1
|
Alternatively spliced telomerase reverse transcriptase variants lacking telomerase activity stimulate cell proliferation. Mol Cell Biol 2012; 32:4283-96. [PMID: 22907755 DOI: 10.1128/mcb.00550-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight human and six chicken novel alternatively spliced (AS) variants of telomerase reverse transcriptase (TERT) were identified, including a human variant (Δ4-13) containing an in-frame deletion which removed exons 4 through 13, encoding the catalytic domain of telomerase. This variant was expressed in telomerase-negative normal cells and tissues as well as in transformed telomerase-positive cell lines and cells which employ an alternative method to maintain telomere length. The overexpression of the Δ4-13 variant significantly elevated the proliferation rates of several cell types without enhancing telomerase activity, while decreasing the endogenous expression of this variant by use of small interfering RNA (siRNA) technology reduced cell proliferation. The expression of the Δ4-13 variant stimulated Wnt signaling. In chicken cells, AS TERT variants containing internal deletions or insertions that eliminated or reduced telomerase activity also enhanced cell proliferation. This is the first report that naturally occurring AS TERT variants which lack telomerase activity stimulate cell proliferation.
Collapse
|
2
|
Horst D, Budczies J, Brabletz T, Kirchner T, Hlubek F. Invasion associated up-regulation of nuclear factor kappaB target genes in colorectal cancer. Cancer 2009; 115:4946-58. [PMID: 19658179 DOI: 10.1002/cncr.24564] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND : Colorectal cancer (CRC) displays intratumoral heterogeneity with less differentiated tumor cells at the invasive front (IF) than in the tumor center (TC). The authors previously observed that several genes were overexpressed at the IF of CRC with relations to inflammatory processes. Because nuclear factor kappaB (NF-kappaB), a dimeric transcription factor, is a major regulator of such processes, and because its target genes are involved in immune response, cell growth control, and cell survival, the expression of NF-kappaB target genes was investigated comparatively in CRC. METHODS : By using gene array profiling, NF-kappaB target gene expression was assessed in CRCs that expressed human mutL homolog 1 (hMLH1), hMSH2, and nuclear beta-catenin by comparing expression at the IF, in the TC, and in normal mucosa. In addition, 5 NF-kappaB target genes with high differential expression were validated by using immunohistochemistry. RESULTS : The expression of NF-kappaB target genes in the TC, at the IF, and in normal mucosa was distinct; whereas, specifically at the IF, most differentially expressed NF-kappaB targets were up-regulated. Moreover, the results indicated that the expression diverged between epithelial tumor cells and inflammatory stromal cells. CONCLUSIONS : Because the results demonstrated that inflammation and the activation of NF-kappaB signaling promoted CRC invasiveness, the current study provided further evidence that downstream targets of NF-kappaB signaling may be specifically relevant in invasion and progression of CRC. Finally, as has been suggested for colitis-associated cancer, the authors of this report concluded that the inhibition of NF-kappaB signaling also may be an additional option for the treatment of sporadic CRC. Cancer 2009. (c) 2009 American Cancer Society.
Collapse
Affiliation(s)
- David Horst
- Pathologisches Institut der Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | |
Collapse
|
3
|
Regulation of telomerase activity by interferon regulatory factors 4 and 8 in immune cells. Mol Cell Biol 2008; 29:929-41. [PMID: 19047367 DOI: 10.1128/mcb.00961-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomerase activity is downregulated in somatic cells but is upregulated during the activation of cells of the immune system. The mechanism of this reactivation is not well understood. In this study, we demonstrated that interferon regulatory factor 4 (IRF-4) and, to a lesser extent, IRF-8 induce telomerase activity. The suppression of IRF-4 results in decreased levels of TERT (telomerase reverse transcriptase) mRNA and telomerase activity and reduces cell proliferation. The overexpression of TERT compensates for this proliferation defect, suggesting that telomerase contributes to the regulation of cell proliferation by IRF-4. The induction of telomerase by IRF-4 and IRF-8 correlates with the activation of the TERT promoter. IRF-4 binds the interferon response-stimulated element and the gamma interferon-activated sequence composite binding site in the TERT core promoter region in vivo. Additionally, the binding of Sp1, Sp3, USF-1, USF-2, and c-Myc to the TERT promoter is elevated in cells expressing IRF-4. IRF-4, but not IRF-8, synergistically cooperates with Sp1 and Sp3 in the activation of the TERT promoter. Collectively, these results indicate that IRF-4 and IRF-8, two lymphoid cell-specific transcription factors, increase telomerase activity by activating TERT transcription in immune cells.
Collapse
|
4
|
CAPERalpha is a novel Rel-TAD-interacting factor that inhibits lymphocyte transformation by the potent Rel/NF-kappaB oncoprotein v-Rel. J Virol 2008; 82:10792-802. [PMID: 18753212 DOI: 10.1128/jvi.00903-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Rel/NF-kappaB transcription factors are constitutively activated in many human cancers. The Rel proteins in this family are implicated in leukemia/lymphomagenesis, but the mechanism is not completely understood. Previous studies showed that the transcription activation domains (TADs) of the viral oncoprotein v-Rel and its cellular Rel/NF-kappaB homologues c-Rel and RelA are key determinants of their different transforming activities in primary lymphocytes. Substitution of a Rel TAD for that of RelA conferred a strong transforming phenotype upon RelA, which otherwise failed to transform cells. To gain insights into protein interactions that influence cell transformation by the Rel TADs, we identified factors that interact with the TAD of v-Rel, the most oncogenic member of the Rel/NF-kappaB family. We report that the coactivator for transcription factors AP-1 and estrogen receptors, CAPERalpha, interacts with the v-Rel TAD and potently synergizes v-Rel-mediated transactivation. Importantly, coexpression of CAPERalpha markedly reduced and delayed v-Rel's transforming activity in primary lymphocytes, whereas a dominant-negative mutant enhanced the kinetics of v-Rel-mediated transformation. Furthermore, small interfering RNA-mediated knockdown of CAPERalpha in v-Rel-transformed lymphocytes significantly enhanced colony formation in soft agar. Since the potency of Rel-mediated transactivation is an important determinant of lymphocyte transformation, as is Rel's ability to induce transcriptional repression, these data suggest that CAPERalpha's interaction with the Rel TAD could modulate Rel/NF-kappaB's transforming activity by facilitating expression or dampening repression of specific gene subsets important for oncogenesis. Overall, this study identifies CAPERalpha as a new transcriptional coregulator for v-Rel and reveals an important role in modulating Rel's oncogenic activity.
Collapse
|
5
|
Gupta N, Delrow J, Drawid A, Sengupta AM, Fan G, Gélinas C. Repression of B-cell linker (BLNK) and B-cell adaptor for phosphoinositide 3-kinase (BCAP) is important for lymphocyte transformation by rel proteins. Cancer Res 2008; 68:808-14. [PMID: 18245482 DOI: 10.1158/0008-5472.can-07-3169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Persistent Rel/nuclear factor-kappaB (NF-kappaB) activity is a hallmark of many human cancers, and the Rel proteins are implicated in leukemia/lymphomagenesis but the mechanism is not fully understood. Microarray analysis to identify transformation-impacting genes regulated by NF-kappaB's oncogenic v-Rel and c-Rel proteins uncovered that Rel protein expression leads to transcriptional repression of key B-cell receptor (BCR) components and signaling molecules like B-cell linker (BLNK), the B-cell adaptor for phosphoinositide 3-kinase (BCAP) and immunoglobulin lambda light chain (Ig lambda), and is accompanied by a block in BCR-mediated activation of extracellular signal-regulated kinase, Akt, and c-Jun-NH(2)-kinase in response to anti-IgM. The BLNK and BCAP proteins were also down-regulated in lymphoid cells expressing a transformation-competent chimeric RelA/v-Rel protein, suggesting a correlation with the capacity of Rel proteins to transform lymphocytes. DNA-binding studies identified functional NF-kappaB-binding sites, and chromatin immunoprecipitation (ChIP) data showed binding of Rel to the endogenous blnk and bcap promoters in vivo. Importantly, restoration of either BLNK or BCAP expression strongly inhibited transformation of primary chicken lymphocytes by the potent NF-kappaB oncoprotein v-Rel. These findings are interesting because blnk and other BCR components and signaling molecules are down-regulated in primary mediastinal large B-cell lymphomas and Hodgkin's lymphomas, which depend on c-Rel for survival, and are consistent with the tumor suppressor function of BLNK. Overall, our results indicate that down-regulation of BLNK and BCAP is an important contributing factor to the malignant transformation of lymphocytes by Rel and suggest that gene repression may be as important as transcriptional activation for Rel's transforming activity.
Collapse
Affiliation(s)
- Nupur Gupta
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
6
|
Hrdlicková R, Nehyba J, Liss AS, Bose HR. Mechanism of telomerase activation by v-Rel and its contribution to transformation. J Virol 2007; 80:281-95. [PMID: 16352553 PMCID: PMC1317554 DOI: 10.1128/jvi.80.1.281-295.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomerase is activated during the transformation of lymphoid cells and fibroblasts by v-Rel, the oncogenic member of the Rel/NF-kappaB family of transcription factors. v-Rel-transformed cell lines have longer telomeres than untransformed chicken lymphoid cells and have high levels of telomerase activity. v-Rel-mediated activation of telomerase is achieved by multiple mechanisms. The expression of the gene encoding the catalytic subunit of telomerase (TERT) was directly upregulated by v-Rel. Moreover, the expression of v-Rel altered the ratio of alternatively spliced and full-length TERT transcripts in favor of the full-length forms. The activation of telomerase by v-Rel in lymphocytes was also accompanied by inactivation of nuclear inhibitors. The inhibition of telomerase activity in v-Rel-transformed cell lines led to apoptosis within 24 h. The expression of v-Rel in a macrophage cell line resulted in elevated levels of reactive oxygen species (ROS), increased telomerase activity, and increased sensitivity to telomerase inhibitors. In contrast, the ectopic expression of TERT decreased the extent of apoptosis induced by ROS. The activation of telomerase by v-Rel may, therefore, partially protect the transformed cells from apoptosis induced by ROS.
Collapse
Affiliation(s)
- Radmila Hrdlicková
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX 78712-1095, USA
| | | | | | | |
Collapse
|
7
|
Fan Y, Gélinas C. An optimal range of transcription potency is necessary for efficient cell transformation by c-Rel to ensure optimal nuclear localization and gene-specific activation. Oncogene 2006; 26:4038-43. [PMID: 17173064 DOI: 10.1038/sj.onc.1210164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
c-Rel is overexpressed in several B-cell lymphomas and c-rel gene overexpression can transform primary chicken lymphoid cells and induce tumors in animals. Although c-Rel is generally a stronger transcriptional activator than its viral derivative v-Rel, its oncogenic activity is significantly weaker. Among the mutations acquired during c-Rel's evolution into v-Rel are deletion of c-Rel's transactivation domain 2 (cTAD2) and mutations in cTAD1. Given the critical role of the Rel TADs in cell transformation, we investigated how mutations in c-Rel's cTAD1 and cTAD2 contribute to its oncogenicity and that of v-Rel. Mutations in cTAD2 noticeably increased c-Rel's transforming activity by promoting its nuclear localization and gene-specific transactivation, despite an overall decrease in kappaB site-dependent transactivation potency. Conversely, substitution of vTAD by cTAD1 increased v-Rel's transactivation and transforming efficiencies, whereas its substitution by the stronger cTAD2 compromised activation of mip-1beta but not irf-4 and was detrimental to cell transformation. These results suggest that the Rel TADs differentially contribute to gene-specific activation and that an optimal range of transcription potency is necessary for efficient transformation. These findings may have important implications for understanding how Rel TAD mutations can lead to a more oncogenic phenotype.
Collapse
Affiliation(s)
- Y Fan
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5638, USA
| | | |
Collapse
|
8
|
Panwalkar A, Verstovsek S, Giles F. Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies. Cancer 2004; 100:1578-89. [PMID: 15073843 DOI: 10.1002/cncr.20182] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a collective term that refers to a small class of dimeric transcription factors for a number of genes, including growth factors, angiogenesis modulators, cell-adhesion molecules, and antiapoptotic factors. Although most NF-kappaB proteins promote transcription, some act as inactivating or repressive complexes. The most common p50-RelA (p65) dimer known "specifically" as NF-kappaB, is relatively abundant, controls the expression of numerous genes, and exists as an inactive cytoplasmic complex bound to inhibitory proteins of the NF-kappaB inhibitor (IkappaB) family. The inactive NF-kappaB-IkappaB complex is activated by a variety of stimuli, including proinflammatory cytokines, mitogens, growth factors, and stress-inducing agents. The release of NF-kappaB facilitates its translocation to the nucleus, where it promotes cell survival by initiating the transcription of genes encoding stress-response enzymes, cell-adhesion molecules, proinflammatory cytokines, and antiapoptotic proteins. Constitutive activation of NF-kappaB in the nucleus is observed in some hematologic disorders. With the recent approval of bortezomib for patients with advanced multiple myeloma, NF-kappaB modulation is likely to be a therapeutic endeavor of increasing interest in coming years.
Collapse
Affiliation(s)
- Amit Panwalkar
- Section of Developmental Therapeutics, Department of Leukemia, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
9
|
Fan Y, Rayet B, Gélinas C. Divergent C-terminal transactivation domains of Rel/NF-κB proteins are critical determinants of their oncogenic potential in lymphocytes. Oncogene 2003; 23:1030-42. [PMID: 14647412 DOI: 10.1038/sj.onc.1207221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
rel/nf-kappaB genes are amplified, overexpressed, or constitutively activated in many human hematopoietic tumors; however, the molecular mechanisms by which they contribute to tumorigenesis remain to be determined. Here, we explored the oncogenic potential of cellular Rel/NF-kappaB proteins in vitro and in vivo. We show that overexpression of wild-type mouse and human c-rel genes suffices to malignantly transform primary spleen cells in stringent soft agar assays and produce fatal tumors in vivo. In contrast relA and a constitutively active form of IKKbeta did not. Importantly, a hybrid RelA protein with its C-terminal transactivation domain substituted by that of v-Rel was potently oncogenic in vitro and in vivo. The transactivation domain of v-Rel selectively conferred an oncogenic phenotype upon the Rel homology domain (RHD) of RelA, but not to the more divergent RHDs of p50/NF-kappaB1, p52/NF-kappaB2, or RelB. Collectively, our results highlight important differences in the intrinsic oncogenic activity of mammalian c-Rel and RelA proteins, and indicate that critical determinants of their differential oncogenicity reside in their divergent transactivation domains. These findings provide experimental evidence for a role of mammalian Rel/NF-kappaB factors in leukemia/lymphomagenesis in an in vivo animal model, and are consistent with the implication of c-rel in many human lymphomas.
Collapse
Affiliation(s)
- Yongjun Fan
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854-5638, USA
| | | | | |
Collapse
|
10
|
Starczynowski DT, Reynolds JG, Gilmore TD. Deletion of either C-terminal transactivation subdomain enhances the in vitro transforming activity of human transcription factor REL in chicken spleen cells. Oncogene 2003; 22:6928-36. [PMID: 14534540 DOI: 10.1038/sj.onc.1206801] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The REL gene is amplified in many human B-cell lymphomas and we have previously shown that expression of REL from a retroviral vector can malignantly transform chicken spleen cells in vitro. To identify REL protein functions necessary for malignant transformation, we have performed deletion analysis on REL sequences encoding residues of two C-terminal subdomains that are involved in transcriptional activation. We find that deletion of both C-terminal transactivation subdomains abolishes the ability of REL to transform chicken spleen cells in vitro. In contrast, deletion of either transactivation subdomain alone, which reduces the transactivation ability of REL, enhances the transforming activity of REL. Transforming REL mutants missing C-terminal sequences can also be selected at a low frequency in vitro. The REL transactivation domain can be functionally replaced in transformation assays by a portion of the VP16 transactivation domain that activates at a level similar to REL-transforming mutants. We also find that deletion of 29 C-terminal amino acids causes the subcellular localization of REL to change from cytoplasmic to nuclear in chicken embryo fibroblasts. In contrast, wild-type REL and all transforming REL mutants are located primarily in the cytoplasm of transformed spleen cells. Nevertheless, treatment of transformed spleen cells with leptomycin B causes wild-type REL and two REL mutants to relocalize to the nucleus, and nuclear extracts from these transformed cells contain REL DNA-binding activity. Taken together, these results suggest the following: (1) that REL must activate transcription to transform cells in vitro; (2) that a reduced level of transactivation enhances the oncogenicity of REL; (3) that REL shuttles from the cytoplasm to the nucleus in transformed chicken spleen cells; and (4) that mutations in REL, in addition to amplifications, could activate its oncogenicity in human lymphomas.
Collapse
|
11
|
Nehyba J, Hrdlicková R, Burnside J, Bose HR. A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol Cell Biol 2002; 22:3942-57. [PMID: 11997525 PMCID: PMC133824 DOI: 10.1128/mcb.22.11.3942-3957.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cloning and functional characterization of a novel interferon regulatory factor (IRF), IRF-10, are described. IRF-10 is most closely related to IRF-4 but differs in both its constitutive and inducible expression. The expression of IRF-10 is inducible by interferons (IFNs) and by concanavalin A. In contrast to that of other IRFs, the inducible expression of IRF-10 is characterized by delayed kinetics and requires protein synthesis, suggesting a unique role in the later stages of an antiviral defense. Accordingly, IRF-10 is involved in the upregulation of two primary IFN-gamma target genes (major histocompatibility complex [MHC] class I and guanylate-binding protein) and interferes with the induction of the type I IFN target gene for 2',5'-oligo(A) synthetase. IRF-10 binds the interferon-stimulated response element site of the MHC class I promoter. In contrast to that of IRF-1, which has some of the same functional characteristics, the expression of IRF-10 is not cytotoxic for fibroblasts or B cells. The expression of IRF-10 is induced by the oncogene v-rel, the proto-oncogene c-rel, and IRF-4 in a tissue-specific manner. Moreover, v-Rel and IRF-4 synergistically cooperate in the induction of IRF-10 in fibroblasts. The level of IRF-10 induction in lymphoid cell lines by Rel proteins correlates with Rel transformation potential. These results suggest that IRF-10 plays a role in the late stages of an immune defense by regulating the expression some of the IFN-gamma target genes in the absence of a cytotoxic effect. Furthermore, IRF-10 expression is regulated, at least in part, by members of the Rel/NF-kappa B and IRF families.
Collapse
Affiliation(s)
- Jirí Nehyba
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095,USA
| | | | | | | |
Collapse
|
12
|
Liss AS, Bose HR. Mutational analysis of the v-Rel dimerization interface reveals a critical role for v-Rel homodimers in transformation. J Virol 2002; 76:4928-39. [PMID: 11967310 PMCID: PMC136140 DOI: 10.1128/jvi.76.10.4928-4939.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The v-rel oncogene encoded by reticuloendotheliosis virus strain T is the acutely transforming member of the Rel/NF-kappaB family of transcription factors. In v-Rel-transformed cells, v-Rel exists as homodimers or heterodimers with the endogenous Rel/NF-kappaB proteins c-Rel, NF-kappaB1, NF-kappaB2, and RelA. To examine the contribution of these complexes to v-Rel-mediated transformation, mutations were introduced into the dimerization interface of v-Rel to generate v-Rel mutants with selective dimerization properties. Nine mutants are described in this study that are defective in homodimer and/or heterodimer formation with specific Rel/NF-kappaB family members. Viruses expressing mutants that failed to homodimerize but were able to form heterodimeric complexes were unable to transform splenic lymphocytes in vitro, indicating that the dimerization of v-Rel with endogenously expressed Rel/NF-kappaB proteins is not in itself sufficient for transformation. In addition, two partially transforming mutants were identified that exhibited an impaired ability to form homodimers. Sequence analysis of the proviral DNA from cells transformed by these mutants revealed the presence of multiple secondary mutations in sequences responsible for dimerization and DNA binding. Two of these mutations either enhanced or restored the ability of these proteins to bind DNA as a homodimer. Viruses expressing these proteins transformed cells at levels comparable to or slightly less than v-Rel, suggesting that a threshold level of DNA binding by v-Rel homodimers is required for transformation.
Collapse
Affiliation(s)
- Andrew S Liss
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712-1095, USA
| | | |
Collapse
|
13
|
Hrdlicková R, Nehyba J, Bose HR. Interferon regulatory factor 4 contributes to transformation of v-Rel-expressing fibroblasts. Mol Cell Biol 2001; 21:6369-86. [PMID: 11533227 PMCID: PMC99785 DOI: 10.1128/mcb.21.19.6369-6386.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The avian homologue of the interferon regulatory factor 4 (IRF-4) and a novel splice variant lacking exon 6, IRF-4DeltaE6, were isolated and characterized. Chicken IRF-4 is expressed in lymphoid organs, less in small intestine, and lungs. IRF-4DeltaE6 mRNA, though less abundant than full-length IRF-4, was detected in lymphoid tissues, with the highest levels observed in thymic cells. IRF-4 is highly expressed in v-Rel-transformed lymphocytes, and the expression of IRF-4 is increased in v-Rel- and c-Rel-transformed fibroblasts relative to control cells. The expression of IRF-4 from retrovirus vectors morphologically transformed primary fibroblasts, increased their saturation density, proliferation, and life span, and promoted their growth in soft agar. IRF-4 and v-Rel cooperated synergistically to transform fibroblasts. The expression of IRF-4 antisense RNA eliminated formation of soft agar colonies by v-Rel and reduced the proliferation of v-Rel-transformed cells. v-Rel-transformed fibroblasts produced interferon 1 (IFN1), which inhibits fibroblast proliferation. Infection of fibroblasts with retroviruses expressing v-Rel resulted in an increase in the mRNA levels of IFN1, the IFN receptor, STAT1, JAK1, and 2',5'-oligo(A) synthetase. The exogenous expression of IRF-4 in v-Rel-transformed fibroblasts decreased the production of IFN1 and suppressed the expression of several genes in the IFN transduction pathway. These results suggest that induction of IRF-4 expression by v-Rel likely facilitates transformation of fibroblasts by decreasing the induction of this antiproliferative pathway.
Collapse
Affiliation(s)
- R Hrdlicková
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095, USA
| | | | | |
Collapse
|
14
|
Barkett M, Dooher JE, Lemonnier L, Simmons L, Scarpati JN, Wang Y, Gilmore TD. Three mutations in v-Rel render it resistant to cleavage by cell-death protease caspase-3. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1526:25-36. [PMID: 11287119 DOI: 10.1016/s0304-4165(01)00092-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The retroviral oncoprotein v-Rel is a transcriptional activator in the Rel/NF-kappa B family. v-Rel causes rapidly fatal lymphomas in young chickens, and transforms and immortalizes chicken lymphoid cells in vitro. Several mutations that have enhanced the oncogenicity of v-Rel have been selected during in vitro and in vivo passage of v-Rel-containing retroviruses. In this report, we show that the C-terminal deletion and two point mutations (Asp-->Gly at residue 91 and Asp-->Asn at residue 437) in v-Rel make it resistant to cleavage by the cell-death protease caspase-3. In contrast, c-Rel, which has Asp residues at these sites, can be cleaved by caspase-3 in vitro as well as in vivo in cells induced to undergo apoptosis. We have characterized activities of v-Rel mutants with recreated single caspase-3 cleavage sites, two cleavage sites, or an introduced artificial cleavage site. All of these mutant v-Rel proteins are sensitive to caspase-3 cleavage in vitro, and show wild-type activity in terms of nuclear localization in chicken fibroblasts and DNA binding in vitro. Moreover, all caspase-3-sensitive v-Rel mutants transform chicken spleen cells in vitro and induce fatal lymphoid tumors in vivo to approximately the same extent as wild-type v-Rel. As with v-Rel mutants, caspase-3-resistant c-Rel mutants behave similarly to caspase-3-sensitive wild-type c-Rel in terms of DNA binding, transcriptional activation, in vitro transformation, and tumorigenicity. Mammalian c-Rel proteins can also be cleaved by caspase-3 in vitro, and a c-Rel mutant from a human pre-T lymphoma cell line is less sensitive than wild-type human c-Rel to cleavage by caspase-3. Taken together, these results demonstrate that specific mutations render oncogenic forms of Rel proteins resistant to cleavage by a cell-death caspase; however, the biological relevance of this resistance remains unclear. Nevertheless, to our knowledge, this is the first demonstration of mutations in caspase-3 recognition sites occurring during the evolution of an oncogenic protein.
Collapse
Affiliation(s)
- M Barkett
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The avian Rev-T retrovirus encodes the v-Rel oncoprotein, which is a member of the Rel/NF-kappaB transcription factor family. v-Rel induces a rapidly fatal lymphoma/leukemia in young birds, and v-Rel can transform and immortalize a variety of avian cell types in vitro. Although Rel/NF-kappaB transcription factors have been associated with oncogenesis in mammals, v-Rel is the only member of this family that is frankly oncogenic in animal model systems. The potent oncogenicity of v-Rel is the consequence of a number of mutations that have altered its activity and regulation: for example, certain mutations decrease its ability to be regulated by IkappaBalpha, change its DNA-binding site specificity, and endow it with new transactivation properties. The study of v-Rel will continue to increase our knowledge of how cellular Rel proteins contribute to oncogenesis by affecting cell growth, altering cell-cycle regulation, and blocking apoptosis. This review will discuss biological and molecular activities of v-Rel, with particular attention to how these activities relate to structure - function aspects of the Rel/NF-kappaB transcription factors.
Collapse
Affiliation(s)
- T D Gilmore
- Biology Department, Boston University, 5 Cummington Street, Boston, Massachusetts, MA 02215-2406, USA
| |
Collapse
|
16
|
Abstract
Rel/NF-kappaB transcription factors are key regulators of immune, inflammatory and acute phase responses and are also implicated in the control of cell proliferation and apoptosis. Remarkable progress has been made in understanding the signal transduction pathways that lead to the activation of Rel/NF-kappaB factors and the consequent induction of gene expression. Evidence linking deregulated Rel/NF-kappaB activity to oncogenesis in mammalian systems has emerged in recent years, consistent with the acute oncogenicity of the viral oncoprotein v-Rel in animal models. Chromosomal amplification, overexpression and rearrangement of genes coding for Rel/NF-kappaB factors have been noted in many human hematopoietic and solid tumors. Persistent nuclear NF-kappaB activity was also described in several human cancer cell types, as a result of constitutive activation of upstream signaling kinases or mutations inactivating inhibitory IkappaB subunits. Studies point to a correlation between the activation of cellular gene expression by Rel/NF-kappaB factors and their participation in the malignant process. Experiments implicating NF-kappaB in the control of the apoptotic response also support a role in oncogenesis and in the resistance of tumor cells to chemotherapy. This review focuses on the status of the rel, nfkb and ikb genes and their activity in human tumors and their association with the onset or progression of malignancies.
Collapse
Affiliation(s)
- B Rayet
- Advanced Biotechnology and Medicine, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, NJ 08854-5638, USA
| | | |
Collapse
|
17
|
Chen E, Hrdlickova R, Nehyba J, Longo DL, Bose HR, Li CC. Degradation of proto-oncoprotein c-Rel by the ubiquitin-proteasome pathway. J Biol Chem 1998; 273:35201-7. [PMID: 9857058 DOI: 10.1074/jbc.273.52.35201] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-rel proto-oncogene product, c-Rel, belongs to the Rel/NF-kappaB transcription factor family, which regulates a large variety of cellular functions. The activation of NF-kappaB involves the degradation of the inhibitor, IkappaB, through the ubiquitin-proteasome (Ub-Pr)-mediated pathway. Here we report that the turnover of c-Rel is also regulated by the Ub-Pr pathway, thus adding another level of complexity to the regulation of NF-kappaB. High molecular weight ubiquitinated c-Rel conjugates are detected in cells and accumulate in cells treated with proteasome inhibitors. In a cell-free in vitro degradation assay, c-Rel is degraded specifically through the Ub-Pr pathway. N-terminally truncated c-Rel is readily degraded, implying the dispensability of N-terminal sequence; in contrast, a series of deletion mutants missing C-terminal sequences display a reduced susceptibility to the degradation. Interestingly, the sequence between residues 118 and 171 of c-Rel, i.e. the region immediately following the c-Rel/v-Rel homology domain, appears to play an important role in mediating ubiquitin conjugation and the subsequent degradation. Together with our previous study showing an elevated tumorigenic potential for C-terminally truncated mutants, our data suggest that the C-terminal domain of c-Rel plays an important role in mediating c-Rel degradation and growth control.
Collapse
Affiliation(s)
- E Chen
- Intramural Research Support Program, SAIC Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
18
|
Chen E, Li CC. Association of Cdk2/cyclin E and NF-kappa B complexes at G1/S phase. Biochem Biophys Res Commun 1998; 249:728-34. [PMID: 9731206 DOI: 10.1006/bbrc.1998.9224] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NF-kappa B/Rel family plays a pivotal role in a wide variety of cellular functions including growth, development, apoptosis and stress responses. Recent studies indicated that NF-kappa B is also involved in the cell cycle regulation, and high expression of c-Rel results in a cell cycle arrest at the G1/S-phase transition (Bash, J., Zong, W,-X., and Gelinas, C. (1997) Mol. Cell. Biol. 17, 6526-6536). Here we report the detection of Cdk2, a critical kinase responsible for the G1/S-phase transition, in immune complexes precipitated by the NF-kappa B antisera. Cdk2 and NF-kappa B association was detected by co-precipitation in the nuclear lysates of the G1/S-phase cells, and was found in cultured cell lines and in T cells purified from human peripheral blood. Using an affinity column containing the C-terminal peptide of human c-Rel, we isolated cyclin E, the regulatory subunit of the Cdk2 complex, as a c-Rel-binding protein. These findings support and provide physical basis for the involvement of NF-kappa B in the G1/S-phase cell cycle control, and suggest an important role played by the C-terminal sequence of c-Rel.
Collapse
Affiliation(s)
- E Chen
- Intramural Research Support Program, SAIC Frederick, NCI-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | |
Collapse
|
19
|
You M, Ku PT, Hrdlicková R, Bose HR. ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol Cell Biol 1997; 17:7328-41. [PMID: 9372964 PMCID: PMC232589 DOI: 10.1128/mcb.17.12.7328] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The oncoprotein v-Rel, a member of the Rel/NF-kappaB family of transcription factors, induces neoplasias and inhibits apoptosis. To identify differentially regulated cellular genes and to evaluate their relevance to transformation and apoptosis in v-Rel-transformed cells, mRNA differential display has been used. One of the recovered cDNAs corresponds to a gene that was highly expressed in v-Rel-transformed fibroblasts. Analysis of the isolated full-length cDNA of a chicken inhibitor-of-apoptosis protein (ch-IAP1) revealed that it encodes a 68-kDa protein that is highly homologous to members of the IAP family, such as human c-LAP1. Like other IAPs, ch-IAP1 contains the N-terminal baculovirus IAP repeats and C-terminal RING finger motifs. Northern blot analysis identified a 3.3-kb ch-IAP1 transcript expressed at relatively high levels in the spleen, thymus, bursa, intestine, and lungs. Expression of v-Rel in fibroblasts, a B-cell line, and spleen cells up-regulated the expression of ch-IAP1. In contrast, ch-IAP1 expression levels were low in chicken cell lines transformed by several other unrelated tumor viruses. ch-IAP1 was expressed predominantly in the cytoplasm of the v-Rel-transformed cells. ch-IAP1 suppressed mammalian cell apoptosis induced by the overexpression of the interleukin-1-converting enzyme. Expression of exogenous ch-IAP1 in temperature-sensitive v-Rel transformed spleen cells inhibited apoptosis of these cells at the nonpermissive temperature. Collectively, these results suggest that ch-IAP1 is induced during the v-Rel-mediated transformation process and functions as a suppressor of apoptosis in v-Rel-transformed cells.
Collapse
Affiliation(s)
- M You
- Department of Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, 78712-1095, USA
| | | | | | | |
Collapse
|
20
|
Rottjakob EM, Sachdev S, Leanna CA, McKinsey TA, Hannink M. PEST-dependent cytoplasmic retention of v-Rel by I(kappa)B-alpha: evidence that I(kappa)B-alpha regulates cellular localization of c-Rel and v-Rel by distinct mechanisms. J Virol 1996; 70:3176-88. [PMID: 8627798 PMCID: PMC190181 DOI: 10.1128/jvi.70.5.3176-3188.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Association of c-Rel with the inhibitor of kappaB-alpha (IkappaB-alpha) protein regulates both cellular localization and DNA binding. The ability of v-Rel, the oncogenic viral counterpart of avian c-Rel, to evade regulation by p40, the avian IkappaB-alpha protein, contributes to v-Rel-mediated oncogenesis. The yeast two-hybrid system was utilized to dissect Rel:IkappaB-alpha interactions in vivo. We find that distinct domains in c-Rel and v-Rel are required for association with p40. Furthermore, while the ankyrin repeat domain of p40 is sufficient for association with c-Rel, both the ankyrin repeat domain and the PEST domain are required for association with v-Rel. Two amino acid differences between c-Rel and v-Rel that are principally responsible for PEST-dependent association of v-Rel with p40 were identified. These same amino acids were principally responsible for PEST-dependent cytoplasmic retention of v-Rel by p40. The presence of mutations in c-Rel that were sufficient to confer PEST-dependent association of the mutant c-Rel protein with p40 did not increase the weak oncogenicity of c-Rel. However, the introduction of these two c-Rel-derived amino acids into v-Rel markedly reduced the oncogenicity of v-Rel. Deletion of the NLS of either c-Rel or v-Rel did not abolish association with p40, but did confer PEST-dependent association of c-Rel with p40. Surprisingly, deletion of the nuclear localization signal in v-Rel did not affect oncogenicity by v-Rel. Analysis of several mutant c-Rel and v-Rel proteins demonstrated that association of Rel proteins with p40 is necessary but not sufficient for cytoplasmic retention. These results are not consistent with the hypothesis that p40 regulates cellular localization of v-Rel and c-Rel by the same mechanism. Rather, these results support the hypothesis that p40 regulates cellular localization of v-Rel and c-Rel by distinct mechanisms.
Collapse
Affiliation(s)
- E M Rottjakob
- Department of Biochemistry, University of Missouri, Columbia 65212, USA
| | | | | | | | | |
Collapse
|
21
|
White DW, Pitoc GA, Gilmore TD. Interaction of the v-Rel oncoprotein with NF-kappaB and IkappaB proteins: heterodimers of a transformation-defective v-Rel mutant and NF-2 are functional in vitro and in vivo. Mol Cell Biol 1996; 16:1169-78. [PMID: 8622661 PMCID: PMC231099 DOI: 10.1128/mcb.16.3.1169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The v-Rel oncoprotein of the avian Rev-T retrovirus is a member of the Rel/NF-kappa B family of transcription factors. The mechanism by which v-Rel malignantly transforms chicken spleen cells is not precisely known. To gain a better understanding of functions needed for transformation by v-Rel, we have now characterized the activities of mutant v-Rel proteins that are defective for specific protein-protein interactions. Mutant v-delta NLS, which has a deletion of the primary v-Rel nuclear localizing sequence, does not interact efficiently with I kappa B-alpha but still transforms chicken spleen cells approximately as well as wild-type v-Rel, indicating that interaction with I kappa B-alpha is not essential for the v-Rel transforming function. A second v-Rel mutant, v-SPW, has been shown to be defective for the formation of homodimers, DNA binding, and transformation. However, we now find that v-SPW can form functional DNA-binding heterodimers in vitro and in vivo with the cellular protein NF-kappa B p-52. Most strikingly, coexpression of v-SPW and p52 from a retroviral vector can induce the malignant transformation of chicken spleen cells, whereas expression of either protein alone cannot. Our results are most consistent with a model wherein Rel homodimers or heterodimers must bind DNA and alter gene expression in order to transform lymphoid cells.
Collapse
Affiliation(s)
- D W White
- Department of Biology, Boston Univeristy, Massachusetts 02215, USA
| | | | | |
Collapse
|
22
|
Hrdlicková R, Nehyba J, Bose HR. Mutations in the DNA-binding and dimerization domains of v-Rel are responsible for altered kappa B DNA-binding complexes in transformed cells. J Virol 1995; 69:3369-80. [PMID: 7745683 PMCID: PMC189049 DOI: 10.1128/jvi.69.6.3369-3380.1995] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The c-rel proto-oncogene encodes a member of the Rel/NF-kappa B family of transcription factors. The oncogenic viral form, v-rel, transduced by avian reticuloendotheliosis virus T, induces lymphoid tumors. v-Rel transformation may be mediated directly by binding of v-Rel to cognate DNA sites, resulting in altered gene expression, and/or indirectly by releasing Rel/NF-kappa B transcription factors from cytoplasmic retention molecules, resulting in their translocation to the nucleus and the inappropriate expression of genes under kappa B control. v-Rel-transformed cell lines of different phenotypes contained v-Rel as well as endogenous kappa B DNA-binding proteins in nuclear extracts. Kinetic analysis with avian leukosis virus-transformed B-cell lines expressing v-Rel or c-Rel indicated that the presence of endogenous kappa B DNA-binding proteins in the nucleus is temporally correlated with the relocalization of v-Rel to the cytoplasm. Supershift analysis of these DNA-binding complexes revealed that v-Rel was present in all of the nuclear DNA-binding complexes heterodimerized with c-Rel, NF-kappa B1, and other proteins. In contrast, c-Rel-transformed cells exhibited a less-complex pattern of nuclear kappa B DNA-binding complexes, and the nuclear appearance of these endogenous complexes was not observed. Studies with c-/v-Rel hybrids suggest that the induction of the endogenous kappa B DNA-binding complexes is the result of the mutations in the C-terminal region of the Rel homology (RH) domain of v-Rel. Moreover, v-Rel differed from c-Rel in its DNA-binding specificity. The altered DNA-binding specificity of v-Rel was associated with mutations located in the N-terminal part of the RH domain of v-Rel. These results suggest that two different regions of v-Rel (both located in the RH domain) influence the formation of kappa B DNA-binding complexes differently.
Collapse
Affiliation(s)
- R Hrdlicková
- Department of Microbiology, University of Texas at Austin 78712-1095, USA
| | | | | |
Collapse
|
23
|
Zhang G, Slaughter C, Humphries EH. v-rel Induces ectopic expression of an adhesion molecule, DM-GRASP, during B-lymphoma development. Mol Cell Biol 1995; 15:1806-16. [PMID: 7862170 PMCID: PMC230405 DOI: 10.1128/mcb.15.3.1806] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In an effort to identify aberrantly expressed genes in v-rel-induced tumors, monoclonal antibodies were developed that reacted selectively with avian B-cell tumors. One antibody, HY78, immunoprecipitated a 120-kDa glycoprotein (p120) from cells that express v-rel. N-terminal amino acid sequencing of p120 identified a 27-amino-acid sequence that is also present in DM-GRASP, an adhesion molecule belonging to the immunoglobulin superfamily. Evidence from tissue distribution, immunological cross-reaction, PCR amplification, cDNA cloning, and DNA sequence shows that p120 is indeed DM-GRASP. Northern (RNA) analysis using a probe from the DM-GRASP gene identified a 5.3-kb transcript in mRNA from bursa, thymus, and brain as well as from v-rel-induced B-cell lymphomas but not from bursal B cells. The induction of this protein by v-rel during the development of bursal B-cell lymphomas appears, therefore, to be ectopic in nature. Overexpression of v-rel or c-rel in chicken embryonic fibroblasts, B-cell lines, and spleen mononuclear cells induces the expression of DM-GRASP. The ratio of DM-GRASP to v-Rel was fivefold higher than that of DM-GRASP/c-Rel in a B-cell line, DT95. Interestingly, the presence of HY78 antibody inhibits the in vitro proliferation of v-rel-transformed cells but not cells that immortalized by myc. These data suggest that DM-GRASP is one of the genes induced during v-rel-mediated tumor development and that DM-GRASP may be involved in the growth of v-rel tumor cells.
Collapse
MESH Headings
- Activated-Leukocyte Cell Adhesion Molecule
- Amino Acid Sequence
- Animals
- Antibodies
- Antibodies, Monoclonal
- B-Lymphocytes/metabolism
- Base Sequence
- Blotting, Western
- Brain/immunology
- Brain/metabolism
- Cell Adhesion Molecules, Neuronal/biosynthesis
- Cell Adhesion Molecules, Neuronal/isolation & purification
- Cell Line
- Chick Embryo
- DNA Primers
- Epithelium/immunology
- Epithelium/metabolism
- Extracellular Matrix Proteins/biosynthesis
- Extracellular Matrix Proteins/isolation & purification
- Gene Library
- Glycoproteins/biosynthesis
- Glycoproteins/isolation & purification
- Humans
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphoma, B-Cell/immunology
- Mice
- Mice, Inbred BALB C
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/isolation & purification
- Oncogenes
- Organ Specificity
- Polymerase Chain Reaction
- RNA, Messenger/biosynthesis
- Restriction Mapping
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- G Zhang
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown 26506-9177
| | | | | |
Collapse
|
24
|
Hrdlicková R, Nehyba J, Roy A, Humphries EH, Bose HR. The relocalization of v-Rel from the nucleus to the cytoplasm coincides with induction of expression of Ikba and nfkb1 and stabilization of I kappa B-alpha. J Virol 1995; 69:403-13. [PMID: 7983736 PMCID: PMC188588 DOI: 10.1128/jvi.69.1.403-413.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The v-Rel oncogene induces the expression of major histocompatibility complex class I and II proteins and the interleukin-2 receptor more efficiently than does c-Rel (R. Hrdlicková, J. Nehyba, and E. H. Humphries, J. Virol. 68:308-319, 1994). The kinetics with which these immunoregulatory receptors are induced in B- and T-lymphoid cell lines and chicken embryo fibroblast cultures expressing c-Rel or v-Rel have been examined. v-Rel induced the expression of major histocompatibility complex classes I and II and interleukin-2 receptor more efficiently than did c-Rel at later times after infection. In all three cell types, this increased efficiency was accompanied by a shift in the majority of v-Rel from the nucleus of the cytoplasm. The concomitant relocalization of v-Rel was also demonstrated during the in vitro transformation of spleen cells. The translocation coincided with increased steady-state levels of I kappa B-alpha. Coninfection by retroviral vectors expressing v-Rel, I kappa B-alpha, or NF-kappa B1 demonstrated that either I kappa B-alpha can contribute to the shift of v-Rel to the cytoplasmic compartment. The induction of nfkb1 and Ikba mRNA and the stabilization of I kappa B-alpha by v-Rel were shown to be responsible for these effects. In comparison with c-Rel, the expression of v-Rel was associated with lower levels of transcription of these genes. However, the ability of v-Rel to stabilize I kappa B-alpha remained unchanged. The ability of v-Rel to stabilize I kappa B-alpha but poorly induce Ikba mRNA expression relative to c-Rel may play a role in regulating gene expression, thereby leading to transformation.
Collapse
Affiliation(s)
- R Hrdlicková
- Department of Microbiology, University of Texas at Austin 78712-1095
| | | | | | | | | |
Collapse
|
25
|
Abstract
We observed that two strains of REV-T differ in the ability to transform bursal cells in vitro. REV-TW, with v-rel derived from a well-characterized clone and considered the prototype of the wild type, fails to generate colonies in soft agar. In contrast, REV-S2A3, derived from the S2A3 cell line, readily transforms bursal cells. With PCR, a 1,591-bp fragment containing v-rel from the REV-S2A3 provirus was cloned into plasmid pREV-0. Except for the absence of v-rel, pREV-0 is identical to pREV-TW. Five clones of pREV-PCR, each produced by an independent amplification, were obtained. The REV-PCR viruses displayed the strong transforming phenotype of REV-S2A3. Two mutations were identified in the 5' region of v-rel from REV-PCR1 to REV-PCR5: a silent mutation and a G-to-T transversion, changing the alanine at position 40 to serine. To confirm the relevance of this amino acid substitution, a 478-bp fragment containing the mutations was exchanged between REV-TW and REV-PCR1. Only the mutant viruses were able to form large colonies of bursal cells in liquid culture and to generate bursal cell colonies in soft agar. When tested on splenocytes, the wild-type viruses induced predominantly non-B-cell colonies while the mutant viruses gave origin mainly to B-cell colonies. The above results indicate that the substitution of serine for alanine at position 40 of v-Rel enhances the ability of REV-T to transform B lymphocytes in vitro. This mutation is close to the DNA-binding region, and the variant v-Rel oncoprotein shows increased kappa B-binding activity, thus confirming the relevance of this property for transformation.
Collapse
Affiliation(s)
- P Romero
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown 26506-9162
| | | |
Collapse
|
26
|
Abstract
The c-rel proto-oncogene belongs to the NF-kappa B/rel and I kappa B gene families, which regulate several inducible processes, including self-defense/repair and embryogenesis. Transduction of the c-rel transcription factor by the avian retrovirus resulted in the formation of a highly oncogenic virus, reticuloendotheliosis virus strain T (REV-T), that encodes the oncogene v-rel. To examine the oncogenic potential of c-rel, we inserted it into a REV-T-based retroviral vector, rescued virus [REV-C(CSV)], and infected 1-day-old chicks. All birds developed tumors, and all cell lines established from REV-C-induced tumors expressed c-rel proteins that lacked C-terminal sequences. These proteins, responsible for both in vivo and in vitro cell proliferation, were apparently selected for their oncogenic potential. In order to examine the cooperation of C-terminal deletions with other oncogenic alterations in vivo, point mutations present in the N-terminal and middle regions of v-rel were analyzed by a similar protocol. The data obtained support four conclusions. (i) c-rel proteins bearing any of three single-amino-acid mutations present in the N-terminal portion of v-rel were sufficiently oncogenic to induce tumor development in the absence of additional mutations. (ii) Combining a mutation from the N-terminal region of v-rel with a deletion of the C-terminal sequences of c-rel increases the oncogenicity of the protein in an additive manner. (iii) Mutations present in the middle of v-rel cooperated synergistically with C-terminal deletions to produce highly transforming viruses. (iv) Deletion of c-rel produced a variety of transforming rel proteins with sizes that extended from 42 to 65 kDa. The most frequently isolated rel deletion was 62 kDa in size. To examine the basis for the selection of different rel mutants, their ability to induce immunoregulatory surface receptors was analyzed. The data revealed a correlation between the induction capacity of these mutants and their corresponding contribution to in vivo tumorigenic potential. Moreover, an analysis of the subcellular localization of different rel proteins revealed an inverse correlation between the size of the protein and the proportion in the nucleus of lymphoid cells.
Collapse
Affiliation(s)
- R Hrdlicková
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown 26506-9300
| | | | | |
Collapse
|