1
|
Lossouarn J, Beurrier E, Bouteau A, Moncaut E, Sir Silmane M, Portalier H, Zouari A, Cattoir V, Serror P, Petit MA. The virtue of training: extending phage host spectra against vancomycin-resistant Enterococcus faecium strains using the Appelmans method. Antimicrob Agents Chemother 2024; 68:e0143923. [PMID: 38591854 PMCID: PMC11210271 DOI: 10.1128/aac.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.
Collapse
Affiliation(s)
- Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elsa Beurrier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Astrid Bouteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Maria Sir Silmane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Heïdi Portalier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Asma Zouari
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
- Université de Rennes, INSERM, UMR_S1230 BRM, Rennes, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
2
|
Li Y, Huo Y, Liang L, Li D, Zhang Z, Yang H. Bacillus phage phi18-2 is a novel temperate virus with an unintegrated genome present in the cytoplasm of lysogenic cells as a linear phage-plasmid. Arch Virol 2024; 169:81. [PMID: 38519716 DOI: 10.1007/s00705-024-06014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024]
Abstract
Bacillus subtilis is a Gram-positive bacterium that is widely used in fermentation and in the pharmaceutical industry. Phage contamination occasionally occurs in various fermentation processes and causes significant economic loss. Here, we report the isolation and characterization of a temperate B. subtilis phage, termed phi18-2, from spore powder manufactured in a fermentation plant. Transmission electron microscopy showed that phi18-2 has a symmetrical polyhedral head and a long noncontractile tail. Receptor analysis showed that phi18-2 recognizes wall teichoic acid (WTA) for infection. The phage virions have a linear double-stranded DNA genome of 64,467 bp with identical direct repeat sequences of 309 bp at each end of the genome. In lysogenic cells, the phage genome was found to be present in the cytoplasm without integration into the host cell chromosome, and possibly as a linear phage-plasmid with unmodified ends. Our data may provide some insight into the molecular basis of the unique lysogenic cycle of phage phi18-2.
Collapse
Affiliation(s)
- Yutong Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yansheng Huo
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Li Liang
- Shandong Vland Biotech Co., Ltd., Shandong, 251700, China
| | - Donghang Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhiqiang Zhang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hongjiang Yang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
3
|
Zakharova YA, Ivashchenko IA, Bolgarova EV. To the question of the relevance of the development and prospects for the use of the bacteriophage <i>Streptococcus pneumoniae</i>. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction. The prevalence of Streptococcus pneumoniae strains causing invasive forms of pneumococcal infection and the growing rates of antibiotic resistance of individual serotypes of the pathogen pose a number of urgent and socially significant tasks the search for new antimicrobial agents for prevention and treatment.
Objective. To analyze the data of scientific publications of domestic and foreign authors on the problems of practical use and prospects for the development of the bacteriophage S. pneumoniae drug aimed at the actual serotypes of the pathogen.
Results. Analysis of literary sources in scientific electronic databases and publishing houses eLibrary.Ru, ScienceDirect, Scopus, PubMed, Springerlink, Wiley Online Library, Annual reviews allowed us to summarize information about four isolated lytic bacteriophages of S. pneumoniae and their endolysins, as well as about two lysogenic phages, to present data on the clinical efficacy of streptococcal bacteriophage in pneumococcal infection in animals and humans. The results of search queries on the most significant and widespread serotypes of S. pneumoniae in the territory of the Russian Federation have established the predominance in the structure of variants 19F, 14, 9V/A, 15 A/F, 6 A/B/C/D, 3 and 23F. Some of them are characterized by a high level of antibiotic resistance and cause invasive forms of the disease, and serotypes 15 A/F/C, 6 C/D are not represented in modern vaccines, which increases the relevance of the development and use of pneumococcal bacteriophage, including intraspecific typing of significant and common serotypes.
Conclusion. Based on the analysis of the current state of the issue of pneumococcal bacteriophages, the information obtained on the circulation of topical strains of S. pneumoniae on the territory of the Russian Federation and their serotype landscape, it is concluded that the development of the bacteriophage S. pneumoniae drug is relevant as a means of targeted action for the prevention, diagnosis and personalized therapy of human diseases of pneumococcal etiology.
Collapse
|
4
|
Martín-Galiano AJ, García E. Streptococcus pneumoniae: a Plethora of Temperate Bacteriophages With a Role in Host Genome Rearrangement. Front Cell Infect Microbiol 2021; 11:775402. [PMID: 34869076 PMCID: PMC8637289 DOI: 10.3389/fcimb.2021.775402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria. They are the most abundant biological entity on Earth (current estimates suggest there to be perhaps 1031 particles) and are found nearly everywhere. Temperate phages can integrate into the chromosome of their host, and prophages have been found in abundance in sequenced bacterial genomes. Prophages may modulate the virulence of their host in different ways, e.g., by the secretion of phage-encoded toxins or by mediating bacterial infectivity. Some 70% of Streptococcus pneumoniae (the pneumococcus)—a frequent cause of otitis media, pneumonia, bacteremia and meningitis—isolates harbor one or more prophages. In the present study, over 4000 S. pneumoniae genomes were examined for the presence of prophages, and nearly 90% were found to contain at least one prophage, either defective (47%) or present in full (43%). More than 7000 complete putative integrases, either of the tyrosine (6243) or serine (957) families, and 1210 full-sized endolysins (among them 1180 enzymes corresponding to 318 amino acid-long N-acetylmuramoyl-L-alanine amidases [LytAPPH]) were found. Based on their integration site, 26 different pneumococcal prophage groups were documented. Prophages coding for tRNAs, putative virulence factors and different methyltransferases were also detected. The members of one group of diverse prophages (PPH090) were found to integrate into the 3’ end of the host lytASpn gene encoding the major S. pneumoniae autolysin without disrupting it. The great similarity of the lytASpnand lytAPPH genes (85–92% identity) allowed them to recombine, via an apparent integrase-independent mechanism, to produce different DNA rearrangements within the pneumococcal chromosome. This study provides a complete dataset that can be used to further analyze pneumococcal prophages, their evolutionary relationships, and their role in the pathogenesis of pneumococcal disease.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
5
|
Schilling T, Hoppert M, Hertel R. Genomic Analysis of the Recent Viral Isolate vB_BthP-Goe4 Reveals Increased Diversity of φ29-Like Phages. Viruses 2018; 10:E624. [PMID: 30428528 PMCID: PMC6266182 DOI: 10.3390/v10110624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
We present the recently isolated virus vB_BthP-Goe4 infecting Bacillus thuringiensis HD1. Morphological investigation via transmission electron microscopy revealed key characteristics of the genus Phi29virus, but with an elongated head resulting in larger virion particles of approximately 50 nm width and 120 nm height. Genome sequencing and analysis resulted in a linear phage chromosome of approximately 26 kb, harbouring 40 protein-encoding genes and a packaging RNA. Sequence comparison confirmed the relation to the Phi29virus genus and genomes of other related strains. A global average nucleotide identity analysis of all identified φ29-like viruses revealed the formation of several new groups previously not observed. The largest group includes Goe4 and may significantly expand the genus Phi29virus (Salasvirus) or the Picovirinae subfamily.
Collapse
Affiliation(s)
- Tobias Schilling
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany.
| | - Michael Hoppert
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany.
| | - Robert Hertel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
6
|
Leprohon P, Gingras H, Ouennane S, Moineau S, Ouellette M. A genomic approach to understand interactions between Streptococcus pneumoniae and its bacteriophages. BMC Genomics 2015; 16:972. [PMID: 26582495 PMCID: PMC4652380 DOI: 10.1186/s12864-015-2134-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Bacteriophage replication depends on bacterial proteins and inactivation of genes coding for such host factors should interfere with phage infection. To gain further insights into the interactions between S. pneumoniae and its pneumophages, we characterized S. pneumoniae mutants selected for resistance to the virulent phages SOCP or Dp-1. RESULTS S. pneumoniae R6-SOCP(R) and R6-DP1(R) were highly resistant to the phage used for their selection and no cross-resistance between the two phages was detected. Adsorption of SOCP to R6-SOCP(R) was partly reduced whereas no difference in Dp-1 adsorption was noted on R6-DP1(R). The replication of SOCP was completely inhibited in R6-SOCP(R) while Dp-1 was severely impaired in R6-DP1(R). Genome sequencing identified 8 and 2 genes mutated in R6-SOCP(R) and R6-DP1(R), respectively. Resistance reconstruction in phage-sensitive S. pneumoniae confirmed that mutations in a GntR-type regulator, in a glycerophosphoryl phosphodiesterase and in a Mur ligase were responsible for resistance to SOCP. The three mutations were additive to increase resistance to SOCP. In contrast, resistance to Dp-1 in R6-DP1(R) resulted from mutations in a unique gene coding for a type IV restriction endonuclease. CONCLUSION The characterization of mutations conferring resistance to pneumophages highlighted that diverse host genes are involved in the replication of phages from different families.
Collapse
Affiliation(s)
- Philippe Leprohon
- Centre de recherche en Infectiologie du Centre de Recherche du CHU de Québec, Université Laval, 2705 Boul. Laurier, Québec, QC, Canada, , G1V 4G2. .,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, Canada, , G1V 0A6.
| | - Hélène Gingras
- Centre de recherche en Infectiologie du Centre de Recherche du CHU de Québec, Université Laval, 2705 Boul. Laurier, Québec, QC, Canada, , G1V 4G2. .,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, Canada, , G1V 0A6.
| | - Siham Ouennane
- Département de Biochimie, Microbiologie et Bio-informatique and PROTEO, Faculté des Sciences et Génie, Université Laval, Québec, QC, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses and GREB, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.
| | - Sylvain Moineau
- Département de Biochimie, Microbiologie et Bio-informatique and PROTEO, Faculté des Sciences et Génie, Université Laval, Québec, QC, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses and GREB, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.
| | - Marc Ouellette
- Centre de recherche en Infectiologie du Centre de Recherche du CHU de Québec, Université Laval, 2705 Boul. Laurier, Québec, QC, Canada, , G1V 4G2. .,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, Canada, , G1V 0A6.
| |
Collapse
|
7
|
Halmillawewa AP, Restrepo-Córdoba M, Yost CK, Hynes MF. Genomic and phenotypic characterization of Rhizobium gallicum phage vB_RglS_P106B. MICROBIOLOGY-SGM 2015; 161:611-20. [PMID: 25627439 DOI: 10.1099/mic.0.000022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phage P106B (vB_RglS_P106B) is a Siphoviridae phage with a narrow spectrum of infectivity, which has been isolated from soils with a history of pea cultivation. The trapping host of P106B is an indigenous strain of Rhizobium gallicum (SO14B-4) isolated from soils associated with Vicia cracca. Phenotypic characterization of the phage revealed that P106B has an approximate burst size of 21 p.f.u. per infected cell with 60 min and 100 min eclipse and latent periods, respectively. Phage P106B was unable to transduce under the conditions tested. The genome of P106B is 56 024 bp in length with a mean DNA G+C content of 47.9 %. The complete genome sequence contains 95 putative ORFs and a single tRNA gene coding for leucine with the anticodon TTA. Putative functions could only be assigned to 22 of the predicted ORFs while a significant number of ORFs (47) shared no sequence similarities to previously characterized proteins. The remaining 26 putative protein-coding genes exhibited a sequence resemblance to other hypothetical proteins. No lysogeny-related genes were found in the P106B genome.
Collapse
Affiliation(s)
| | | | | | - Michael F Hynes
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Ghasemi SM, Bouzari M, Yoon BH, Chang HI. Comparative genomic analysis of Lactococcus garvieae phage WP-2, a new member of Picovirinae subfamily of Podoviridae. Gene 2014; 551:222-9. [DOI: 10.1016/j.gene.2014.08.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/10/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
|
9
|
Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from Kimchi. Appl Environ Microbiol 2012; 78:7299-308. [PMID: 22885743 DOI: 10.1128/aem.00031-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first complete genome sequence of a phage infecting Weissella cibaria (Weissella kimchii) is presented. The bacteriophage YS61 was isolated from kimchi, a Korean fermented vegetable dish. Bacteriophages are recognized as a serious problem in industrial fermentations; however, YS61 differed from many virulent phages associated with food fermentations since it was difficult to propagate and was very susceptible to resistance development. Sequence analysis revealed that YS61 resembles Podoviridae of the subfamily Picovirinae. Within the subfamily Picovirinae, the 29-like phages have been extensively studied, and their terminal protein-primed DNA replication is well characterized. Our data strongly suggest that YS61 also replicates by a protein-primed mechanism. Weissella phage YS61 is, however, markedly different from members of the Picovirinae with respect to genome size and morphology. Picovirinae are characterized by small (approximately 20-kb) genomes which contrasts with the 33,594-bp genome of YS61. Based on electron microscopy analysis, YS61 was classified as a member of the Podoviridae of morphotype C2, similar to the 29-like phages, but its capsid dimensions are significantly larger than those reported for these phages. The novelty of YS61 was also emphasized by the low number of open reading frames (ORFs) showing significant similarity to database sequences. We propose that the bacteriophage YS61 should represent a new subfamily within the family Podoviridae.
Collapse
|
10
|
Volozhantsev NV, Oakley BB, Morales CA, Verevkin VV, Bannov VA, Krasilnikova VM, Popova AV, Zhilenkov EL, Garrish JK, Schegg KM, Woolsey R, Quilici DR, Line JE, Hiett KL, Siragusa GR, Svetoch EA, Seal BS. Molecular characterization of podoviral bacteriophages virulent for Clostridium perfringens and their comparison with members of the Picovirinae. PLoS One 2012; 7:e38283. [PMID: 22666499 PMCID: PMC3362512 DOI: 10.1371/journal.pone.0038283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/02/2012] [Indexed: 01/21/2023] Open
Abstract
Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium responsible for human food-borne disease as well as non-food-borne human, animal and poultry diseases. Because bacteriophages or their gene products could be applied to control bacterial diseases in a species-specific manner, they are potential important alternatives to antibiotics. Consequently, poultry intestinal material, soil, sewage and poultry processing drainage water were screened for virulent bacteriophages that lysed C. perfringens. Two bacteriophages, designated ΦCPV4 and ΦZP2, were isolated in the Moscow Region of the Russian Federation while another closely related virus, named ΦCP7R, was isolated in the southeastern USA. The viruses were identified as members of the order Caudovirales in the family Podoviridae with short, non-contractile tails of the C1 morphotype. The genomes of the three bacteriophages were 17.972, 18.078 and 18.397 kbp respectively; encoding twenty-six to twenty-eight ORF's with inverted terminal repeats and an average GC content of 34.6%. Structural proteins identified by mass spectrometry in the purified ΦCP7R virion included a pre-neck/appendage with putative lyase activity, major head, tail, connector/upper collar, lower collar and a structural protein with putative lysozyme-peptidase activity. All three podoviral bacteriophage genomes encoded a predicted N-acetylmuramoyl-L-alanine amidase and a putative stage V sporulation protein. Each putative amidase contained a predicted bacterial SH3 domain at the C-terminal end of the protein, presumably involved with binding the C. perfringens cell wall. The predicted DNA polymerase type B protein sequences were closely related to other members of the Podoviridae including Bacillus phage Φ29. Whole-genome comparisons supported this relationship, but also indicated that the Russian and USA viruses may be unique members of the sub-family Picovirinae.
Collapse
Affiliation(s)
- Nikolay V. Volozhantsev
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
- * E-mail: (NV); (BS)
| | - Brian B. Oakley
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | - Cesar A. Morales
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | - Vladimir V. Verevkin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Vasily A. Bannov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Valentina M. Krasilnikova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Eugeni L. Zhilenkov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Johnna K. Garrish
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | - Kathleen M. Schegg
- Nevada Proteomics Center, University of Nevada, Reno, Nevada, United States of America
| | - Rebekah Woolsey
- Nevada Proteomics Center, University of Nevada, Reno, Nevada, United States of America
| | - David R. Quilici
- Nevada Proteomics Center, University of Nevada, Reno, Nevada, United States of America
| | - J. Eric Line
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | - Kelli L. Hiett
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | | | - Edward A. Svetoch
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Bruce S. Seal
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
- * E-mail: (NV); (BS)
| |
Collapse
|
11
|
Abstract
Mass spectrometry analysis of Streptococcus pneumoniae bacteriophage Cp-1 identified a total of 12 proteins, and proteome-wide yeast two-hybrid screens revealed 17 binary interactions mainly among these structural proteins. On the basis of the resulting linkage map, we suggest an improved structural model of the Cp-1 virion.
Collapse
|
12
|
Sabri M, Häuser R, Ouellette M, Liu J, Dehbi M, Moeck G, García E, Titz B, Uetz P, Moineau S. Genome annotation and intraviral interactome for the Streptococcus pneumoniae virulent phage Dp-1. J Bacteriol 2011; 193:551-62. [PMID: 21097633 PMCID: PMC3019816 DOI: 10.1128/jb.01117-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/08/2010] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae causes several diseases, including pneumonia, septicemia, and meningitis. Phage Dp-1 is one of the very few isolated virulent S. pneumoniae bacteriophages, but only a partial characterization is currently available. Here, we confirmed that Dp-1 belongs to the family Siphoviridae. Then, we determined its complete genomic sequence of 56,506 bp. It encodes 72 open reading frames, of which 44 have been assigned a function. We have identified putative promoters, Rho-independent terminators, and several genomic clusters. We provide evidence that Dp-1 may be using a novel DNA replication system as well as redirecting host protein synthesis through queuosine-containing tRNAs. Liquid chromatography-mass spectrometry analysis of purified phage Dp-1 particles identified at least eight structural proteins. Finally, using comprehensive yeast two-hybrid screens, we identified 156 phage protein interactions, and this intraviral interactome was used to propose a structural model of Dp-1.
Collapse
Affiliation(s)
- Mourad Sabri
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Roman Häuser
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Marc Ouellette
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Jing Liu
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Mohammed Dehbi
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Greg Moeck
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Ernesto García
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Björn Titz
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Peter Uetz
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et Bio-Informatiques, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6, Institute of Toxicology and Genetics, Karlsruhe Institute for Technology, Karlsruhe, Germany, Centre de Recherche en Infectiologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2, The Medicines Company, Ville St. Laurent, Quebec, Canada, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain, Crump Institute for Molecular Imaging, Los Angeles, California, J. Craig Venter Institute, Rockville, Maryland
| |
Collapse
|
13
|
Manso I, García JL, Galán B. Escherichia coli mhpR gene expression is regulated by catabolite repression mediated by the cAMP-CRP complex. MICROBIOLOGY-SGM 2010; 157:593-600. [PMID: 20966094 DOI: 10.1099/mic.0.043620-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The expression of the mhp genes involved in the degradation of the aromatic compound 3-(3-hydroxyphenyl)propionic acid (3HPP) in Escherichia coli is dependent on the MhpR transcriptional activator at the Pa promoter. This catabolic promoter is also subject to catabolic repression in the presence of glucose mediated by the cAMP-CRP complex. The Pr promoter drives the MhpR-independent expression of the regulatory gene. In vivo and in vitro experiments have shown that transcription from the Pr promoter is downregulated by the addition of glucose and this catabolic repression is also mediated by the cAMP-CRP complex. The activation role of the cAMP-CRP regulatory system was further investigated by DNase I footprinting assays, which showed that the cAMP-CRP complex binds to the Pr promoter sequence, protecting a region centred at position -40.5, which allowed the classification of Pr as a class II CRP-dependent promoter. Open complex formation at the Pr promoter is observed only when RNA polymerase and cAMP-CRP are present. Finally, by in vitro transcription assays we have demonstrated the absolute requirement of the cAMP-CRP complex for the activation of the Pr promoter.
Collapse
Affiliation(s)
- I Manso
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - J L García
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - B Galán
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
14
|
Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol 2009; 191:4854-62. [PMID: 19502408 PMCID: PMC2715734 DOI: 10.1128/jb.01272-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that often carries temperate bacteriophages. As part of a program to characterize the genetic makeup of prophages associated with clinical strains and to assess the potential roles that they play in the biology and pathogenesis in their host, we performed comparative genomic analysis of 10 temperate pneumococcal phages. All of the genomes are organized into five major gene clusters: lysogeny, replication, packaging, morphogenesis, and lysis clusters. All of the phage particles observed showed a Siphoviridae morphology. The only genes that are well conserved in all the genomes studied are those involved in the integration and the lysis of the host in addition to two genes, of unknown function, within the replication module. We observed that a high percentage of the open reading frames contained no similarities to any sequences catalogued in public databases; however, genes that were homologous to known phage virulence genes, including the pblB gene of Streptococcus mitis and the vapE gene of Dichelobacter nodosus, were also identified. Interestingly, bioinformatic tools showed the presence of a toxin-antitoxin system in the phage phiSpn_6, and this represents the first time that an addition system in a pneumophage has been identified. Collectively, the temperate pneumophages contain a diverse set of genes with various levels of similarity among them.
Collapse
|
15
|
Complete genome of the broad-host-range Erwinia amylovora phage phiEa21-4 and its relationship to Salmonella phage felix O1. Appl Environ Microbiol 2009; 75:2139-47. [PMID: 19181832 DOI: 10.1128/aem.02352-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first complete genome sequence for a myoviridal bacteriophage, PhiEa21-4, infecting Erwinia amylovora, Erwinia pyrifoliae, and Pantoea agglomerans strains has been determined. The unique sequence of this terminally redundant, circularly permuted genome is 84,576 bp. The PhiEa21-4 genome has a GC content of 43.8% and contains 117 putative protein-coding genes and 26 tRNA genes. PhiEa21-4 is the first phage in which a precisely conserved rho-independent terminator has been found dispersed throughout the genome, with 24 copies in all. Also notable in the PhiEa21-4 genome are the presence of tRNAs with six- and nine-base anticodon loops, the absence of a small packaging terminase subunit, and the presence of nadV, a principle component of the NAD(+) salvage pathway, which has been found in only a few phage genomes to date. PhiEa21-4 is the first reported Felix O1-like phage genome; 56% of the predicted PhiEa21-4 proteins share homology with those of the Salmonella phage. Apart from this similarity to Felix O1, the PhiEa21-4 genome appears to be substantially different, both globally and locally, from previously reported sequences. A total of 43 of the 117 genes are unique to PhiEa21-4, and 32 of the Felix O1-like genes do not appear in any phage genome sequences other than PhiEa21-4 and Felix O1. N-terminal sequencing and matrix-assisted laser desorption ionization-time of flight analysis resulted in the identification of five PhiEa21-4 genes coding for virion structural proteins, including the major capsid protein.
Collapse
|
16
|
Development of a prophage typing system and analysis of prophage carriage in Streptococcus pneumoniae. Appl Environ Microbiol 2009; 75:1642-9. [PMID: 19168661 DOI: 10.1128/aem.02155-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The frequency of prophage carriage was tested in a collection of 108 clinical isolates of Streptococcus pneumoniae. A PCR-based assay was developed to allow classification of the prophage into the three groups recently identified according to genome comparisons (P. Romero, N. Croucher, N. L. Hiller, F. Z. Hu, G. D. Ehrlich, S. D. Bentley, E. García, and T. J. Mitchell, submitted for publication). Use of the assay showed that more than half of the isolates studied were lysogenic with prophage belonging to group 1 being the most abundant (56%), followed by those belonging to group 2 (26%) and those belonging to group 3 (11%). Four polylysogenic strains harboring a group 1 and a group 2 prophage were identified. Interestingly, lysogenic strains were found in 8 out of the 12 internationally distributed, relevant clones of S. pneumoniae contained in our strain collection. The high percentage of clinical pneumococcal isolates harboring prophage strongly suggests an important contribution to the diversification of the genome architecture in this species as well as a role for bacteriophage in the virulence/and or fitness of S. pneumoniae, although further studies using a significant number of isolates belonging to the most relevant pneumococcal clones are needed.
Collapse
|
17
|
Liao W, Song S, Sun F, Jia Y, Zeng W, Pang Y. Isolation, characterization and genome sequencing of phage MZTP02 from Bacillus thuringiensis MZ1. Arch Virol 2008; 153:1855-65. [DOI: 10.1007/s00705-008-0201-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
18
|
Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 2008; 159:406-14. [PMID: 18555669 DOI: 10.1016/j.resmic.2008.03.005] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/18/2008] [Accepted: 03/31/2008] [Indexed: 11/19/2022]
Abstract
We defined phage genera by measuring genome relationships by the numbers of shared homologous/orthologous proteins. We used BLAST-based tools (CoreExtractor.vbs and CoreGenes) to analyze 55 fully sequenced bacteriophage genomes from the NCBI and EBI databases. This approach was first applied to the T7-related phages. Using a cut-off score of 40% homologous proteins, we identified three genera within the T7-related phages, redefined the phi29-related phages, and introduced five novel genera. The T7- and phi29-related phages were given subfamily status and named "Autographivirinae" and "Picovirinae", respectively. Our results confirm and refine the ICTV phage classification, enable elimination of errors in public databases, and provide a straightforward tool for the molecular classification of new phage genomes.
Collapse
Affiliation(s)
- Rob Lavigne
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | | | | | | | | |
Collapse
|
19
|
Characterization and genomic analysis of phage asccphi28, a phage of the family Podoviridae infecting Lactococcus lactis. Appl Environ Microbiol 2008; 74:3453-60. [PMID: 18390678 DOI: 10.1128/aem.02379-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage asccphi28 infects dairy fermentation strains of Lactococcus lactis. This report describes characterization of asccphi28 and its full genome sequence. Phage asccphi28 has a prolate head, whiskers, and a short tail (C2 morphotype). This morphology and DNA hybridization to L. lactis phage P369 DNA showed that asccphi28 belongs to the P034 phage species, a group rarely encountered in the dairy industry. The burst size of asccphi28 was found to be 121 +/- 18 PFU per infected bacterial cell after a latent period of 44 min. The linear genome (18,762 bp) contains 28 possible open reading frames (ORFs) comprising 90% of the total genome. The ORFs are arranged bidirectionally in recognizable functional modules. The genome contains 577 bp inverted terminal repeats (ITRs) and putatively eight promoters and four terminators. The presence of ITRs, a phage-encoded DNA polymerase, and a terminal protein that binds to the DNA, along with BLAST and morphology data, show that asccphi28 more closely resembles streptococcal phage Cp-1 and the phi29-like phages that infect Bacillus subtilis than it resembles common lactococcal phages. The sequence of this phage is the first published sequence of a P034 species phage genome.
Collapse
|
20
|
Durante-Rodríguez G, Zamarro MT, García JL, Díaz E, Carmona M. New insights into the BzdR-mediated transcriptional regulation of the anaerobic catabolism of benzoate in Azoarcus sp. CIB. MICROBIOLOGY-SGM 2008; 154:306-316. [PMID: 18174149 DOI: 10.1099/mic.0.2007/011361-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The expression of the bzd genes involved in the anaerobic degradation of benzoate in Azoarcus sp. CIB is controlled by the specific BzdR transcriptional repressor at the P(N) promoter. This catabolic promoter is also subject to catabolite repression by some organic acids. In vivo and in vitro experiments have shown that BzdR behaves as a repressor of the P(R) promoter by overlapping the transcription initiation site as well as the -35 and -10 boxes, benzoyl-CoA being the inducer molecule. In addition, by using a P(N) : : lacZ fusion both in Azoarcus sp. CIB and in an isogenic strain lacking the bzdR gene, we have shown that the succinate-dependent catabolite repression requires participation of the BzdR repressor.
Collapse
Affiliation(s)
- Gonzalo Durante-Rodríguez
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - M Teresa Zamarro
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José L García
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Eduardo Díaz
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Carmona
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
21
|
Blázquez B, Carmona M, García JL, Díaz E. Identification and analysis of a glutaryl-CoA dehydrogenase-encoding gene and its cognate transcriptional regulator from Azoarcus sp. CIB. Environ Microbiol 2007; 10:474-82. [PMID: 18177371 DOI: 10.1111/j.1462-2920.2007.01468.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, the gcdH gene from the denitrifying beta-proteobacterium Azoarcus sp. CIB was shown to encode a glutaryl-CoA dehydrogenase, which is essential for the anaerobic catabolism of many aromatic compounds and some alicyclic and dicarboxylic acids. The primary structure of the GcdH protein is highly conserved in many organisms. The divergently transcribed gcdR gene, encoding a LysR-type transcriptional regulator, accounts for the glutaconate/glutarate-specific activation of the Pg promoter driving expression of gcdH. The Azoarcus sp. CIBdgcdH mutant strain harbouring a disrupted gcdH gene was used as host to identify heterologous gcdH genes, such as that from Pseudomonas putida KT2440. Moreover, the expression of gcdH from P. putida can be efficiently controlled by the GcdR activator in Azoarcus sp. CIB, demonstrating the existence of cross-talk between GcdR regulators and gcdH promoters from members of different phylogenetic subgroups of proteobacteria.
Collapse
Affiliation(s)
- Blas Blázquez
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|
23
|
López R, García E. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 2005; 28:553-80. [PMID: 15539074 DOI: 10.1016/j.femsre.2004.05.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 05/19/2004] [Accepted: 05/25/2004] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae has re-emerged as a major cause of morbidity and mortality throughout the world and its continuous increase in antimicrobial resistance is rapidly becoming a leading cause of concern for public health. This review is focussed on the analysis of recent insights on the study of capsular polysaccharide biosynthesis, and cell wall (murein) hydrolases, two fundamental pneumococcal virulence factors. Besides, we have also re-evaluated the molecular biology of the pneumococcal phage, their possible role in pathogenicity and in the shaping of natural populations of S. pneumoniae. Precise knowledge of the topics reviewed here should facilitate the rationale to move towards the design of alternative ways to combat pneumococcal disease.
Collapse
Affiliation(s)
- Rubens López
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | |
Collapse
|
24
|
Romero P, López R, García E. Genomic organization and molecular analysis of the inducible prophage EJ-1, a mosaic myovirus from an atypical pneumococcus. Virology 2004; 322:239-52. [PMID: 15110522 DOI: 10.1016/j.virol.2004.01.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 01/09/2004] [Accepted: 01/31/2004] [Indexed: 10/26/2022]
Abstract
We report the complete genomic sequence of EJ-1, an inducible prophage isolated from an atypical Streptococcus pneumoniae strain that belongs to the Myoviridae morphology family. The phage and bacterial recombinational sites (attachment sites) have been also determined. The genome of the EJ-1 prophage (42935 bp) is organized in 73 open reading frames (ORFs) and in at least five major clusters. Bioinformatic and N-terminal amino acid sequence analyses enabled the assignment of possible functions to 52 ORFs. The predicted proteins coded for the EJ-1 genome revealed similarities in the lysogeny, DNA replication, regulation, packaging, and head morphogenesis protein clusters with those from several siphoviruses infecting lactic acid bacteria. However, the proteins encoded by genes orf53 to orf64, corresponding to putative tail proteins of the virion, were very similar to those of the defective Bacillus subtilis myovirus PBSX with the notable exception of the gene product of orf56 (the tape measure tail protein) that was similar to proteins from phages infecting Gram-negative bacteria. The first description of the genome of a myovirus infecting a low G + C content Gram-positive bacterium, a member of a group embracing important human pathogens and industrial relevant species, will contribute to expand our current knowledge on phage biology and evolution.
Collapse
Affiliation(s)
- Patricia Romero
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | | | | |
Collapse
|
25
|
Altermann E, Henrich B. Transcript map of the temperate Lactobacillus gasseri bacteriophage ϕadh. Microbiology (Reading) 2003; 149:2987-2999. [PMID: 14523130 DOI: 10.1099/mic.0.26150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temporal transcription of phage ϕadh was analysed during lytic reproduction. Based on Northern hybridizations the phage genome was divided into regions of early, middle and late transcription. Eight groups of overlapping transcripts, probably originating from common precursors, were distinguished. Early transcription of a 10·9 kb region adjacent to the lytic/lysogenic switch started within the first 10 min of infection and produced three groups of mRNAs mostly related to DNA replication. Four middle transcripts were observed 30 min after infection, corresponding to an 8·5 kb genomic region, which started at the replication origin (ori) and encompassed a DNA packaging function and the cos site. Three groups of late transcripts were first observed 50 min after infection, corresponding to a 21·1 kb region between the middle region and the attachment site (attP), encoding functions for capsid morphogenesis and host cell lysis. A fourth group of late-appearing mRNAs was divergently transcribed from the 3·2 kb section between attP and the lytic/lysogenic switch, including the repressor and integrase genes. Except for one set of early mRNAs, all the transcripts persisted until the end of the reproduction cycle. Two confirmed and two predicted promoters were assigned to transcript 5′ ends in the early region.
Collapse
Affiliation(s)
- Eric Altermann
- Fachbereich Biologie, Abteilung Mikrobiologie, Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany
| | - Bernhard Henrich
- Fachbereich Biologie, Abteilung Mikrobiologie, Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany
| |
Collapse
|
26
|
Vybiral D, Takác M, Loessner M, Witte A, von Ahsen U, Bläsi U. Complete nucleotide sequence and molecular characterization of two lytic Staphylococcus aureus phages: 44AHJD and P68. FEMS Microbiol Lett 2003; 219:275-83. [PMID: 12620632 DOI: 10.1016/s0378-1097(03)00028-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The first complete nucleotide sequences of two lytic Staphylococcus aureus double stranded DNA phages, 44AHJD (16784 bp) and P68 (18227 bp), are reported. Both are small isometric phages, with short, non-contractile tails and a pre-neck appendage. Based on their morphology, their genome size, the similarity of the encoded gene products, the type of infection and on the possession of a type B DNA polymerase, 44AHJD and P68 are allocated to the order Caudovirales, family Podoviridae, genus 'phi29-like phages'. The genome of 44AHJD differs from that of P68 by a deletion spanning nucleotides 10091 to 11531 of the P68 genome. The electrophoretic analysis of the terminal DNA fragments of P68 DNA and P68 DNA protein complex suggested the presence of a terminal protein at either DNA end. In contrast to the lysis cassette of the phi29-like phages, which is located at the end of the late operon, the lysis cassette of 44AHJD and P68 is located within the structural genes.
Collapse
Affiliation(s)
- Dietmar Vybiral
- Institute of Microbiology and Genetics, Vienna Biocenter, Dr. Bohr-Gasse 9, A-1030, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Miles G, Bayley H, Cheley S. Properties of Bacillus cereus hemolysin II: a heptameric transmembrane pore. Protein Sci 2002; 11:1813-24. [PMID: 12070333 PMCID: PMC2373656 DOI: 10.1110/ps.0204002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The gene encoding hemolysin II (HlyII) was amplified from Bacillus cereus genomic DNA and a truncated mutant, HlyII(DeltaCT), was constructed lacking the 94 amino acid extension at the C terminus. The proteins were produced in an E. coli cell-free in vitro transcription and translation system, and were shown to assemble into SDS-stable oligomers on rabbit erythrocyte membranes and liposomes. The hemolytic activity of HlyII was measured with rabbit erythrocytes yielding an HC(50) value of 1.64 ng mL(-1), which is over 15 times more potent than staphylococcal alpha-hemolysin. HlyII(DeltaCT) was about eight times less potent than HlyII in this assay. Limited proteolysis of the oligomers formed by HlyII and HlyII(DeltaCT) on red cell membranes showed that the C-terminal extension is sensitive to digestion, while HlyII(DeltaCT) is protease resistant and migrates with an electrophoretic mobility similar to that of digested HlyII. HlyII forms moderately anion selective, rectifying pores (I(+80)/I(-80) = 0.57, 1 M KCl, pH 7.4) in planar lipid bilayers of diphytanoylphosphatidylcholine with a unitary conductance of 637 pS (1 M KCl, 5 mM HEPES, pH 7.4) and exhibits no gating over a wide range of applied potentials (-160 to +160 mV). In addition, it was demonstrated that HlyII forms a homoheptameric pore by using gel shift electrophoresis aided by a genetically encoded oligoaspartate tag. Although they share limited primary sequence identity (30%), these data confirm that HlyII is a structural and functional homolog of staphylococcal alpha-hemolysin.
Collapse
Affiliation(s)
- George Miles
- Department of Medical Biochemistry & Genetics, The Texas A&M University System Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | |
Collapse
|
28
|
Abstract
The elucidation of genetic components of human diseases at the molecular level provides crucial information for developing future causal therapeutic intervention. High-throughput genome sequencing and systematic experimental approaches are fuelling strategic programs designed to investigate gene function at the biochemical, cellular and organism levels. Bioinformatics is one important tool in functional genomics, although showing clear limitations in predicting ab initio gene structures, gene function and protein folds from raw sequence data. Systematic large-scale data-set generation, using the same type of experiments that are used to decipher the function of single genes, are being applied on entire genomes. Comparative genomics, establishment of gene catalogues, and investigation of cellular and tissue molecular profiles are providing essential tools for understanding gene function in complex biological networks.
Collapse
Affiliation(s)
- M L Yaspo
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195, Berlin, Germany.
| |
Collapse
|
29
|
Abstract
Two proteins, an endolysin and a holin, are essential for host lysis by bacteriophage. Endolysin is the term for muralytic enzymes that degrade the cell wall; endolysins accumulate in the cytosol fully folded during the vegetative cycle. Holins are small membrane proteins that accumulate in the membrane until, at a specific time that is "programmed" into the holin gene, the membrane suddenly becomes permeabilized to the fully folded endolysin. Destruction of the murein and bursting of the cell are immediate sequelae. Holins control the length of the infective cycle for lytic phages and so are subject to intense evolutionary pressure to achieve lysis at an optimal time. Holins are regulated by protein inhibitors of several different kinds. Holins constitute one of the most diverse functional groups, with >100 known or putative holin sequences, which form >30 ortholog groups.
Collapse
Affiliation(s)
- I N Wang
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas 77843-2128, USA.
| | | | | |
Collapse
|
30
|
García P, Martín AC, López R. Bacteriophages of Streptococcus pneumoniae: a molecular approach. Microb Drug Resist 2000; 3:165-76. [PMID: 9185145 DOI: 10.1089/mdr.1997.3.165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have characterized four families of pneumococcal phages with remarkable morphologic and physiological differences. Dp-1 and Cp-1 are lytic phages, whereas HB-3 and EJ-1 are temperate phages. Interestingly, Cp-1 and HB-3 have a terminal protein covalently linked to the 5' ends of their lineal DNAs. In the case of Dp-1, we have found that the choline residues of the teichoic acid were essential components of the phage receptors. We have also developed a transfection system using mature DNAs from Dp-4 and Cp-1. In the later case, the transfecting activity of the DNA was destroyed by treatment with proteolytic enzymes, a feature also shared by the genomes of several small Bacillus phages. DNA replication was investigated in the case of Dp-4 and Cp-1 phages. The terminal protein linked to Cp-1 DNA plays a key role in the peculiar mechanism of DNA replication that has been coined as protein-priming. Recently, the linear 19,345-bp double-stranded DNA of Cp-1 has been completely sequenced, several of its gene products have been analyzed, and a complete transcriptional map has been ellaborated. Most of the pneumococcal lysins exhibit an absolute dependence of the presence of choline in the cell wall substrate for activity, and phage lysis requires, as reported for other systems, the action of a second phage-encoded protein, the holin, which presumably forms some kind of lesion in the membrane. The two lytic gene cassettes, from EJ-1 and Cp-1 phages, have been cloned and expressed in heterologous and homologous systems. The finding that some lysogenic strains of Streptococcus pneumoniae harbor phage remnants has provided important clues on the interchanges between phage and bacteria and supports the view of the chimeric origin of phages.
Collapse
Affiliation(s)
- P García
- Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | |
Collapse
|
31
|
Sheehan MM, Stanley E, Fitzgerald GF, van Sinderen D. Identification and characterization of a lysis module present in a large proportion of bacteriophages infecting Streptococcus thermophilus. Appl Environ Microbiol 1999; 65:569-77. [PMID: 9925584 PMCID: PMC91063 DOI: 10.1128/aem.65.2.569-577.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lysis module encoded by the temperate bacteriophage phiO1205 was identified. This lysis module contains a lysin gene, designated lyt51, and two putative holin-encoding genes, designated lyt49 and lyt50. lyt51 encodes a lytic enzyme specifically directed against streptococcal cell walls. Similar to other phage-encoded lysins, Lyt51 appears to have a modular design in which the N-terminal portion corresponds to its enzymatic activity while the C-terminal region is responsible for its substrate binding specificity. The two putative holin-encoding genes, lyt49 and lyt50, located immediately upstream of lyt51, were identified on the basis of their homology to other identified holin-encoding genes. Expression of lyt49 or lyt50 in Escherichia coli was shown to cause cell death and leakage of the intracellular enzyme isocitrate dehydrogenase into the growth medium without apparent lysis of the cells. Southern blotting experiments demonstrated that at least one of the three components of the identified lysis module is present in all members of a large collection of bacteriophages, indicating that components of this lysis module are widespread among bacteriophages infecting Streptococcus thermophilus.
Collapse
Affiliation(s)
- M M Sheehan
- The National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
32
|
Lucchini S, Desiere F, Brüssow H. The structural gene module in Streptococcus thermophilus bacteriophage phi Sfi11 shows a hierarchy of relatedness to Siphoviridae from a wide range of bacterial hosts. Virology 1998; 246:63-73. [PMID: 9656994 DOI: 10.1006/viro.1998.9190] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural gene cluster and the lysis module from lytic group II Streptococcus thermophilus bacteriophage phi Sfi11 was compared to the corresponding region from other Siphoviridae. The analysis revealed a hierarchy of relatedness. phi Sfi11 differed from the temperate S. thermophilus bacteriophage phi O1205 by about 10% at the nucleotide level. The majority of the changes were point mutations, mainly at the third base position. Only a single gene (orf 695) differed substantially between the two phages. Over the putative minor tail and lysis genes, phi Sfi11 and the lytic group 1 S. thermophilus phi Sfi19 shared regions with variable degrees of similarity. Orf 1291 from phi Sfi19 was replaced by four genes in phi Sfi11, two of which (orf 1000 and orf 695) showed a complicated pattern of similarity and nonsimilarity compared with phi Sfi19. The predicted orf 695 gp resembles the receptor-recognizing protein of T-even coliphages in its organization, but not its sequence. No sequence similarity was detected between phi Sfi11 and phi Sfi19 in the region covering the major head and tail genes. Comparison of the structural gene map of phi Sfi11 with that of Siphoviridae from gram-positive and -negative bacterial hosts revealed a common genomic organization. Sequence similarity was only found between phi Sfi11 and Siphoviridae from gram-positive hosts and correlated with the evolutionary distance between the bacterial hosts. Our data are compatible with the hypothesis that the structural gene operon from Siphoviridae of the low G + C group of gram-positive bacteria is derived from a common ancestor.
Collapse
Affiliation(s)
- S Lucchini
- Nestlé Research Center, Nestec Ltd., Lausanne, Switzerland
| | | | | |
Collapse
|
33
|
Brüssow H, Bruttin A, Desiere F, Lucchini S, Foley S. Molecular ecology and evolution of Streptococcus thermophilus bacteriophages--a review. Virus Genes 1998; 16:95-109. [PMID: 9562894 DOI: 10.1023/a:1007957911848] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteriophages attacking Streptococcus thermophilus, a lactic acid bacterium used in milk fermentation, are a threat to the dairy industry. These small isometric-headed phages possess double-stranded DNA genomes of 31 to 45 kb. Yoghurt-derived phages exhibit a limited degree of variability, as defined by restriction pattern and host range, while a large diversity of phage types have been isolated from cheese factories. Despite this diversity all S. thermophilus phages, virulent and temperate, belong to a single DNA homology group. Several mechanisms appear to create genetic variability in this phage group. Site-specific deletions, one type possibly mediated by a viral recombinase/integrase, which transformed a temperate into a virulent phage, were observed. Recombination as a result of superinfection of a lysogenic host has been reported. Comparative DNA sequencing identified up to 10% sequence diversity due to point mutations. Genome sequencing of the prototype temperate phage phi Sfi21 revealed many predicted proteins which showed homology with phages from Lactococcus lactis suggesting horizontal gene transfer. Homology with phages from evolutionary unrelated bacteria like E. coli (e.g. lambdoid phage 434 and P1) and Mycobacterium phi L5 was also found. Due to their industrial importance, the existence of large phage collections, and the whole phage genome sequencing projects which are currently underway, the S. thermophilus phages may present an interesting experimental system to study bacteriophage evolution.
Collapse
Affiliation(s)
- H Brüssow
- Nestlê Research Center, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Martín AC, López R, García P. Pneumococcal bacteriophage Cp-1 encodes its own protease essential for phage maturation. J Virol 1998; 72:3491-4. [PMID: 9525689 PMCID: PMC109866 DOI: 10.1128/jvi.72.4.3491-3494.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The major capsid protein of the pneumococcal phage Cp-1 that accounts for 90% of the total protein found in the purified virions is synthesized by posttranslational processing of the product of the open reading frame (ORF) orf9. Cloning of different ORFs of the Cp-1 genome in Escherichia coli and Streptococcus pneumoniae combined with Western blot analysis of the expressed products led to the conclusion that the product of orf13 is an endoprotease that cleaves off the first 48 amino acid residues of the major head protein. This protease appears to be a key enzyme in the morphopoietic pathway of the Cp-1 phage head. To our knowledge, this is the first case of a bacteriophage infecting gram-positive bacteria that encodes a protease involved in phage maturation.
Collapse
Affiliation(s)
- A C Martín
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
35
|
Desiere F, Lucchini S, Brüssow H. Evolution of Streptococcus thermophilus bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions. Virology 1998; 241:345-56. [PMID: 9499809 DOI: 10.1006/viro.1997.8959] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative sequence analysis of 40% of the genomes from two prototype Streptococcus thermophilus bacteriophages (lytic group I phage phi Sfi19 and the cos site containing temperate phage phi Sfi21) suggested two processes in the evolution of their genomes. In a first evolutionarily distant phase the basic genome structure was apparently constituted by modular exchanges. Over the 17-kb-long DNA segment analyzed in the present report, we observed clusters of genes with similarity to genes from Leuconostoc oenos phage L10, Lactococcus lactis phage BK5-T, and Streptococcus pneumoniae phage Dp-1. A chimeric protein was predicted for orf 1291 which showed similarity to both phage BK5-T and phage Dp-1 proteins. The very large orf 1626 gene product showed similarity to two adjacent genes from the Lactobacillus delbrueckii phage LL-H and further phage proteins (Lactococcus lactis, Bacillus subtills). The similarities were localized to distinct parts of this apparently multifunctional protein. The putative phi Sfi19 lysin showed similarity to both lysins of phages and cellular enzymes. In a second, evolutionarily more recent, phase the S, thermophilus phage genomes apparently diversified by point mutations and small deletions/insertions. Over the investigated 17-kb DNA region phi Sfi19 differed from phi Sfi21 by 10% base pair changes, the majority of which were point mutations (mainly at the third codon position), while a third of the base pair differences were contributed by small deletions/insertions. The base pair changes were unevenly distributed. Over the Leuconostoc phage-related DNA the change rate was high, while over the Lactococcus and S. pneumoniae phage-related DNA the change rate was low. We speculate that the degree of base pair change could provide relative time scales for the modular exchange reactions observed in S. thermophilus phages.
Collapse
Affiliation(s)
- F Desiere
- Nestlé Research Center, Nestec Ltd., Lausanne, Switzerland
| | | | | |
Collapse
|
36
|
Abstract
Tailed bacteriophages have a common origin and constitute an order with three families, named Caudovirales. Their structured tail is unique. Tailed phages share a series of high-level taxonomic properties and show many facultative features that are unique or rare in viruses, for example, tail appendages and unusual bases. They share with other viruses, especially herpesviruses, elements of morphogenesis and life-style that are attributed to convergent evolution. Tailed phages present three types of lysogeny, exemplified by phages lambda, Mu, and P1. Lysogeny appears as a secondary property acquired by horizontal gene transfer. Amino acid sequence alignments (notably of DNA polymerases, integrases, and peptidoglycan hydrolases) indicate frequent events of horizontal gene transfer in tailed phages. Common capsid and tail proteins have not been detected. Tailed phages possibly evolved from small protein shells with a few genes sufficient for some basal level of productive infection. This early stage can no longer be traced. At one point, this precursor phage became perfected. Some of its features were perfect enough to be transmitted until today. It is tempting to list major present-day properties of tailed phages in the past tense to construct a tentative history of these viruses: 1. Tailed phages originated in the early Precambrian, long before eukaryotes and their viruses. 2. The ur-tailed phage, already a quite evolved virus, had an icosahedral head of about 60 nm in diameter and a long non-contractile tail with sixfold symmetry. The capsid contained a single molecule of dsDNA of about 50 kb, and the tail was probably provided with a fixation apparatus. Head and tail were held together by a connector. a. The particle contained no lipids, was heavier than most viruses to come, and had a high DNA content proportional to its capsid size (about 50%). b. Most of its DNA coded for structural proteins. Morphopoietic genes clustered at one end of the genome, with head genes preceding tail genes. Lytic enzymes were probably coded for. A part of the phage genome was nonessential and possibly bacterial. Were tailed phages general transductants since the beginning? 3. The virus infected its host from the outside, injecting its DNA. Replication involved transcription in several waves and formation of DNA concatemers. Novel phages were released by burst of the infected cell after lysis of host membranes by a peptidoglycan hydrolase (and a holin?). a. Capsids were assembled from a starting point, the connector, and around a scaffold. They underwent an elaborate maturation process involving protein cleavage and capsid expansion. Heads and tails were assembled separately and joined later. b. The DNA was cut to size and entered preformed capsids by a headful mechanism. 4. Subsequently, tailed phages diversified by: a. Evolving contractile or short tails and elongated heads. b. Exchanging genes or gene fragments with other phages. c. Becoming temperate by acquiring an integrase-excisionase complex, plasmid parts, or transposons. d. Acquiring DNA and RNA polymerases and other replication enzymes. e. Exchanging lysin genes with their hosts. f. Losing the ability to form concatemers as a consequence of acquiring transposons (Mu) or proteinprimed DNA polymerases (phi 29). Present-day tailed phages appear as chimeras, but their monophyletic origin is still inscribed in their morphology, genome structure, and replication strategy. It may also be evident in the three-dimensional structure of capsid and tail proteins. It is unlikely to be found in amino acid sequences because constitutive proteins must be so old that relationships were obliterated and most or all replication-, lysogeny-, and lysis-related proteins appear to have been borrowed. However, the sum of tailed phage properties and behavior is so characteristic that tailed phages cannot be confused with other viruses.
Collapse
Affiliation(s)
- H W Ackermann
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| |
Collapse
|
37
|
Martín AC, López R, García P. Functional analysis of the two-gene lysis system of the pneumococcal phage Cp-1 in homologous and heterologous host cells. J Bacteriol 1998; 180:210-7. [PMID: 9440507 PMCID: PMC106873 DOI: 10.1128/jb.180.2.210-217.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The two lysis genes cph1 and cpl1 of the Streptococcus pneumoniae bacteriophage Cp-1 coding for holin and lysozyme, respectively, have been cloned and expressed in Escherichia coli. Synthesis of the Cph1 holin resulted in bacterial cell death but not lysis. The cph1 gene was able to complement a lambda Sam mutation in the nonsuppressing E. coli HB101 strain to produce phage progeny, suggesting that the holins encoded by both phage genes have analogous functions and that the pneumococcal holin induces a nonspecific lesion in the cytoplasmic membrane. Concomitant expression of both holin and lysin of Cp-1 in E. coli resulted in cell lysis, apparently due to the ability of the Cpl1 lysozyme to hydrolyze the peptidoglycan layer of this bacterium. The functional analysis of the cph1 and cpl1 genes cloned in a pneumococcal mutant with a complete deletion of the lytA gene, which codes for the S. pneumoniae main autolysin, provided the first direct evidence that, in this gram-positive-bacterium system, the Cpl1 endolysin is released to its murein substrate through the activity of the Cph1 holin. Demonstration of holin function was achieved by proving the release of pneumolysin to the periplasmic fraction, which strongly suggested that the holin produces a lesion in the pneumococcal membrane.
Collapse
Affiliation(s)
- A C Martín
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
38
|
Stanley E, Fitzgerald GF, Marrec CL, Fayard B, van Sinderen D. Sequence analysis and characterization of phi O1205, a temperate bacteriophage infecting Streptococcus thermophilus CNRZ1205. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3417-3429. [PMID: 9387220 DOI: 10.1099/00221287-143-11-3417] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complete nucleotide sequence of phi O1205, a temperate bacteriophage infecting Streptococcus thermophilus strain CNRZ1205, was determined. The phage genome has a unit length of 43,075 bp and appears to be packaged by the so-called headful mechanism. The genomic organization and structure of phi O1205 resemble those of several temperate lactococcal phages that display a life-cycle-specific organization, where ORFs believed to be involved in the lysogenic life-cycle are clustered and arranged in an orientation opposite to the ORFs supposedly involved in the lytic life-cycle. Database searches revealed putative functions for several identified ORFs and further indicated that phi O1205 is genetically related to a particular group of lactococcal phages. Three genes encoding the major structural proteins were identified on the phi O1205 genome. The phage attachment site attP, the bacterial attachment site attB, and the two phage/chromosome junctions attL and attR were identified and found to contain a 40 bp common core sequence.
Collapse
Affiliation(s)
- Elizabeth Stanley
- National Food Biotechnology Centre, University College,Cork,Ireland
- Department of Microbiology, University College,Cork,Ireland
| | - Gerald F Fitzgerald
- National Food Biotechnology Centre, University College,Cork,Ireland
- Department of Microbiology, University College,Cork,Ireland
| | | | - Blandine Fayard
- National Food Biotechnology Centre, University College,Cork,Ireland
| | - Douwe van Sinderen
- National Food Biotechnology Centre, University College,Cork,Ireland
- Department of Microbiology, University College,Cork,Ireland
| |
Collapse
|
39
|
Desiere F, Lucchini S, Bruttin A, Zwahlen MC, Brüssow H. A highly conserved DNA replication module from Streptococcus thermophilus phages is similar in sequence and topology to a module from Lactococcus lactis phages. Virology 1997; 234:372-82. [PMID: 9268169 DOI: 10.1006/viro.1997.8643] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A highly conserved DNA region extending over 5 kb was observed in Streptococcus thermophilus bacteriophages. Comparative sequencing of one temperate and 26 virulent phages demonstrated in the most extreme case an 18% aa difference for a predicted protein, while the majority of the phages showed fewer, if any aa changes. The relative degree of aa conservation was not homogeneous over the DNA segment investigated. Sequence analysis of the conserved segment revealed genes possibly involved in DNA transactions. Three predicted proteins (orf 233, 443, and 382 gene product (gp)) showed nucleoside triphosphate binding motifs. Orf 443 gp showed in addition a DEAH box motif, characteristically found in a subgroup of helicases, and a variant zinc finger motif known from a phage T7 helicase/primase. Tree analysis classified orf 443 gp as a distant member of the helicase superfamily. Orf 382 gp showed similarity to putative plasmid DNA primases. Downstream of orf 382 a noncoding repeat region was identified that showed similarity to a putative minus origin from a cryptic S. thermophilus plasmid. Four predicted proteins showed not only high degrees of aa identity (34 to 63%) with proteins from Lactococcus lactis phages, but their genes showed a similar topological organization. We interpret this as evidence for a horizontal gene transfer event between phages of the two bacterial genera in the distant past.
Collapse
Affiliation(s)
- F Desiere
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Chen C, Guo P. Magnesium-induced conformational change of packaging RNA for procapsid recognition and binding during phage phi29 DNA encapsidation. J Virol 1997; 71:495-500. [PMID: 8985376 PMCID: PMC191077 DOI: 10.1128/jvi.71.1.495-500.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteriophage phi29 is typical of double-stranded DNA viruses in that its genome is packaged into a preformed procapsid during maturation. An intriguing feature of phi29 assembly is that a virus-encoded RNA (pRNA) is required for the packaging of its genomic DNA. Psoralen cross-linking, primer extension, and T1 RNase partial digestion revealed that pRNA had at least two conformations; one was able to bind procapsids, and the other was not. In the presence of Mg2+, one stretch of pRNA, consisting of bases 31 to 35, was confirmed to be proximal to base 69, as revealed by its efficient cross-linking by psoralen. Two cross-linking sites in the helical region were identified. Mg2+ induced a conformational change of pRNA that exposes the portal protein binding site by promoting the refolding of two strands of the procapsid binding region, resulting in the formation of pRNA-procapsid complexes. The procapsid binding region in this binding-competent conformation could not be cross-linked with psoralen. When the two strands of the procapsid binding region were fastened by cross-linking, pRNA could neither bind procapsids nor package phi29 DNA. A pRNA conformational change was also discernible by comparison of migration rates in native EDTA and Mg2+ polyacrylamide gel electrophoresis and was revealed by T1 RNase probing. The Mg2+ concentration required for the detection of a change in pRNA cross-linking patterns was 1 mM, which was the same as that required for pRNA-procapsid complex formation and DNA packaging and was also close to that in normal host cells.
Collapse
Affiliation(s)
- C Chen
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|