1
|
Jia GS, Zhang WC, Liang Y, Liu XH, Rhind N, Pidoux A, Brysch-Herzberg M, Du LL. A high-quality reference genome for the fission yeast Schizosaccharomyces osmophilus. G3 (BETHESDA, MD.) 2023; 13:jkad028. [PMID: 36748990 PMCID: PMC10085805 DOI: 10.1093/g3journal/jkad028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
Fission yeasts are an ancient group of fungal species that diverged from each other from tens to hundreds of million years ago. Among them is the preeminent model organism Schizosaccharomyces pombe, which has significantly contributed to our understandings of molecular mechanisms underlying fundamental cellular processes. The availability of the genomes of S. pombe and 3 other fission yeast species S. japonicus, S. octosporus, and S. cryophilus has enabled cross-species comparisons that provide insights into the evolution of genes, pathways, and genomes. Here, we performed genome sequencing on the type strain of the recently identified fission yeast species S. osmophilus and obtained a complete mitochondrial genome and a nuclear genome assembly with gaps only at rRNA gene arrays. A total of 5,098 protein-coding nuclear genes were annotated and orthologs for more than 95% of them were identified. Genome-based phylogenetic analysis showed that S. osmophilus is most closely related to S. octosporus and these 2 species diverged around 16 million years ago. To demonstrate the utility of this S. osmophilus reference genome, we conducted cross-species comparative analyses of centromeres, telomeres, transposons, the mating-type region, Cbp1 family proteins, and mitochondrial genomes. These analyses revealed conservation of repeat arrangements and sequence motifs in centromere cores, identified telomeric sequences composed of 2 types of repeats, delineated relationships among Tf1/sushi group retrotransposons, characterized the evolutionary origins and trajectories of Cbp1 family domesticated transposases, and discovered signs of interspecific transfer of 2 types of mitochondrial selfish elements.
Collapse
Affiliation(s)
- Guo-Song Jia
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen-Cai Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Liang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xi-Han Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alison Pidoux
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Heilbronn 74081, Germany
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
2
|
Miyazaki Y, Irobalieva RN, Tolbert BS, Smalls-Mantey A, Iyalla K, Loeliger K, D'Souza V, Khant H, Schmid MF, Garcia EL, Telesnitsky A, Chiu W, Summers MF. Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography. J Mol Biol 2010; 404:751-72. [PMID: 20933521 DOI: 10.1016/j.jmb.2010.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 01/11/2023]
Abstract
The 5'-untranslated regions of all gammaretroviruses contain a conserved "double-hairpin motif" (Ψ(CD)) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming "kissing" interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney murine leukemia virus ([Ψ(CD)](2), 132 nt, 42.8 kDa) using a (2)H-edited NMR-spectroscopy-based approach. This approach enabled the detection of (1)H-(1)H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional (1)H-(1)H correlated and (1)H-(13)C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D' and SLC' to SL-D) and stack in an end-to-end manner (SL-C to SL-D and SL-C' to SL-D') that gives rise to an elongated overall shape (ca 95 Å×45 Å×25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [Ψ(CD)](2) simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [Ψ(CD)](2) functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins.
Collapse
Affiliation(s)
- Yasuyuki Miyazaki
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Miyazaki Y, Garcia EL, King SR, Iyalla K, Loeliger K, Starck P, Syed S, Telesnitsky A, Summers MF. An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. J Mol Biol 2009; 396:141-52. [PMID: 19931283 DOI: 10.1016/j.jmb.2009.11.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/26/2022]
Abstract
Retroviruses selectively package two copies of their RNA genomes via mechanisms that have yet to be fully deciphered. Recent studies with small fragments of the Moloney murine leukemia virus (MoMuLV) genome suggested that selection may be mediated by an RNA switch mechanism, in which conserved UCUG elements that are sequestered by base-pairing in the monomeric RNA become exposed upon dimerization to allow binding to the cognate nucleocapsid (NC) domains of the viral Gag proteins. Here we show that a large fragment of the MoMuLV 5' untranslated region that contains all residues necessary for efficient RNA packaging (Psi(WT); residues 147-623) also exhibits a dimerization-dependent affinity for NC, with the native dimer ([Psi(WT)](2)) binding 12+/-2 NC molecules with high affinity (K(d)=17+/-7 nM) and with the monomer, stabilized by substitution of dimer-promoting loop residues with hairpin-stabilizing sequences (Psi(M)), binding 1-2 NC molecules. Identical dimer-inhibiting mutations in MoMuLV-based vectors significantly inhibit genome packaging in vivo (approximately 100-fold decrease), whereas a large deletion of nearly 200 nucleotides just upstream of the gag start codon has minimal effects. Our findings support the proposed RNA switch mechanism and further suggest that virus assembly may be initiated by a complex comprising as few as 12 Gag molecules bound to a dimeric packaging signal.
Collapse
Affiliation(s)
- Yasuyuki Miyazaki
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
The effects of alternate polypurine tracts (PPTs) and mutations of sequences adjacent to the PPT on viral replication and cleavage specificity of the Rous sarcoma virus reverse transcriptase. J Virol 2008; 82:8592-604. [PMID: 18562520 DOI: 10.1128/jvi.00499-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously reported that a mutant Rous sarcoma virus (RSV) with an alternate polypurine tract (PPT), DuckHepBFlipPPT, had unexpectedly high titers and that the PPT was miscleaved primarily at one position following a GA dinucleotide by the RNase H of reverse transcriptase (RT). This miscleavage resulted in a portion of the 3' end of the PPT (5'-ATGTA) being added to the end of U3 of the linear viral DNA. To better understand the RNase H cleavage by RSV RT, we made a number of mutations within the DuckHepBFlipPPT and in the sequences adjacent to the PPT. Deleting the entire ATGTA sequence from the DuckHepBFlipPPT increased the relative titer to wild-type levels, while point mutations within the ATGTA sequence reduced the relative titer but had minimal effects on the cleavage specificity. However, mutating a sequence 5' of ATGTA affected the relative titer of the virus and caused the RNase H of RSV RT to lose the ability to cleave the PPT specifically. In addition, although mutations in the conserved stretch of thymidine residues upstream of the PPT did not affect the relative titer or cleavage specificity, the mutation of some of the nucleotides immediately upstream of the PPT did affect the titer and cleavage specificity. Taken together, our studies show that the structure of the PPT in the context of the cognate RT, rather than a specific sequence, is important for the proper cleavage by RSV RT.
Collapse
|
5
|
Mutations in the human immunodeficiency virus type 1 polypurine tract (PPT) reduce the rate of PPT cleavage and plus-strand DNA synthesis. J Virol 2008; 82:5104-8. [PMID: 18321979 DOI: 10.1128/jvi.01897-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previously, we analyzed the effects of point mutations in the human immunodeficiency virus type 1 (HIV-1) polypurine tract (PPT) and found that some mutations affected both titer and cleavage specificity. We used HIV-1 vectors containing two PPTs and the D116N integrase active-site mutation in a cell-based assay to measure differences in the relative rates of PPT processing and utilization. The relative rates were measured by determining which of the two PPTs in the vector is used to synthesize viral DNA. The results indicate that mutations that have subtle effects on titer and cleavage specificity can have dramatic effects on rates of PPT generation and utilization.
Collapse
|
6
|
Haines KM, Loeb DD. The sequence of the RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis in hepatitis B virus. J Mol Biol 2007; 370:471-80. [PMID: 17531265 PMCID: PMC1991300 DOI: 10.1016/j.jmb.2007.04.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 12/01/2022]
Abstract
For hepadnaviruses, the RNA primer for plus-strand DNA synthesis is generated by the final RNase H cleavage of the pregenomic RNA at an 11 nt sequence called DR1 during the synthesis of minus-strand DNA. This RNA primer initiates synthesis at one of two distinct sites on the minus-strand DNA template, resulting in two different end products; duplex linear DNA or relaxed circular DNA. Duplex linear DNA is made when initiation of synthesis occurs at DR1. Relaxed circular DNA, the major product, is made when the RNA primer translocates to the sequence complementary to DR1, called DR2 before initiation of DNA synthesis. We studied the mechanism that determines the site of the final RNase H cleavage in hepatitis B virus (HBV). We showed that the sites of the final RNase H cleavage are always a fixed number of nucleotides from the 5' end of the pregenomic RNA. This finding is similar to what was found previously for duck hepatitis B virus (DHBV), and suggests that all hepadnaviruses use a similar mechanism. Also, we studied the role of complementarity between the RNA primer and the acceptor site at DR2 in HBV. By increasing the complementarity, we were able to increase the level of priming at DR2 over that seen in the wild-type virus. This finding suggests that the level of initiation of plus-strand DNA synthesis at DR2 is sub-maximal for wild-type HBV. Finally, we studied the role of the sequence at the 5' end of the RNA primer that is outside of the DR sequence. We found that substitutions or insertions in this region affected the level of priming at DR1 and DR2.
Collapse
Affiliation(s)
| | - Daniel D. Loeb
- *Corresponding author: Tel. (608)262-1260, Fax (608)262-2824,
| |
Collapse
|
7
|
Rausch JW, Le Grice SFJ. Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis. Nucleic Acids Res 2006; 35:256-68. [PMID: 17164285 PMCID: PMC1802577 DOI: 10.1093/nar/gkl909] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite extensive study, the mechanism by which retroviral reverse transciptases (RTs) specifically utilize polypurine tract (PPT) RNA for initiation of plus-strand DNA synthesis remains unclear. Three sequence motifs within or adjacent to the purine-rich elements are highly conserved, namely, a rU:dA tract region immediately 5′ to the PPT, an rA:dT-rich sequence constituting the upstream portion of the PPT and a downstream rG:dC tract. Using an in vitro HIV-1 model system, we determined that the former two elements define the 5′ terminus of the (+)-strand primer, whereas the rG:dC tract serves as the primary determinant of initiation specificity. Subsequent analysis demonstrated that G→A or A→G substitution at PPT positions −2, −4 and +1 (relative to the scissile phosphate) substantially reduces (+)-strand priming. We explored this observation further using PPT substrates substituted with a variety of nucleoside analogs [inosine (I), purine riboside (PR), 2-aminopurine (2-AP), 2,6-diaminopurine (2,6-DAP), isoguanine (iG)], or one of the naturally occurring bases at these positions. Our results demonstrate that for PPT positions −2 or +1, substituting position 2 of the purine was an important determinant of cleavage specificity. In addition, cleavage specificity was greatly affected by substituting −4G with an analog containing a 6-NH2 moiety.
Collapse
Affiliation(s)
| | - Stuart F. J. Le Grice
- To whom correspondence should be addressed. Tel: +1 301 846 5256; Fax: +1 301 846 6013;
| |
Collapse
|
8
|
Jones FD, Hughes SH. In vitro analysis of the effects of mutations in the G-tract of the human immunodeficiency virus type 1 polypurine tract on RNase H cleavage specificity. Virology 2006; 360:341-9. [PMID: 17123564 DOI: 10.1016/j.virol.2006.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 08/25/2006] [Accepted: 10/03/2006] [Indexed: 11/20/2022]
Abstract
The recognition and precise cleavage of the polypurine tract (PPT) of the human immunodeficiency virus type 1 (HIV-1) is an essential step in HIV-1 reverse transcription. The accurate cleavage, and the subsequent removal, of the PPT by the RNase H activity of HIV-1 RT defines the left end of the double-stranded viral DNA genome, the substrate for integration into the host genome. Previous analyses have shown that mutations in the 3'-end (G-tract) of the PPT cause alterations in RNase H cleavage specificity. In particular, mutations at positions 2 and 5 in the G-tract increased the frequency of retention of PPT sequences in the 2-LTR circle junction. To better understand why these mutations affected PPT cleavage in vivo, we analyzed the cleavage of PPT substrates in vitro that contained altered sequences and unusual base substitutions. Our results, herein, confirm that mutations at positions 2 and 5 of the G-tract do significantly alter the cleavage specificity at the PPT/U3 junction, and further suggest that the miscleavages observed in vivo were due to an improper generation of the PPT primer, as opposed to its improper removal. Finally, our results point to the structure of the PPT, rather than the base-specific contacts between the PPT and HIV-1 RT, as the primary determinants of RNase H cleavage specificity at the PPT/U3 junction.
Collapse
Affiliation(s)
- Fatima D Jones
- HIV Drug Resistance Program, NCI Frederick, PO Box B, Building 539, Room 130A, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
9
|
Oh J, Chang KW, Alvord WG, Hughes SH. Alternate polypurine tracts affect rous sarcoma virus integration in vivo. J Virol 2006; 80:10281-4. [PMID: 17005708 PMCID: PMC1617299 DOI: 10.1128/jvi.00361-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When the endogenous polypurine tract (PPT) of the Rous sarcoma virus (RSV)-derived vector RSVP(A)Z was replaced with alternate retroviral PPTs, the fraction of unintegrated viral DNA with the normal consensus ends significantly decreased and the retention of part of the PPT significantly increased. If the terminus of the U3 long terminal repeat (LTR) is aberrant, RSV integrase can correctly process and integrate the normal U5 LTR into the host genome. However, the canonical CA is not involved in joining the aberrant U3 LTR to the host DNA, generating either large duplications or deletions of the host sequences instead of the normal 5- or 6-bp duplication.
Collapse
Affiliation(s)
- Jangsuk Oh
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
10
|
Chang KW, Julias JG, Alvord WG, Oh J, Hughes SH. Alternate polypurine tracts (PPTs) affect the rous sarcoma virus RNase H cleavage specificity and reveal a preferential cleavage following a GA dinucleotide sequence at the PPT-U3 junction. J Virol 2005; 79:13694-704. [PMID: 16227289 PMCID: PMC1262584 DOI: 10.1128/jvi.79.21.13694-13704.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral polypurine tracts (PPTs) serve as primers for plus-strand DNA synthesis during reverse transcription. The generation and removal of the PPT primer requires specific cleavages by the RNase H activity of reverse transcriptases; removal of the PPT primer defines the left end of the linear viral DNA. We replaced the endogenous PPT from RSVP(A)Z, a replication-competent shuttle vector based on Rous sarcoma virus (RSV), with alternate retroviral PPTs and the duck hepatitis B virus "PPT." Viruses in which the endogenous RSV PPT was replaced with alternate PPTs had lower relative titers than the wild-type virus. 2-LTR circle junction analysis showed that the alternate PPTs caused significant decreases in the fraction of viral DNAs with complete (consensus) ends and significant increases in the insertion of part or all of the PPT at the 2-LTR circle junctions. The last two nucleotides in the 3' end of the RSV PPT are GA. Examination of the (mis)cleavages of the alternate PPTs revealed preferential cleavages after GA dinucleotide sequences. Replacement of the terminal 3' A of the RSV PPT with G caused a preferential miscleavage at a GA sequence spanning the PPT-U3 boundary, resulting in the deletion of the terminal adenine normally present at the 5' end of the U3. A reciprocal G-to-A substitution at the 3' end of the murine leukemia virus PPT increased the relative titer of the chimeric RSV-based virus and the fraction of consensus 2-LTR circle junctions.
Collapse
Affiliation(s)
- Kevin W Chang
- HIV Drug Resistance Program, NCI-Frederick, P.O. Box B, Bldg. 539, Rm. 130A, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
11
|
Wilhelm FX, Wilhelm M, Gabriel A. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 2005; 110:269-87. [PMID: 16093680 DOI: 10.1159/000084960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022] Open
Abstract
Integrase (IN) and reverse transcriptase (RT) play a central role in transposition of retroelements. The mechanism of integration by IN and the steps of the replication process mediated by RT are briefly described here. Recently, active recombinant forms of Ty1 IN and RT have been obtained. This has allowed a more detailed understanding of their biochemical and structural properties and has made possible combined in vitro and in vivo analyses of their functions. A focus of this review is to discuss some of the results obtained thus far with these two recombinant proteins and to propose future directions.
Collapse
Affiliation(s)
- F-X Wilhelm
- Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
12
|
An W, Telesnitsky A. Human immunodeficiency virus type 1 transductive recombination can occur frequently and in proportion to polyadenylation signal readthrough. J Virol 2004; 78:3419-28. [PMID: 15016864 PMCID: PMC371070 DOI: 10.1128/jvi.78.7.3419-3428.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One model for retroviral transduction suggests that template switching between viral RNAs and polyadenylation readthrough sequences is responsible for the generation of acute transforming retroviruses. For this study, we examined reverse transcription products of human immunodeficiency virus (HIV)-based vectors designed to mimic postulated transduction intermediates. For maximization of the discontinuous mode of DNA synthesis proposed to generate transductants, sequences located between the vectors' two long terminal repeats (vector "body" sequences) and polyadenylation readthrough "tail" sequences were made highly homologous. Ten genetic markers were introduced to indicate which products had acquired tail sequences by a process we term transductive recombination. Marker segregation patterns for over 100 individual products were determined, and they revealed that more than half of the progeny proviruses were transductive recombinants. Although most crossovers occurred in regions of homology, about 5% were nonhomologous and some included insertions. Ratios of encapsidated readthrough and polyadenylated transcripts for vectors with wild-type and inactivated polyadenylation signals were compared, and transductive recombination frequencies were found to correlate with the readthrough transcript prevalence. In assays in which either vector body or tail could serve as a recombination donor, recombination between tail and body sequences was at least as frequent as body-body exchange. We propose that transductive recombination may contribute to natural HIV variation by providing a mechanism for the acquisition of nongenomic sequences.
Collapse
Affiliation(s)
- Wenfeng An
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
13
|
Hlavaty J, Stracke A, Klein D, Salmons B, Günzburg WH, Renner M. Multiple modifications allow high-titer production of retroviral vectors carrying heterologous regulatory elements. J Virol 2004; 78:1384-92. [PMID: 14722293 PMCID: PMC321378 DOI: 10.1128/jvi.78.3.1384-1392.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor-specific expression of therapeutic genes is a prerequisite in many approaches to retrovirus-mediated cancer gene therapy. However, tissue specificity is often associated with a reduction in viral titer. To overcome this problem, we constructed a series of murine leukemia virus (MLV)-based retroviral promoter conversion (ProCon) vectors carrying either the simian virus 40 poly(A) signal trimer (3pA) inserted in the 3' long terminal repeat (LTR) of these vectors or the human cytomegalovirus enhancer region (CMVe) inserted 5' and 3' of the retroviral LTRs. Furthermore, an extended AT stretch/attachment site (AT/att) of wild-type MLV was introduced into the vector. In the vector-producing cells, insertion of the CMVe and/or the 3pA resulted in a three- to fourfold-enhanced marker gene expression compared to the parental vector, whereas insertion of the AT/att gave a slight decrease in expression. The combination of all three modifications had no additional effects. In contrast, however, neomycin selection of infected cells revealed only a slight increase in virus titer with vectors carrying the 3pA modification; the titer was increased by 1 with vectors containing the extended AT/att, although the viral DNA copy numbers in infected cells were similar with both types of vectors. Thus, insufficient integration rather than insufficient reverse transcription and/or production of virus RNA is the major cause for the low titer obtained with the ProCon vectors. The combination of all three modifications resulted in a 2- to 3-log increase in the virus titer. These modifications result in expression targeted ProCon vectors with titers similar to those of nonmodified MLV-based vectors.
Collapse
Affiliation(s)
- Juraj Hlavaty
- Institute of Virology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
14
|
Marr SF, Telesnitsky A. Mismatch extension during strong stop strand transfer and minimal homology requirements for replicative template switching during Moloney murine leukemia virus replication. J Mol Biol 2003; 330:657-74. [PMID: 12850138 PMCID: PMC7173232 DOI: 10.1016/s0022-2836(03)00597-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reverse transcription requires two replicative template switches, called minus and plus strand strong stop transfer, and can include additional, recombinogenic switches. Donor and acceptor template homology facilitates both replicative and recombinogenic transfers, but homology-independent determinants may also contribute. Here, improved murine leukemia virus-based assays were established and the effects of varying extents of mismatches and complementarity between primer and acceptor template regions were assessed. Template switch accuracy was addressed by examining provirus structures, and efficiency was measured using a competitive titer assay. The results demonstrated that limited mismatch extension occurred readily during both minus and plus strand transfer. A strong bias for correct targeting to the U3/R junction and against use of alternate regions of homology was observed during minus strand transfer. Transfer to the U3/R junction was as accurate with five bases of complementarity as it was with an intact R, and as few as 3nt targeted transfer to a limited extent. In contrast, 12 base recombinogenic acceptors were utilized poorly and no accurate switch was observed when recombination acceptors retained only five bases of complementarity. These findings confirm that murine leukemia virus replicative and recombinogenic template switches differ in homology requirements, and support the notion that factors other than primer-template complementarity may contribute to strong stop acceptor template recognition.
Collapse
|
15
|
Rohll JB, Mitrophanous KA, Martin-Rendon E, Ellard FM, Radcliffe PA, Mazarakis ND, Kingsman SM. Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol 2002; 346:466-500. [PMID: 11883086 DOI: 10.1016/s0076-6879(02)46072-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Jonathan B Rohll
- Department of Biochemistry, Oxford BioMedica (UK) Limited, Oxford OX4 4GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
16
|
Wilhelm M, Uzun O, Mules EH, Gabriel A, Wilhelm FX. Polypurine tract formation by Ty1 RNase H. J Biol Chem 2001; 276:47695-701. [PMID: 11595735 DOI: 10.1074/jbc.m106067200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To better understand the mechanism by which Ty1 RNase H creates the polypurine tract (PPT) primer, we have demonstrated the polymerase-dependent hydrolytic activity of Ty1 reverse transcriptase (RT) during minus-strand synthesis. Using RNase H and polymerase mutants of the recombinant Ty1 RT protein, we show that the two domains of Ty1 RT can act independently of one another. Our results indicate that RNA/DNA substrates containing a short RNA PPT, which serve as primers for plus-strand DNA synthesis, are relatively resistant to RNase H cleavage. RNA substrates with a correct 5' end but with 3' end extending beyond the plus-strand initiation site were cleaved specifically to generate the correct 3' end of the PPT. Using long RNA/DNA duplexes containing the PPT, we show that Ty1 RT is able to make specific internal cleavages that could generate the plus-strand primer with correct 5' and 3' ends. Long RNA/DNA duplexes with mutations in the PPT or in a U-rich region upstream of the PPT, which abolish plus-strand initiation in vivo, were not cleaved specifically at the 5' end of the PPT. Our work demonstrates that the in vitro enzyme can recapitulate key processes that control proper replication in vivo.
Collapse
Affiliation(s)
- M Wilhelm
- Institut de Biologie Moléculaire et Cellulaire, 15, rue R. Descartes, 67084 Strasbourg, France.
| | | | | | | | | |
Collapse
|
17
|
Robson ND, Telesnitsky A. Selection of optimal polypurine tract region sequences during Moloney murine leukemia virus replication. J Virol 2000; 74:10293-303. [PMID: 11044073 PMCID: PMC110903 DOI: 10.1128/jvi.74.22.10293-10303.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrovirus plus-strand synthesis is primed by a cleavage remnant of the polypurine tract (PPT) region of viral RNA. In this study, we tested replication properties for Moloney murine leukemia viruses with targeted mutations in the PPT and in conserved sequences upstream, as well as for pools of mutants with randomized sequences in these regions. The importance of maintaining some purine residues within the PPT was indicated both by examining the evolution of random PPT pools and from the replication properties of targeted mutants. Although many different PPT sequences could support efficient replication and one mutant that contained two differences in the core PPT was found to replicate as well as the wild type, some sequences in the core PPT clearly conferred advantages over others. Contributions of sequences upstream of the core PPT were examined with deletion mutants. A conserved T-stretch within the upstream sequence was examined in detail and found to be unimportant to helper functions. Evolution of virus pools containing randomized T-stretch sequences demonstrated marked preference for the wild-type sequence in six of its eight positions. These findings demonstrate that maintenance of the T-rich element is more important to viral replication than is maintenance of the core PPT.
Collapse
Affiliation(s)
- N D Robson
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
18
|
Pfeiffer JK, Georgiadis MM, Telesnitsky A. Structure-based moloney murine leukemia virus reverse transcriptase mutants with altered intracellular direct-repeat deletion frequencies. J Virol 2000; 74:9629-36. [PMID: 11000235 PMCID: PMC112395 DOI: 10.1128/jvi.74.20.9629-9636.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Template switching rates of Moloney murine leukemia virus reverse transcriptase mutants were tested using a retroviral vector-based direct-repeat deletion assay. The reverse transcriptase mutants contained alterations in residues that modeling of substrates into the catalytic core had suggested might affect interactions with primer and/or template strands. As assessed by the frequency of functional lacZ gene generation from vectors in which lacZ was disrupted by insertion of a sequence duplication, the frequency of template switching varied more than threefold among fully replication-competent mutants. Some mutants displayed deletion rates that were lower and others displayed rates that were higher than that of wild-type virus. Replication for the mutants with the most significant alterations in template switching frequencies was similar to that of the wild type. These data suggest that reverse transcriptase template switching rates can be altered significantly without destroying normal replication functions.
Collapse
Affiliation(s)
- J K Pfeiffer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | |
Collapse
|
19
|
Yu SS, Kim JM, Kim S. The 17 nucleotides downstream from the env gene stop codon are important for murine leukemia virus packaging. J Virol 2000; 74:8775-80. [PMID: 10954583 PMCID: PMC116393 DOI: 10.1128/jvi.74.18.8775-8780.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a previously unknown nucleotide sequence important for the packaging of murine leukemia virus. This nucleotide sequence is located downstream from the stop codon of the env gene but does not overlap the polypurine tract. Deletion of 17 bp from this region resulted in a more than 10-fold decrease in viral titer. Consistent with this result, the deletion mutant showed a 20- to 30-fold drop in the amount of virion RNA in the culture supernatant. The total amount of virion protein in the culture supernatant was comparable for the deletion mutant and the parental virus, suggesting that the mutant construct could release the empty viral particles. These results suggested that the packaging signal sequence might be present at the two extreme sites of the viral genome, one in the region around the splice donor sequence downstream from the 5' long terminal repeat (LTR) and the other immediately upstream from the 3' LTR. Implications for gene therapy, especially in regard to construction of retroviral vectors and packaging constructs, are discussed.
Collapse
Affiliation(s)
- S S Yu
- ViroMed Limited, Technology Business Incubator, Seoul 151-742, Korea
| | | | | |
Collapse
|
20
|
Bacharach E, Gonsky J, Lim D, Goff SP. Deletion of a short, untranslated region adjacent to the polypurine tract in Moloney murine leukemia virus leads to formation of aberrant 5' plus-strand DNA ends in vivo. J Virol 2000; 74:4755-64. [PMID: 10775614 PMCID: PMC111998 DOI: 10.1128/jvi.74.10.4755-4764.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experiments were performed to determine the function of a 28-nucleotide untranslated sequence lying between the envelope gene and the polypurine tract (PPT) sequence in the Moloney murine leukemia virus (Mo-MuLV) genome. A mutant virus carrying a deletion of this sequence (Mo-MuLVDelta28) replicated more slowly than wild-type (wt) virus and reverted by recombination with endogenous sequences during growth in NIH 3T3 cells. We show that this deletion did not affect the level of viral protein expression or genomic RNA packaging. Mo-MuLVDelta28 served as a helper virus as efficiently as the wt virus; in contrast, a retroviral vector harboring this mutation exhibited reduced transduction efficiency, indicating that the mutation acts not in trans but in cis. Analysis of acutely infected cells revealed that reduced levels of viral DNA were generated by reverse transcription of the Mo-MuLVDelta28 RNA as compared to the wt RNA. Analysis of DNA circle junctions revealed that plus-strand DNA of Mo-MuLVDelta28 but not wt virus often retained the PPT and additional upstream sequences. These structures suggest that aberrant 5' ends of plus-strand DNA were generated by a failure to remove the PPT RNA primer and/or by mispriming at sites upstream of the PPT. These data demonstrate that the major role of the sequences immediately upstream of the PPT is specifying efficient and accurate plus-strand DNA synthesis.
Collapse
Affiliation(s)
- E Bacharach
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
21
|
Kelleher CD, Champoux JJ. RNA degradation and primer selection by Moloney murine leukemia virus reverse transcriptase contribute to the accuracy of plus strand initiation. J Biol Chem 2000; 275:13061-70. [PMID: 10777611 DOI: 10.1074/jbc.275.17.13061] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During reverse transcription, plus strand DNA synthesis is initiated at a purine-rich RNA primer generated by the RNase H activity of reverse transcriptase (RT). Specific initiation of plus strand synthesis from this polypurine tract (PPT) RNA is essential for the subsequent integration of the linear viral DNA product. Based on current models, it is predicted that priming from sites upstream of the PPT may be tolerated by the virus, whereas efficient extension from RNA primers located downstream from the PPT is predicted to generate dead-end products. By using hybrid duplex substrates derived from the Moloney murine leukemia virus long terminal repeat, we investigated the extent to which RNase H degrades the viral RNA during time course cleavage assays, and we tested the capacity of the polymerase activity of RT to use the resulting cleavage products as primers. We find that the majority of the RNA fragments generated by RNase H are 2-25 nucleotides in length, and only following extensive degradation are most fragments reduced to 10 nucleotides or smaller. Although extensive RNA degradation by RNase H likely eliminates many potential RNA primers, based on thermostability predictions it appears that some RNA fragments remain stably annealed to the DNA template. RNA primers generated by RNase H within the long terminal repeat sequence are found to have the capacity to initiate DNA synthesis by RT; however, the priming efficiency is significantly less than that observed with the PPT primer. We find that Moloney murine leukemia virus nucleocapsid protein reduces RNase H degradation and slightly alters the cleavage specificity of RT; however, nucleocapsid protein does not appear to enhance PPT primer utilization or suppress extension from non-PPT RNA primers.
Collapse
Affiliation(s)
- C D Kelleher
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
22
|
Shin NH, Hartigan-O'Connor D, Pfeiffer JK, Telesnitsky A. Replication of lengthened Moloney murine leukemia virus genomes is impaired at multiple stages. J Virol 2000; 74:2694-702. [PMID: 10684285 PMCID: PMC111759 DOI: 10.1128/jvi.74.6.2694-2702.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been assumed that RNA packaging constraints limit the size of retroviral genomes. This notion of a retroviral "headful" was tested by examining the ability of Moloney murine leukemia virus genomes lengthened by 4, 8, or 11 kb to participate in a single replication cycle. Overall, replication of these lengthened genomes was 5- to 10-fold less efficient than that of native-length genomes. When RNA expression and virion formation, RNA packaging, and early stages of replication were compared, long genomes were found to complete each step less efficiently than did normal-length genomes. To test whether short RNAs might facilitate the packaging of lengthy RNAs by heterodimerization, some experiments involved coexpression of a short packageable RNA. However, enhancement of neither long vector RNA packaging nor long vector DNA synthesis was observed in the presence of the short RNA. Most of the proviruses templated by 12 and 16 kb vectors appeared to be full length. Most products of a 19. 2-kb vector contained deletions, but some integrated proviruses were around twice the native genome length. These results demonstrate that lengthy retroviral genomes can be packaged and that genome length is not strictly limited at any individual replication step. These observations also suggest that the lengthy read-through RNAs postulated to be intermediates in retroviral transduction can be packaged directly without further processing.
Collapse
Affiliation(s)
- N H Shin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|