork of retroviruses and how mixing of sequence patches by recombination may lead to repair in terms of re-established replication and facilitate increased viral fitness, enhanced pathogenic potential, and altered virus tropisms. Endogenous retroelements represent an affluent source of functional viral sequences which may hitchhike with virions and serve as sequence donors in patch repair. We describe here the involvement of endogenous viruses in genetic reassortment and patch repair and review important examples derived from cell culture and animal studies. Moreover, we discuss how the patch repair phenomenon may challenge both safe usage of retrovirus-based gene vehicles in human gene therapy and the use of animal organs as xenografts in humans. Finally, the ongoing mixing of distinct human immunodeficiency virus strains and its implications for antiviral treatment is discussed.
Collapse
MESH Headings
- Animals
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Endogenous Retroviruses/genetics
- Evolution, Molecular
- Genetic Therapy/adverse effects
- Genetic Variation
- Humans
- Mice
- Models, Genetic
- Mosaicism/genetics
- Proviruses/genetics
- RNA/genetics
- RNA, Double-Stranded/biosynthesis
- RNA, Double-Stranded/genetics
- RNA, Viral/genetics
- RNA-Directed DNA Polymerase/physiology
- Recombination, Genetic
- Retroviridae/genetics
- Retroviridae Infections/genetics
- Retroviridae Infections/transmission
- Retroviridae Infections/virology
- Risk
- Safety
- Templates, Genetic
- Transplantation, Heterologous/adverse effects
- Virion/metabolism
- Virus Replication/genetics
Collapse
Affiliation(s)
- J G Mikkelsen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
21
|
Abstract
Alphavirus vectors use RNA replication in the cell cytoplasm to direct gene expression. New developments of vectors put persistency of expression and infection of specific cells in focus. Furthermore, a new application shows that the system can be used for production of retrovirus vectors carrying genes with introns and control/regulatory regions.
Collapse
Affiliation(s)
- H Garoff
- Department of Biosciences at Novum, Huddinge, Sweden.
| | | |
Collapse
|
22
|
Mikkelsen JG, Lund AH, Dybkaer K, Duch M, Pedersen FS. Extended minus-strand DNA as template for R-U5-mediated second-strand transfer in recombinational rescue of primer binding site-modified retroviral vectors. J Virol 1998; 72:2519-25. [PMID: 9499117 PMCID: PMC109556 DOI: 10.1128/jvi.72.3.2519-2525.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have previously demonstrated recombinational rescue of primer binding site (PBS)-impaired Akv murine leukemia virus-based vectors involving initial priming on endogenous viral sequences and template switching during cDNA synthesis to obtain PBS complementarity in second-strand transfer of reverse transcription (Mikkelsen et al., J. Virol. 70:1439-1447, 1996). By use of the same forced recombination system, we have now found recombinant proviruses of different structures, suggesting that PBS knockout vectors may be rescued through initial priming on endogenous virus RNA, read-through of the mutated PBS during minus-strand synthesis, and subsequent second-strand transfer mediated by the R-U5 complementarity of the plus strand and the extended minus-strand DNA acceptor template. Mechanisms for R-U5-mediated second-strand transfer and its possible role in retrovirus replication and evolution are discussed.
Collapse
Affiliation(s)
- J G Mikkelsen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
23
|
Zhang QY, Clausen PA, Yatsula BA, Calothy G, Blair DG. Mutation of polyadenylation signals generates murine retroviruses that produce fused virus-cell RNA transcripts at high frequency. Virology 1998; 241:80-93. [PMID: 9454719 DOI: 10.1006/viro.1997.8947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retroviruses act as insertional mutagens and can also capture cellular sequences through a mechanism which initially requires the generation of RNA transcripts which fail to cleave and polyadenylate correctly. The correct termination of retroviral transcripts at the 3' LTR R/U5 junction is primarily dependent on the canonical AAUAAA polyadenylation signal, so we have analyzed the effect of mutating the polyadenylation signal sequences on the properties of a selectable murine retroviral vector. Mutation of consensus polyadenylation signal sequences in the 5' and/or 3' proviral LTRs demonstrated that a UA to GG change generated larger sized virus-specific RNA, consistent with loss of normal polyadenylation. Cell clones infected with viruses generated by proviral constructs containing this mutation in the 5' LTR express either normal-length or elongated viral RNA. Fused transcripts contained the mutant polyadenylation signal, while sequence analysis was consistent with the hypothesis that premature 5' to 3' primer strand transfer was responsible for the high frequency (80%) of wild-type polyadenylation. Cells infected by viruses from constructs mutated in both 5' and 3' proviral LTRs expressed poly(A)+ viral RNA between 0.3 and 3 kb larger than normal virus in 100% of infected clones, and sequence analysis of clones derived from either infected rodent or human cells confirmed that these transcripts contained both viral and adjacent cellular sequences. While mutant virus exhibits no increased ability to alter cell phenotypes, the read-through transcripts contain both unique and repetitive cell-derived sequences and can easily be recovered using PCR techniques, suggesting that these viruses may serve as effective tools for rapidly cloning cellular sequences and generating random genomic markers for gene mapping.
Collapse
Affiliation(s)
- Q Y Zhang
- Division of Basic Sciences, NCI-FCRDC, Frederick, Maryland, 21702-1201, USA
| | | | | | | | | |
Collapse
|
24
|
Yin PD, Pathak VK, Rowan AE, Teufel RJ, Hu WS. Utilization of nonhomologous minus-strand DNA transfer to generate recombinant retroviruses. J Virol 1997; 71:2487-94. [PMID: 9032388 PMCID: PMC191361 DOI: 10.1128/jvi.71.3.2487-2494.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During reverse transcription, minus-strand DNA transfer connects the sequences located at the two ends of the viral RNA to generate a long terminal repeat. It is thought that the homology in the repeat (R) regions located at the two ends of the viral RNA sequences facilitate minus-strand DNA transfer. In this report, the effects of diminished R-region homology on DNA synthesis and virus titer were examined. A retrovirus vector, PY31, was constructed to contain the 5' and 3' cis-acting elements from Moloney murine sarcoma virus and spleen necrosis virus. These two viruses are genetically distinct, and the two R regions contain little homology. In one round of replication, the PY31 titer was approximately 3,000-fold lower than that of a control vector with highly homologous R regions. The molecular characteristics of the junctions of minus-strand DNA transfer were analyzed in both unintegrated DNA and integrated proviruses. Short stretches of homology were found at the transfer junctions and were likely to be used to facilitate minus-strand DNA transfer. Both minus-strand strong-stop DNA and weak-stop DNA were observed to mediate strand transfer. The ability of PY31 to complete reverse transcription indicates that minus-strand DNA transfer can be used to join sequences from two different viruses to form recombinant viruses. These results suggest the provocative possibility that genetically distinct viruses can interact through this mechanism.
Collapse
Affiliation(s)
- P D Yin
- Department of Microbiology and Immunology, West Virginia University, Morgantown 26506, USA
| | | | | | | | | |
Collapse
|
25
|
Kulpa D, Topping R, Telesnitsky A. Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J 1997; 16:856-65. [PMID: 9049314 PMCID: PMC1169686 DOI: 10.1093/emboj/16.4.856] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reverse transcriptase must perform two specialized template switches during retroviral DNA synthesis. Here, we used Moloney murine leukemia virus-based vectors to examine the site of one of these switches during intracellular reverse transcription. Consistent with original models for reverse transcription, but in contrast to previous experimental data, we observed that this first strand transfer nearly always occurred precisely at the 5' end of genomic RNA. This finding allowed us to use first strand transfer to study the classes of errors that reverse transcriptase can and/or does make when it switches templates at a defined position during viral DNA synthesis. We found that errors occurred at the site of first strand transfer approximately 1000-fold more frequently than reported average reverse transcriptase error rates for template-internal positions. We then analyzed replication products of specialized vectors that were designed to test possible origins for the switch-associated errors. Our results suggest that at least some errors arose via non-templated nucleotide addition followed by mismatch extension at the point of strand transfer. We discuss the significance of our findings as they relate to the possible contribution that template switch-associated errors may make to retroviral mutation rates.
Collapse
Affiliation(s)
- D Kulpa
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
26
|
Li KJ, Garoff H. Production of infectious recombinant Moloney murine leukemia virus particles in BHK cells using Semliki Forest virus-derived RNA expression vectors. Proc Natl Acad Sci U S A 1996; 93:11658-63. [PMID: 8876192 PMCID: PMC38114 DOI: 10.1073/pnas.93.21.11658] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We describe a heterologous, Semliki Forest virus (SFV)-driven packaging system for the production of infectious recombinant Moloney murine leukemia virus particles. The gag-pol and env genes, as well as a recombinant retrovirus genome (LTR-psi (+)-neoR-LTR), were inserted into individual SFV1 expression plasmids. Replication-competent RNAs were transcribed in vitro and introduced into the cytoplasm of BHK-21 cells using electroporation. The expressed Moloney murine leukemia virus structural proteins produced extracellular virus-like particles. In these particles the gag precursor was processed into mature products, indicating that the particles contained an active protease. The protease of the gag-pol fusion protein was also shown to be active in a trans-complementation assay using a large excess of Pr65gag. Moreover, the particles possessed reverse transcriptase (RT) activity as measured in an in vitro assay. Cotransfection of BHK-21 cells by all three SFV1 constructs resulted in the production of transduction-competent particles at 4 x 10(6) colony-forming units (cfu)/ml during a 5-hr incubation period. Altogether, 2.9 x 10(7) transduction-competent particles were obtained from about 4 x 10(6) transfected cells. Thus, this system represents the first RNA-based packaging system for the production of infectious retroviral particles. The facts that no helper virus could be detected in the virus stocks and that particles carrying the amphotropic envelope could be produced with similar efficiency as those that carry the ecotropic envelope make the system very interesting for gene therapy.
Collapse
Affiliation(s)
- K J Li
- Karolinska Institute, Department of Bioscience at Novum, Huddinge, Sweden
| | | |
Collapse
|
27
|
Estable MC, Bell B, Merzouki A, Montaner JS, O'Shaughnessy MV, Sadowski IJ. Human immunodeficiency virus type 1 long terminal repeat variants from 42 patients representing all stages of infection display a wide range of sequence polymorphism and transcription activity. J Virol 1996; 70:4053-62. [PMID: 8648743 PMCID: PMC190286 DOI: 10.1128/jvi.70.6.4053-4062.1996] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Despite extensive in vitro studies identifying a myriad of cellular transcription factors that bind the human immunodeficiency virus type 1 5' long terminal repeat (LTR), the relative contribution of these factors to human immunodeficiency virus type 1 replication in infected individuals remains obscure. To address this question, we investigated 478 proviral quasispecies derived from uncultured peripheral blood mononuclear cells of 42 patients representing all stages of infection. In addition to highly conserved TATA box, SP-1, and NF-kappaB sites, the Ets core and an adjacent 5'-ACYGCTGA-3' motif were extremely conserved. Importantly, the most frequent naturally occurring length polymorphism (MFNLP) duplicated 5'-ACYGCTGA-3' motifs in LTRs in which this same motif was disrupted or in LTRs in which a single point mutation to the Ets core ablated binding of c-Ets 1 and another factor distinct from both c-Ets 1 and Elf 1. The MFNLP's location was precise (position -121) and surprisingly frequent (38% of patients) and demarcated LTR Nef-coding sequences from LTR noncoding sequences that appear to be evolving independently. Aside from these features, we found no definitive clinical or transcription phenotype common to all MFNLP LTRs. We also found previously described and novel point polymorphisms, including some conferring TAR-dependent and TAR- independent Tat unresponsiveness, and showed that differential binding of nuclear factor(s) to a TCTAA TATA box variant may be the mechanism for the latter.
Collapse
Affiliation(s)
- M C Estable
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Canada, Vancouver
| | | | | | | | | | | |
Collapse
|
28
|
Szurek PF, Brooks BR. ts1-Induced spongiform encephalomyelopathy: physical forms of high-mobility DNA in spinal cord tissues of paralyzed mice are products of premature termination of reverse transcription. J Virol 1996; 70:2230-6. [PMID: 8642647 PMCID: PMC190063 DOI: 10.1128/jvi.70.4.2230-2236.1996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
ts1 is a temperature-sensitive mutant of Moloney murine leukemia virus that causes hind-limb paralysis in mice. In tissues of the central nervous systems of paralyzed moribund FVB/N mice, a major component of the unintegrated viral DNA of ts1 consists of highly mobile physical forms of viral-specific DNA (HM DNA). Previous studies with ecotropic virus-specific polarity probes showed that the gp70-coding region of the env gene in the HM DNA was minus-sense single-stranded DNA. The physical forms of the HM DNA have now been characterized in more detail with additional ecotropic virus-specific probes that hybridized to the p15E-coding region of the env gene and two locations within the U3 region of the long terminal repeat. Two major classes of HM DNA were found: class I molecules consist of short minus-sense single-stranded DNA; class II molecules are partial DNA duplexes that are longer than the class I molecules. The two classes of HM DNA molecules are intermediate products of reverse transcription of the viral RNA of ts1. Since tissues that are infected with cytopathic retroviruses may contain high levels of unintegrated viral DNA, the HM DNA may have a role in inducing neurodegeneration in the central nervous systems of mice that are infected with ts1.
Collapse
Affiliation(s)
- P F Szurek
- Neurology and Research Services, Williams S. Middleton Memorial Veterans Medical Center, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53705-2286, USA
| | | |
Collapse
|
29
|
Blain SW, Goff SP. Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase. J Virol 1995; 69:4440-52. [PMID: 7539510 PMCID: PMC189186 DOI: 10.1128/jvi.69.7.4440-4452.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To determine the various roles of RNase H in reverse transcription, we generated a panel of mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase based on sequence alignments and the crystal structures of Escherichia coli and human immunodeficiency virus type 1 RNases H (S. W. Blain and S. P. Goff, J. Biol. Chem. 268:23585-23592, 1993). These mutations were introduced into a full-length provirus, and the resulting genomes were tested for infectivity by transient transfection assays or after generation of stable producer lines. Several of the mutant viruses replicated normally, some showed significant delays in infectivity, and others were noninfectious. Virions were collected, and the products of the endogenous reverse transcription reaction were examined to determine which steps might be affected by these mutations. Some mutants left their minus-strand strong-stop DNA in RNA-DNA hybrid form, in a manner similar to that of RNase H null mutants. Some mutants showed increased polymerase pausing. Others were impaired in first-strand translocation, independently of their wild-type ability to degrade genomic RNA, suggesting a new role for RNase H in strand transfer. DNA products synthesized in vivo by the wild-type and mutant viruses were also examined. Whereas wild-type virus did not accumulate detectable levels of minus-strand strong-stop DNA, several mutants were blocked in translocation and did accumulate this intermediate. These results suggest that in vivo wild-type virus normally translocates minus-strand strong-stop DNA efficiently.
Collapse
Affiliation(s)
- S W Blain
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
30
|
Olson P, Nelson S, Dornburg R. Improved self-inactivating retroviral vectors derived from spleen necrosis virus. J Virol 1994; 68:7060-6. [PMID: 7933088 PMCID: PMC237143 DOI: 10.1128/jvi.68.11.7060-7066.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Self-inactivating (SIN) retroviral vectors contain a deletion spanning most of the right long terminal repeat's (LTR's) U3 region. Reverse transcription copies this deletion to both LTRs. As a result, there is no transcription from the 5' LTR, preventing further replication. Many previously developed SIN vectors, however, had reduced titers or were genetically unstable. Earlier, we reported that certain SIN vectors derived from spleen necrosis virus (SNV) experienced reconstitution of the U3-deleted LTR at high frequencies. This reconstitution occurred on the DNA level and appeared to be dependent on defined vector sequences. To study this phenomenon in more detail, we developed an almost completely U3-free retroviral vector. The promoter and enhancer of the left LTR were replaced with those of the cytomegalovirus immediate-early genes. This promoter swap did not impair the level of transcription or alter its start site. Our data indicate that SNV contains a strong initiator which resembles that of human immunodeficiency virus. We show that the vectors replicate with efficiencies similar to those of vectors possessing two wild-type LTRs. U3-deleted vectors carrying the hygromycin B phosphotransferase gene did not observably undergo LTR reconstitution, even when replicated in helper cells containing SNV-LTR sequences. However, vectors carrying the neomycin resistance gene did undergo LTR reconstitution with the use of homologous helper cell LTR sequences as template. This supports our earlier finding that sequences within the neomycin resistance gene can trigger recombination.
Collapse
Affiliation(s)
- P Olson
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | |
Collapse
|
31
|
Klaver B, Berkhout B. Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Res 1994; 22:137-44. [PMID: 7510065 PMCID: PMC307763 DOI: 10.1093/nar/22.2.137] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reverse transcription of retroviral genomes starts near the 5' end of the viral RNA by use of an associated tRNA primer. According to the current model of reverse transcription, the initial cDNA product, termed minus-strand strong-stop DNA, 'jumps' to a repeated sequence (R region) at the 3' end of the RNA template. The human retroviruses have relatively long R regions (97-247 nucleotides) when compared to murine and avian viruses (16-68 nucleotides). This suggests that the full complement of the R region is not required for strand transfer and that partial cDNA copies of the 5' R can prematurely jump to the 3' R. To test this hypothesis, we generated mutants of the human immunodeficiency virus with R region changes and analyzed whether 5' or 3' R sequences were inherited by the progeny. We found that in most cases, 5' R-encoded sequences are dominant, which is consistent with the model of reverse transcription. Using a selection protocol, however, we were also able to identify progeny viruses with R sequences derived from the original 3' R element. These results suggest that partial strong stop cDNAs can be transferred with R region homologies much shorter than 97 nucleotides.
Collapse
Affiliation(s)
- B Klaver
- University of Amsterdam, Department of Virology, The Netherlands
| | | |
Collapse
|
32
|
Temin HM. Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. Proc Natl Acad Sci U S A 1993; 90:6900-3. [PMID: 7688465 PMCID: PMC47042 DOI: 10.1073/pnas.90.15.6900] [Citation(s) in RCA: 222] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human immunodeficiency virus variation is extensive and is based on numerous mistakes in reverse transcription. All retrovirus replication requires two strand transfers (growing point jumps) to synthesize the complete provirus. I propose that the numerous mistakes in reverse transcription are the result of this requirement for the two strand transfers needed to form the provirus.
Collapse
Affiliation(s)
- H M Temin
- McArdie Laboratory, University of Wisconsin, Madison 53706
| |
Collapse
|