1
|
Barbu MG, Condrat CE, Thompson DC, Bugnar OL, Cretoiu D, Toader OD, Suciu N, Voinea SC. MicroRNA Involvement in Signaling Pathways During Viral Infection. Front Cell Dev Biol 2020; 8:143. [PMID: 32211411 PMCID: PMC7075948 DOI: 10.3389/fcell.2020.00143] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
The study of miRNAs started in 1993, when Lee et al. observed their involvement in the downregulation of a crucial protein known as LIN-14 in the nematode Caenorhabditis elegans. Since then, great progress has been made regarding research on microRNAs, which are now known to be involved in the regulation of various physiological and pathological processes in both animals and humans. One such example is represented by their interaction with various signaling pathways during viral infections. It has been observed that these pathogens can induce the up-/downregulation of various host miRNAs in order to elude the host's immune system. In contrast, some miRNAs studied could have an antiviral effect, enabling the defense mechanisms to fight the infection or, at the very least, they could induce the pathogen to enter a latent state. At the same time, some viruses encode their own miRNAs, which could further modulate the host's signaling pathways, thus favoring the survival and replication of the virus. The goal of this extensive literature review was to present how miRNAs are involved in the regulation of various signaling pathways in some of the most important and well-studied human viral infections. Further on, knowing which miRNAs are involved in various viral infections and what role they play could aid in the development of antiviral therapeutic agents for certain diseases that do not have a definitive cure in the present. The clinical applications of miRNAs are extremely important, as miRNAs targeted inhibition may have substantial therapeutic impact. Inhibition of miRNAs can be achieved through many different methods, but chemically modified antisense oligonucleotides have shown the most prominent effects. Though scientists are far from completely understanding all the molecular mechanisms behind the complex cross-talks between miRNA pathways and viral infections, the general knowledge is increasing on the different roles played by miRNAs during viral infections.
Collapse
Affiliation(s)
- Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oana Daniela Toader
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Institute of Oncology Prof. Dr. Alexandru Trestioreanu, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
2
|
Sun B, Wang Q, Pan D. [Mechanisms of herpes simplex virus latency and reactivation]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:89-101. [PMID: 31102363 PMCID: PMC8800643 DOI: 10.3785/j.issn.1008-9292.2019.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Herpes simplex virus (HSV), including HSV-1 and HSV-2, is an important pathogen that can cause many diseases. Usually these diseases are recurrent and incurable. After lytic infection on the surface of peripheral mucosa, HSV can enter sensory neurons and establish latent infection during which viral replication ceases. Moreover, latent virus can re-enter the replication cycle by reactivation and return to peripheral tissues to start recurrent infection. This ability to escape host immune surveillance during latent infection and to spread during reactivation is a viral survival strategy and the fundamental reason why no drug can completely eradicate the virus at present. Although there are many studies on latency and reactivation of HSV, and much progress has been made, many specific mechanisms of the process remain obscure or even controversial due to the complexity of this process and the limitations of research models. This paper reviews the major results of research on HSV latency and reactivation, and discusses future research directions in this field.
Collapse
Affiliation(s)
- Boqiang Sun
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiongyan Wang
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongli Pan
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
3
|
Phelan D, Barrozo ER, Bloom DC. HSV1 latent transcription and non-coding RNA: A critical retrospective. J Neuroimmunol 2017; 308:65-101. [PMID: 28363461 DOI: 10.1016/j.jneuroim.2017.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Virologists have invested great effort into understanding how the herpes simplex viruses and their relatives are maintained dormant over the lifespan of their host while maintaining the poise to remobilize on sporadic occasions. Piece by piece, our field has defined the tissues in play (the sensory ganglia), the transcriptional units (the latency-associated transcripts), and the responsive genomic region (the long repeats of the viral genomes). With time, the observed complexity of these features has compounded, and the totality of viral factors regulating latency are less obvious. In this review, we compose a comprehensive picture of the viral genetic elements suspected to be relevant to herpes simplex virus 1 (HSV1) latent transcription by conducting a critical analysis of about three decades of research. We describe these studies, which largely involved mutational analysis of the notable latency-associated transcripts (LATs), and more recently a series of viral miRNAs. We also intend to draw attention to the many other less characterized non-coding RNAs, and perhaps coding RNAs, that may be important for consideration when trying to disentangle the multitude of phenotypes of the many genetic modifications introduced into recombinant HSV1 strains.
Collapse
Affiliation(s)
- Dane Phelan
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - Enrico R Barrozo
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| |
Collapse
|
4
|
Piedade D, Azevedo-Pereira JM. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection. Viruses 2016; 8:v8060156. [PMID: 27271654 PMCID: PMC4926176 DOI: 10.3390/v8060156] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
5
|
Characterization of herpes simplex virus 2 primary microRNA Transcript regulation. J Virol 2015; 89:4837-48. [PMID: 25673716 DOI: 10.1128/jvi.03135-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. IMPORTANCE The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5' ends and evaluation of ICP4 response. These findings provide further insight into the virus' strategy to tightly control expression of lytic cycle genes (especially the neurovirulence factor, ICP34.5) and suggest a mechanism (via ICP4) for the transition from latency to reactivated productive infection.
Collapse
|
6
|
Zheng B, Li M, Gao S, Wang L, Qi Y, Ma Y, Ruan Q. Characterization of a novel group of antisense transcripts in human cytomegalovirus UL83 gene region. J Med Virol 2014; 86:2033-41. [PMID: 24615924 DOI: 10.1002/jmv.23887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 11/11/2022]
Abstract
The rapid advances in research on antisense transcripts are gradually changing our understanding of the expression of the Herpesviridae genome. In this study, the transcripts of the human cytomegalovirus (HCMV) UL83 antisense strand were investigated in three clinical isolates. Three cDNA clones containing sequences with an antisense orientation to the UL83 gene were identified in a late HCMV cDNA library. The UL83 antisense transcripts (UL83asts) were then shown to be transcribed only in the late infection phase of the three clinical HCMV strains, using rapid amplification of cDNA ends (RACE) and northern blotting. These UL83asts were identical at their 3' termini but different at 5' ends. Two open reading frames were predicted in the UL83asts.
Collapse
Affiliation(s)
- Bo Zheng
- Virus Laboratory, The affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Herpes simplex virus (HSV) is a group of common human pathogens with two serotypes HSV-1 and HSV-2. The prevalence of HSV is worldwide. It primarily infects humans through epithelial cells, when it introduces a latent infection into the nervous system. During viral latency, only a region known as the latency-associated transcript (LAT) is expressed. The discovery of HSV miRNAs helps to draw a larger picture of the infection and pathogenesis of the virus. This review summarizes miRNAs found in HSV-1 and HSV-2 so far. The functional studies of miRNAs in HSV to date indicate that they play a stage-specific role coordinated with viral proteins to maintain the virus life cycle.
Collapse
|
8
|
Ma Y, Wang N, Li M, Gao S, Wang L, Ji Y, Qi Y, He R, Sun Z, Ruan Q. An antisense transcript in the human cytomegalovirus UL87 gene region. Virol J 2011; 8:515. [PMID: 22074130 PMCID: PMC3223508 DOI: 10.1186/1743-422x-8-515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid advances in research on antisense transcripts are gradually changing our comprehension of genomic and gene expression aspects of the Herpesviridae. One such herpesvirus is the human cytomegalovirus (HCMV). Although transcription of the HCMV UL87 gene has not been specifically investigated, cDNA clones of UL87 antisense transcripts were found in HCMV cDNA libraries previously. In this study, the transcription of the UL87 antisense strand was investigated in three clinically isolated HCMV strains. RESULTS First, an 800 nucleotides transcript having an antisense orientation to the UL87 gene was found in a late HCMV cDNA library. Then, the UL87 antisense transcript was confirmed by Rapid amplification of cDNA ends (RACE) and Northern blot in three HCMV clinical strains. Two ORFs were predicted in the antisense transcript. The putative protein of ORF 1 showed a high degree of conservation among HCMV and other CMV strains. CONCLUSION An 800nt antisense transcript in the UL87 gene region exists in HCMV clinical strains.
Collapse
Affiliation(s)
- Yanping Ma
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, 110004 Shenyang, Liaoning of China, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hukkanen V, Paavilainen H, Mattila RK. Host responses to herpes simplex virus and herpes simplex virus vectors. Future Virol 2010. [DOI: 10.2217/fvl.10.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpes simplex virus (HSV) is a well-known, ubiquitous pathogen of humans. Engineered mutants of HSV can also be exploited as vectors in gene therapy or for virotherapy of tumors. HSV has multiple abilities to evade and modulate the innate and adaptive responses of the host. The increasing knowledge on the mutual interactions of the invading HSV with the host defenses will contribute to our deeper understanding of the relationship between HSV and the host, and thereby lead to future development of more effective and specific HSV vectors for treatment of human diseases. The future advances of HSV vaccines and vaccine vectors are based on the knowlegde of the complex interplay between HSV and the host defenses.
Collapse
Affiliation(s)
| | - Henrik Paavilainen
- Department of Virology, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland
| | - Riikka K Mattila
- Institute of Diagnostics, University of Oulu, Aapistie 5A, FIN-90014, Finland
| |
Collapse
|
10
|
Zhang G, Raghavan B, Kotur M, Cheatham J, Sedmak D, Cook C, Waldman J, Trgovcich J. Antisense transcription in the human cytomegalovirus transcriptome. J Virol 2007; 81:11267-81. [PMID: 17686857 PMCID: PMC2045512 DOI: 10.1128/jvi.00007-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human cytomegalovirus (HCMV) infections are prevalent in human populations and can cause serious diseases, especially in those with compromised or immature immune systems. The HCMV genome of 230 kb is among the largest of the herpesvirus genomes. Although the entire sequence of the laboratory-adapted AD169 strain of HCMV has been available for 18 years, the precise number of viral genes is still in question. We undertook an analysis of the HCMV transcriptome as an approach to enumerate and analyze the gene products of HCMV. Transcripts of HCMV-infected fibroblasts were isolated at different times after infection and used to generate cDNA libraries representing different temporal classes of viral genes. cDNA clones harboring viral sequences were selected and subjected to sequence analysis. Of the 604 clones analyzed, 45% were derived from genomic regions predicted to be noncoding. Additionally, at least 55% of the cDNA clones in this study were completely or partially antisense to known or predicted HCMV genes. The remarkable accumulation of antisense transcripts during infection suggests that currently available genomic maps based on open-reading-frame and other in silico analyses may drastically underestimate the true complexity of viral gene products. These findings also raise the possibility that aspects of both the HCMV life cycle and genome organization are influenced by antisense transcription. Correspondingly, virus-derived noncoding and antisense transcripts may shed light on HCMV pathogenesis and may represent a new class of targets for antiviral therapies.
Collapse
Affiliation(s)
- Guojuan Zhang
- The Ohio State University, Department of Pathology, 4162 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ozawa S, Eda H, Ishii Y, Ban F, Funabashi T, Hata S, Hayashi K, Iga H, Ikushima T, Ishiko H, Itagaki T, Kawana R, Kobayashi S, Ogino T, Sekizawa T, Shimomura Y, Shiota H, Mori R, Nakakita T, Numazaki Y, Ozaki Y, Yamamoto S, Yoshino K, Yanagi K. The herpes simplex virus type 1 BgKL variant, unlike the BgOL variant, shows a higher association with orolabial infection than with infections at other sites, supporting the variant-dispersion-replacement hypothesis. J Clin Microbiol 2007; 45:2183-90. [PMID: 17475752 PMCID: PMC1932994 DOI: 10.1128/jcm.02472-06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The identification and geographic distribution of the herpes simplex virus type 1 (HSV-1) BglII restriction fragment length polymorphism (RFLP) variants named BgK(L) and BgO(L) in clinical isolates from orolabial and cutaneous sites were described in our previous reports, in which the dispersion and replacement of HSV-1 variants were proposed. The base substitution sites deduced from the BgK(L) multiple RFLP variations were mapped to the U(L)12 (DNase), R(L)2 (alpha0 transactivator), and latency-associated transcript genes in the present study. The results show that the relative frequencies (RFs) of BgK(L) are significantly higher in orolabial and cutaneous HSV-1 infections than in ocular infections. For the BgO(L) variant, the opposite was found; i.e., the RF of BgO(L) was significantly lower in orolabial and cutaneous infections than in ocular infections. No significant differences in the RFs of non-BgK(L):non-BgO(L) isolates were observed. The ratio of the BgK(L) RF to the BgO(L) RF was much higher for the orolabial and cutaneous infection groups than for the ocular infection group, whereas the BgK(L) RF-to-non-BgK(L):non-BgO(L) RF ratios for the former groups were slightly higher than those for the latter group. The higher efficiency of orolabial and cutaneous infections caused by BgK(L) compared to the efficiency of infections caused by BgO(L) allows BgK(L) to spread more efficiently in human populations and to displace BgO(L), because the mouth and lips are the most common HSV-1 infection sites in children. The present study supports our HSV-1 dispersion-and-replacement hypothesis and suggests that HSV-1, the latency-reactivation of which allows variants to accumulate in human populations, has evolved under competitive conditions, providing a new perspective on the polymorphism or variation of HSV-1.
Collapse
Affiliation(s)
- Shigeru Ozawa
- Herpesvirus Laboratory, Department of Virology I, National Institute of Infectious Diseases, Toyama 1-23-1, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The herpes simplex virus (HSV) has a 152 kbp dsDNA encoding probably 84 proteins. The approximate number of ORFs is 94, from which seven are doubled. The most probable number of single copy ORFs is 84 after omitting the two latency associated transcripts (LAT)/ORFs and the putative UL27.5 ORF. The high gene number creates a "crowded" genome with several overlapping transcripts. The unique long (U(L)) segment has at least 10 interposed ORFs, the existence of which was not obvious at first sequence analysis, while the unique short (U(S)) segment has two such genes. The surplus of ORFs causes complex transcription patterns: (1) Transcripts with common initiation signals but different termination; (2) Transcripts with different initiation sites but co-terminal ends; (3) "Nested" transcripts differing at both, the initiation as well as termination signals, having partially collinear sequences. At least three or possibly four ORF (gene) pairs (UL9.5/UL10; UL27/UL27.5; UL43/UL43.5; ICP34.5/ORF P and O) occupy both DNA strands at complementary positions rising anti-sense transcripts expressed by an antagonistic mechanism of mutual exclusion. The anti-sense mRNA mechanism might also operate when either LAT or ICP0 ORFs are expressed during latency assuring the absence of lytic virus replication. In contrast, during productive replication the cascade regulation of gene expression predominates, based on stepwise activation of immediate early (IE), early (E), early late (EL) and late (L) promoters. The promoters of different expression kinetic classes (alpha, beta, gamma-1 and gamma-2) are equipped with different number of cellular transcription factor binding and/or enhancer motifs. Surprisingly, only a few HSV mRNAs are being spliced (ICP0, UL15, US1, US12/ICP47). As reviewed here, the transcription pattern of the great majority of overlapping ORFs within the HSV-1 was quite convincingly elucidated, with exception of the putative UL27.5 gene. The UL27.5 transcript was not identified yet. Since the existence of the UL27.5 gene was based on indirect rather than direct evidence, it needs final confirmation.
Collapse
Affiliation(s)
- Július Rajcáni
- Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
13
|
Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PGE. Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neurovirol 2003; 9:194-204. [PMID: 12707850 DOI: 10.1080/13550280390194000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Revised: 11/11/2002] [Accepted: 11/13/2002] [Indexed: 01/07/2023]
Abstract
Two human alpha-herpesviruses, herpes simplex virus (HSV)-1 and varicella zoster virus (VZV), account for the most frequent and serious neurologic disease caused by any of the eight human herpesviruses. Both HSV-1 and VZV become latent in ganglia. In this review, the authors describe features of latency for these viruses, such as distribution, prevalence, abundance, and configuration of viral DNA in latently infected human ganglia, as well as transcription, translation, and cell type infected. Studies of viral latency in animal models are also discussed. For each virus, remaining questions and future studies to understand the mechanism of latency are discussed with respect to prevention of serious cutaneous, ocular, and neurologic disease produced by virus reactivation.
Collapse
Affiliation(s)
- Bradley M Mitchell
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
14
|
Chen SH, Lee LY, Garber DA, Schaffer PA, Knipe DM, Coen DM. Neither LAT nor open reading frame P mutations increase expression of spliced or intron-containing ICP0 transcripts in mouse ganglia latently infected with herpes simplex virus. J Virol 2002; 76:4764-72. [PMID: 11967293 PMCID: PMC136172 DOI: 10.1128/jvi.76.10.4764-4772.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latent infections by herpes simplex virus are characterized by repression of productive-cycle gene expression. Several hypotheses to explain this repression involve inhibition of expression of the immediate-early gene activator ICP0 during latency. To address these hypotheses, we developed quantitative reverse transcriptase-PCR assays that detected spliced and intron-containing ICP0 transcripts in mouse ganglia latently infected with wild-type virus. In these ganglia, the numbers of spliced ICP0 transcripts correlated better with the numbers of transcripts from the immediate-early gene encoding ICP4 than with those from the early gene encoding thymidine kinase. There were fewer spliced than intron-containing ICP0 transcripts on average, with considerable ganglion-to-ganglion variation. We then investigated whether ICP0 expression in latently infected ganglia is reduced by the latency-associated transcripts (LATs) and whether splicing of ICP0 transcripts is inhibited by the product of open reading frame (ORF) P. A LAT deletion mutation which essentially eliminates expression of the major LATs did not appreciably increase levels of ICP0 transcripts. LAT deletion mutants did, however, appear to express reduced levels of intron-containing ICP0 transcripts. ORF P mutations did not alter levels of ICP0 transcripts in a manner consistent with inhibition of ICP0 splicing by ORF P. Although these results argue against antisense inhibition of ICP0 expression by LATs or inhibition of ICP0 splicing by ORF P, they are consistent with the possibilities of a block between immediate-early and early gene expression and regulation of spliced versus intron-containing ICP0 transcripts in latently infected ganglia.
Collapse
Affiliation(s)
- Shun-Hua Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|