1
|
Shao L, Shen W, Wang S, Qiu J. Recent Advances in Molecular Biology of Human Bocavirus 1 and Its Applications. Front Microbiol 2021; 12:696604. [PMID: 34220786 PMCID: PMC8242256 DOI: 10.3389/fmicb.2021.696604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
Human bocavirus 1 (HBoV1) was discovered in human nasopharyngeal specimens in 2005. It is an autonomous human parvovirus and causes acute respiratory tract infections in young children. HBoV1 infects well differentiated or polarized human airway epithelial cells in vitro. Unique among all parvoviruses, HBoV1 expresses 6 non-structural proteins, NS1, NS1-70, NS2, NS3, NS4, and NP1, and a viral non-coding RNA (BocaSR), and three structural proteins VP1, VP2, and VP3. The BocaSR is the first identified RNA polymerase III (Pol III) transcribed viral non-coding RNA in small DNA viruses. It plays an important role in regulation of viral gene expression and a direct role in viral DNA replication in the nucleus. HBoV1 genome replication in the polarized/non-dividing airway epithelial cells depends on the DNA damage and DNA repair pathways and involves error-free Y-family DNA repair DNA polymerase (Pol) η and Pol κ. Importantly, HBoV1 is a helper virus for the replication of dependoparvovirus, adeno-associated virus (AAV), in polarized human airway epithelial cells, and HBoV1 gene products support wild-type AAV replication and recombinant AAV (rAAV) production in human embryonic kidney (HEK) 293 cells. More importantly, the HBoV1 capsid is able to pseudopackage an rAAV2 or rHBoV1 genome, producing the rAAV2/HBoV1 or rHBoV1 vector. The HBoV1 capsid based rAAV vector has a high tropism for human airway epithelia. A deeper understanding in HBoV1 replication and gene expression will help find a better way to produce the rAAV vector and to increase the efficacy of gene delivery using the rAAV2/HBoV1 or rHBoV1 vector, in particular, to human airways. This review summarizes the recent advances in gene expression and replication of HBoV1, as well as the use of HBoV1 as a parvoviral vector for gene delivery.
Collapse
Affiliation(s)
- Liting Shao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weiran Shen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
2
|
Zhang J, Bai Y, Zhu B, Hao S, Chen Z, Wang H, Guan W. Mutations in the C-terminus of HBoV NS1 affect the function of NP1. Sci Rep 2017; 7:7407. [PMID: 28785044 PMCID: PMC5547040 DOI: 10.1038/s41598-017-06513-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Human bocavirus 1 (HBoV1) is an autonomous parvovirus in the Bocaparvovirus genus. The multifunctional nuclear protein NP1 is involved in viral replication. In the present study, we found that the mutations in the C-terminus of NS1 affected NP1 function in viral replication. Knocking out NP1 expression in the recombinant infectious clone, on which the C-terminus of NS1 was mutated based on the clinical samples from nasopharyngeal aspirates, resulted in different degrees of decreased replication. The result suggested that NP1 facilitated the replication of viral genome but was not necessary, which is different from the minute virus of canines, where NP1 is essential for viral replication. Further studies showed that clinical mutations in the NP1 region did not affect viral genome replication, and UP1 promoted viral DNA replication. Our results suggested that the C-terminus of NS1 is important for viral replication and may be a target for regulating the replication of the viral genome.
Collapse
Affiliation(s)
- Junmei Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Bai
- Pediatric department of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou, 510120, P. R. China
| | - Sujuan Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Hanzhong Wang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
3
|
Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human Bocavirus 1 Genome. J Virol 2016; 90:7761-77. [PMID: 27334591 PMCID: PMC4988151 DOI: 10.1128/jvi.00708-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. IMPORTANCE Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1 capsid has been developed to efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to human airway epithelia. Here, we identified both cis-acting elements and trans-acting proteins that are required for HBoV1 DNA replication at the right-end hairpin in HEK293 cells. We localized the minimal replication origin, which contains both NS1 nicking and binding sites, to a 46-nucleotide sequence in the right-end hairpin. The identification of these essential elements of HBoV1 DNA replication acting both in cis and in trans will provide guidance to develop antiviral strategies targeting viral DNA replication at the right-end hairpin and to design next-generation recombinant HBoV1 vectors, a promising tool for gene therapy of lung diseases.
Collapse
|
4
|
Circulating HMGB1 and RAGE as Clinical Biomarkers in Malignant and Autoimmune Diseases. Diagnostics (Basel) 2015; 5:219-53. [PMID: 26854151 PMCID: PMC4665591 DOI: 10.3390/diagnostics5020219] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022] Open
Abstract
High molecular group box 1 (HMGB1) is a highly conserved member of the HMG-box-family; abundantly expressed in almost all human cells and released in apoptosis; necrosis or by activated immune cells. Once in the extracellular space, HMGB1 can act as a danger associated molecular pattern (DAMP), thus stimulating or inhibiting certain functions of the immune system; depending on the “combinatorial cocktail” of the surrounding milieu. HMGB1 exerts its various functions through binding to a multitude of membrane-bound receptors such as TLR-2; -4 and -9; IL-1 and RAGE (receptor for advanced glycation end products); partly complex-bound with intracellular fragments like nucleosomes. Soluble RAGE in the extracellular space, however, acts as a decoy receptor by binding to HMGB1 and inhibiting its effects. This review aims to outline today’s knowledge of structure, intra- and extracellular functions including mechanisms of release and finally the clinical relevance of HMGB1 and RAGE as clinical biomarkers in therapy monitoring, prediction and prognosis of malignant and autoimmune disease.
Collapse
|
5
|
Angelova AL, Geletneky K, Nüesch JPF, Rommelaere J. Tumor Selectivity of Oncolytic Parvoviruses: From in vitro and Animal Models to Cancer Patients. Front Bioeng Biotechnol 2015; 3:55. [PMID: 25954743 PMCID: PMC4406089 DOI: 10.3389/fbioe.2015.00055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/05/2015] [Indexed: 11/23/2022] Open
Abstract
Oncolytic virotherapy of cancer is among the innovative modalities being under development and especially promising for targeting tumors, which are resistant to conventional treatments. Presently, at least a dozen of viruses, belonging to nine different virus families, are being tested within the frames of various clinical studies in cancer patients. Continuously growing preclinical evidence showing that the autonomous rat parvovirus H-1 (H-1PV) is able to kill tumor cells that resist conventional treatments and to achieve a complete cure of various human tumors in animal models argues for its inclusion in the arsenal of oncolytic viruses with an especially promising bench to bedside translation potential. Oncolytic parvovirus safe administration to humans relies on the intrinsic preference of these agents for quickly proliferating, metabolically, and biochemically disturbed tumor versus normal cells (tumor selectivity or oncotropism). The present review summarizes and discusses (i) preclinical evidence of H-1PV innocuousness for normal cells and healthy tissues in vitro and in animals, respectively, (ii) toxicological assessments of H-1PV mono- or combined therapy in tumor-bearing virus-permissive animal models, as well as (iii) historical results of experimental infection of human cancer patients with H-1PV. Altogether, these data argue against a risk of H-1PV inducing significant toxic effects in human patients. This highly favorable safety profile allowed the translation of H-1PV preclinical research into a Phase I/IIa clinical trial being currently in progress.
Collapse
Affiliation(s)
- Assia L Angelova
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Karsten Geletneky
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany ; Department of Neurosurgery, University of Heidelberg , Heidelberg , Germany
| | - Jürg P F Nüesch
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jean Rommelaere
- Infection and Cancer Program, Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
6
|
Tewary SK, Liang L, Lin Z, Lynn A, Cotmore SF, Tattersall P, Zhao H, Tang L. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding. Virology 2014; 476:61-71. [PMID: 25528417 DOI: 10.1016/j.virol.2014.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022]
Abstract
Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins.
Collapse
Affiliation(s)
- Sunil K Tewary
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Lingfei Liang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Zihan Lin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Annie Lynn
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Susan F Cotmore
- Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510, USA
| | - Peter Tattersall
- Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510, USA; Departments of Genetics, Yale University Medical School, New Haven, CT 06510, USA
| | - Haiyan Zhao
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
7
|
Complementary induction of immunogenic cell death by oncolytic parvovirus H-1PV and gemcitabine in pancreatic cancer. J Virol 2014; 88:5263-76. [PMID: 24574398 DOI: 10.1128/jvi.03688-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Novel therapies employing oncolytic viruses have emerged as promising anticancer modalities. The cure of particularly aggressive malignancies requires induction of immunogenic cell death (ICD), coupling oncolysis with immune responses via calreticulin, ATP, and high-mobility group box protein B1 (HMGB1) release from dying tumor cells. The present study shows that in human pancreatic cancer cells (pancreatic ductal adenocarcinoma [PDAC] cells n=4), oncolytic parvovirus H-1 (H-1PV) activated multiple interconnected death pathways but failed to induce calreticulin exposure or ATP release. In contrast, H-1PV elevated extracellular HMGB1 levels by 4.0±0.5 times (58%±9% of total content; up to 100 ng/ml) in all infected cultures, whether nondying, necrotic, or apoptotic. An alternative secretory route allowed H-1PV to overcome the failure of gemcitabine to trigger HMGB1 release, without impeding cytotoxicity or other ICD activities of the standard PDAC medication. Such broad resistance of H-1PV-induced HMGB1 release to apoptotic blockage coincided with but was uncoupled from an autocrine interleukin-1β (IL-1β) loop. That and the pattern of viral determinants maintained in gemcitabine-treated cells suggested the activation of an inflammasome/caspase 1 (CASP1) platform alongside DNA detachment and/or nuclear exclusion of HMGB1 during early stages of the viral life cycle. We concluded that H-1PV infection of PDAC cells is signaled through secretion of the alarmin HMGB1 and, besides its own oncolytic effect, might convert drug-induced apoptosis into an ICD process. A transient arrest of cells in the cyclin A1-rich S phase would suffice to support compatibility of proliferation-dependent H-1PV with cytotoxic regimens. These properties warrant incorporation of the oncolytic virus H-1PV, which is not pathogenic in humans, into multimodal anticancer treatments. IMPORTANCE The current therapeutic concepts targeting aggressive malignancies require an induction of immunogenic cell death characterized by exposure of calreticulin (CRT) as well as release of ATP and HMGB1 from dying cells. In pancreatic tumor cells (PDAC cells) infected with the oncolytic parvovirus H-1PV, only HMGB1 was released by all infected cells, whether nondying, necrotic, or succumbing to one of the programmed death pathways, including contraproductive apoptosis. Our data suggest that active secretion of HMGB1 from PDAC cells is a sentinel reaction emerging during early stages of the viral life cycle, irrespective of cell death, that is compatible with and complements cytotoxic regimens. Consistent induction of HMGB1 secretion raised the possibility that this reaction might be a general "alarming" phenomenon characteristic of H-1PV's interaction with the host cell; release of IL-1β points to the possible involvement of a danger-sensing inflammasome platform. Both provide a basis for further virus-oriented studies.
Collapse
|
8
|
Nüesch JPF, Rommelaere J. Tumor suppressing properties of rodent parvovirus NS1 proteins and their derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:99-124. [PMID: 25001533 DOI: 10.1007/978-1-4471-6458-6_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer chemotherapy with monospecific agents is often hampered by the rapid development of tumor resistance to the drug used. Therefore, combination treatments aiming at several different targets are sought. Viral regulatory proteins, modified or not, appear ideal for this purpose because of their multimodal killing action against neoplastically transformed cells. The large nonstructural protein NS1 of rodent parvoviruses is an excellent candidate for an anticancer agent, shown to interfere specifically with cancer cell growth and survival. The present review describes the structure, functions, and regulation of the multifunctional protein NS1, its specific interference with cell processes and cell protein activities, and what is known so far about the mechanisms underlying NS1 interference with cancer growth. It further outlines prospects for the development of new, multimodal cancer toxins and their potential applications.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program "Infection and Cancer", Division Tumor Virology (F010), Deutsches Krebsforschungszentrum/German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, D-69120, Heidelberg, Germany,
| | | |
Collapse
|
9
|
Xiao CT, Giménez-Lirola LG, Jiang YH, Halbur PG, Opriessnig T. Characterization of a novel porcine parvovirus tentatively designated PPV5. PLoS One 2013; 8:e65312. [PMID: 23762339 PMCID: PMC3676418 DOI: 10.1371/journal.pone.0065312] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/25/2013] [Indexed: 12/28/2022] Open
Abstract
A new porcine parvovirus (PPV), provisionally designated as PPV5, was identified in U.S. pigs. Cloning and sequencing from a circular or head-to-tail concatemeric array revealed that the PPV5 possesses the typical genomic organization of parvoviruses with two major predicted open reading frames (ORF1 and ORF2), and is most closely related to PPV4 with overall genomic identities of 64.1–67.3%. The amino acid identities between PPV5 and PPV4 were 84.6%–85.1% for ORF1 and 54.0%–54.3% for ORF2. Unlike PPV4, but similar to bovine parvovirus 2 (BPV2), PPV5 lacks the additional ORF3 and has a much longer ORF2. Moreover, the amino acid sequences of ORF1 and ORF2 of BPV2 showed higher homologies to PPV5 than to PPV4. The conserved motifs of the Ca2+ binding loop (YXGXG) and the catalytic center (HDXXY) of phospholipase A2 (PLA2) were identified in VP1 (ORF2) of PPV5, as well as in BPV2, but were not present in PPV4. Phylogenetic analyses revealed that PPV5, PPV4 and BPV2 form a separate clade different from the genera Parvovirus and Bocavirus. Further epidemiologic investigations of PPV4 and PPV5 in U.S. pigs of different ages indicated a slightly higher prevalence for PPV5 (6.6%; 32/483) compared to PPV4 (4.1%; 20/483), with detection of concurrent PPV4 and PPV5 in 15.6% (7/45) of lungs of infected pigs. Evidence for potential vertical transmission or association with reproductive failure was minimal for both PPV4 and PPV5. The high similarity to PPV4 and the lack of ORF3 may suggest PPV5 is an intermediate of PPV4 during the evolution of parvoviruses in pigs.
Collapse
Affiliation(s)
- Chao-Ting Xiao
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yong-Hou Jiang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
10
|
Lüsebrink J, Schildgen V, Tillmann RL, Wittleben F, Böhmer A, Müller A, Schildgen O. Detection of head-to-tail DNA sequences of human bocavirus in clinical samples. PLoS One 2011; 6:e19457. [PMID: 21573237 PMCID: PMC3087758 DOI: 10.1371/journal.pone.0019457] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/30/2011] [Indexed: 12/30/2022] Open
Abstract
Parvoviruses are single stranded DNA viruses that replicate in a so called “rolling-hairpin” mechanism, a variant of the rolling circle replication known for bacteriophages like ϕX174. The replication intermediates of parvoviruses thus are concatemers of head-to-head or tail-to-tail structure. Surprisingly, in case of the novel human bocavirus, neither head-to-head nor tail-to-tail DNA sequences were detected in clinical isolates; in contrast head-to-tail DNA sequences were identified by PCR and sequencing. Thereby, the head-to-tail sequences were linked by a novel sequence of 54 bp of which 20 bp also occur as conserved structures of the palindromic ends of parvovirus MVC which in turn is a close relative to human bocavirus.
Collapse
Affiliation(s)
- Jessica Lüsebrink
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Verena Schildgen
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Ramona Liza Tillmann
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Felix Wittleben
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Anne Böhmer
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Andreas Müller
- Department of Paediatrics, University Hospital Bonn, Bonn, Germany
| | - Oliver Schildgen
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
- * E-mail:
| |
Collapse
|
11
|
The genome of human parvovirus b19 can replicate in nonpermissive cells with the help of adenovirus genes and produces infectious virus. J Virol 2009; 83:9541-53. [PMID: 19587029 DOI: 10.1128/jvi.00702-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human parvovirus B19 (B19V) is a member of the genus Erythrovirus in the family Parvoviridae. In vitro, autonomous B19V replication is limited to human erythroid progenitor cells and in a small number of erythropoietin-dependent human megakaryoblastoid and erythroid leukemic cell lines. Here we report that the failure of B19V DNA replication in nonpermissive 293 cells can be overcome by adenovirus infection. More specifically, the replication of B19V DNA in the 293 cells and the production of infectious progeny virus were made possible by the presence of the adenovirus E2a, E4orf6, and VA RNA genes that emerged during the transfection of the pHelper plasmid. Using this replication system, we identified the terminal resolution site and the nonstructural protein 1 (NS1) binding site on the right terminal palindrome of the viral genome, which is composed of a minimal origin of replication spanning 67 nucleotides. Plasmids or DNA fragments containing an NS1 expression cassette and this minimal origin were able to replicate in both pHelper-transfected 293 cells and B19V-semipermissive UT7/Epo-S1 cells. Our results have important implications for our understanding of native B19V infection.
Collapse
|
12
|
Lange SS, Reddy MC, Vasquez KM. Human HMGB1 directly facilitates interactions between nucleotide excision repair proteins on triplex-directed psoralen interstrand crosslinks. DNA Repair (Amst) 2009; 8:865-72. [PMID: 19446504 DOI: 10.1016/j.dnarep.2009.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/08/2009] [Accepted: 04/14/2009] [Indexed: 01/01/2023]
Abstract
Psoralen is a chemotherapeutic agent that acts by producing DNA interstrand crosslinks (ICLs), which are especially cytotoxic and mutagenic because their complex chemical nature makes them difficult to repair. Proteins from multiple repair pathways, including nucleotide excision repair (NER), are involved in their removal in mammalian cells, but the exact nature of their repair is poorly understood. We have shown previously that HMGB1, a protein involved in chromatin structure, transcriptional regulation, and inflammation, can bind cooperatively to triplex-directed psoralen ICLs with RPA, and that mammalian cells lacking HMGB1 are hypersensitive to psoralen ICLs. However, whether this effect is mediated by a role for HMGB1 in DNA damage recognition is still unknown. Given HMGB1's ability to bind to damaged DNA and its interaction with the RPA protein, we hypothesized that HMGB1 works together with the NER damage recognition proteins to aid in the removal of ICLs. We show here that HMGB1 is capable of binding to triplex-directed psoralen ICLs with the dedicated NER damage recognition complex XPC-RAD23B, as well as XPA-RPA, and that they form a higher-order complex on these lesions. In addition, we demonstrate that HMGB1 interacts with XPC-RAD23B and XPA in the absence of DNA. These findings directly demonstrate interactions between HMGB1 and the NER damage recognition proteins, and suggest that HMGB1 may affect ICL repair by enhancing the interactions between NER damage recognition factors.
Collapse
Affiliation(s)
- Sabine S Lange
- Department of Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | | | |
Collapse
|
13
|
Cotmore SF, Gottlieb RL, Tattersall P. Replication initiator protein NS1 of the parvovirus minute virus of mice binds to modular divergent sites distributed throughout duplex viral DNA. J Virol 2007; 81:13015-27. [PMID: 17898054 PMCID: PMC2169109 DOI: 10.1128/jvi.01703-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To initiate DNA synthesis, the NS1 protein of minute virus of mice (MVM) first binds to a simple cognate recognition sequence in the viral origins, comprising two to three tandem copies of the tetranucleotide TGGT. However, this motif is also widely dispersed throughout the viral genome. Using an immunoselection procedure, we show that NS1 specifically binds to many internal sites, so that all viral fragments of more than approximately 170 nucleotides effectively compete for NS1, often binding with higher affinity to these internal sites than to sites in the origins. We explore the diversity of the internal sites using competitive binding and DNase I protection assays and show that they vary between two extreme forms. Simple sites with three somewhat degenerate, tandem TGGT reiterations bind effectively but are minimally responsive to ATP, while complex sites, containing multiple variably spaced TGGT elements arranged as opposing clusters, bind NS1 with an affinity that can be enhanced approximately 10-fold by ATP. Using immuno-selection procedures with randomized sequences embedded within specific regions of the genome, we explore possible binding configurations in these two types of site. We conclude that binding is modular, combinatorial, and highly flexible. NS1 recognizes two to six variably spaced, more-or-less degenerate forms of the 5'-TGGT-3' motif, so that it binds efficiently to a wide variety of sequences. Thus, despite complex coding constraints, binding sites are configured at frequent intervals throughout duplex forms of viral DNA, suggesting that NS1 may serve as a form of chromatin to protect and tailor the environment of replicating genomes.
Collapse
Affiliation(s)
- Susan F Cotmore
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
14
|
Burnett E, Cotmore SF, Tattersall P. Segregation of a single outboard left-end origin is essential for the viability of parvovirus minute virus of mice. J Virol 2006; 80:10879-83. [PMID: 16928767 PMCID: PMC1641779 DOI: 10.1128/jvi.01501-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During DNA replication, the hairpin telomeres of Minute Virus of Mice (MVM) are extended and copied to create imperfectly palindromic duplex junction sequences that bridge adjacent genomes in concatameric replicative-form DNA. These are resolved by the viral initiator protein, NS1, but mechanisms employed at the two telomeres differ. Left-end:left-end junctions are resolved asymmetrically at a single site, OriLTC, by NS1 acting in concert with a host factor, parvovirus initiation factor (PIF). Replication segregates doublet and triplet sequences, initially present as unpaired nucleotides in the bubble region of the left-end hairpin stem, to either side of the junction. These act as spacers between the NS1 and PIF binding sites, and their asymmetric distribution sets up active (OriLTC) and inactive (OriLGAA) forms of OriL. We used a reverse genetic approach to disrupt this asymmetry and found that neither opposing doublets nor triplets in the hairpin bubble were tolerated. Viable mutants were isolated at low frequency and found to contain second-site mutations that either restored the asymmetry or crippled one PIF binding site. These mutations either inactivated the inboard or activated the outboard form of OriL, a polarity that strongly suggests that, in the genus Parvovirus, an active inboard OriL is lethal.
Collapse
Affiliation(s)
- Erik Burnett
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar St., CB408, New Haven, CT 067510, USA
| | | | | |
Collapse
|
15
|
Cotmore SF, Tattersall P. Genome packaging sense is controlled by the efficiency of the nick site in the right-end replication origin of parvoviruses minute virus of mice and LuIII. J Virol 2005; 79:2287-300. [PMID: 15681430 PMCID: PMC546602 DOI: 10.1128/jvi.79.4.2287-2300.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parvovirus minute virus of mice (MVM) packages predominantly negative-sense single strands, while its close relative LuIII encapsidates strands of both polarities with equal efficiency. Using genomic chimeras and mutagenesis, we show that the ability to package positive strands maps not, as originally postulated, to divergent untranslated regions downstream of the capsid gene but to the viral hairpins and predominantly to the nick site of OriR, the right-end replication origin. In MVM, the sequence of this site is 5'-CTAT(black triangle down)TCA-3', while in LuIII a two-base insertion (underlined) changes it to 5'-CTATAT(black triangle down)TCA-3'. Matched LuIII genomes differing only at this position (designated LuIII and LuDelta2) packaged 47 and <8% positive-sense strands, respectively. OriR sequences from these viruses were both able to support NS1-mediated nicking in vitro, but initiation efficiency was consistently two- to threefold higher for LuDelta2 derivatives, suggesting that LuIII's ability to package positive strands is determined by a suboptimal right-end origin rather than by strand-specific packaging sequences. These observations support a mathematical "kinetic hairpin transfer" model, previously described by Chen and colleagues (K. C. Chen, J. J. Tyson, M. Lederman, E. R. Stout, and R. C. Bates, J. Mol. Biol. 208:283-296, 1989), that postulates that preferential excision of particular strands is solely responsible for packaging specificity. By analyzing replicative-form (RF) DNA generated in vivo during LuIII and LuDelta2 infections, we extend this model, showing that positive-sense strands do accumulate in LuDelta2 infections as part of duplex RF DNA, but these do not support packaging. However, replication is biphasic, so that accumulation of positive-sense strands is ultimately suppressed, probably because the onset of packaging removes newly displaced single strands from the replicating pool.
Collapse
Affiliation(s)
- Susan F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | | |
Collapse
|
16
|
Diffoot-Carlo N, Vélez-Pérez L, de Jesús-Maldonado I. Possible active origin of replication in the double stranded extended form of the left terminus of LuIII and its implication on the replication model of the parvovirus. Virol J 2005; 2:47. [PMID: 15927068 PMCID: PMC1185569 DOI: 10.1186/1743-422x-2-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 05/31/2005] [Indexed: 11/10/2022] Open
Abstract
Background The palindromic termini of parvoviruses have proven to play an essential role as origins of replication at different stages during the replication of their viral genome. Sequences from the left-end telomere of MVM form a functional origin on one side of the dimer replicative form intermediate. In contrast, the right-end origin can operate in its closed replicative form hairpin configuration or as a fully duplex linear sequence derived from either arm of a palindromic tetramer intermediate. To study the possibility that the LuIII left hairpin has a function in replication, comparable to that described for MVM, the replication of a minigenome containing two copies of the LuIII left terminus (LuIII Lt-Lt) was studied.
Results The data presented demonstrates that LuIII Lt-Lt was capable of replicating when NS1 helper functions were provided in trans. This extended hairpin, capable of acting as an origin of replication, lacks the arrangement of the specific domains present in the dimer duplex intermediate of MVM, the only active form of the left hairpin described for this parvovirus. Conclusions These findings suggest that the left hairpin of LuIII has an active NS1 driven origin of replication at this terminus in the double stranded extended form. This difference between LuIII and MVM has great implications on the replication of these viruses. The presence of origins of replication at both the left and right termini in their natural hairpin form can explain the unique encapsidation pattern observed for LuIII hinting on the mechanism used by this virus for the replication of its viral genome.
Collapse
Affiliation(s)
- Nanette Diffoot-Carlo
- Department of Biology, University of Puerto Rico, P.O. Box 9012, Mayagüez, Puerto Rico 00680
| | - Lisandra Vélez-Pérez
- Department of Biology, University of Puerto Rico, P.O. Box 9012, Mayagüez, Puerto Rico 00680
| | | |
Collapse
|
17
|
Chromosomal HMG-box proteins. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
18
|
Ravin NV, Kuprianov VV, Gilcrease EB, Casjens SR. Bidirectional replication from an internal ori site of the linear N15 plasmid prophage. Nucleic Acids Res 2003; 31:6552-60. [PMID: 14602914 PMCID: PMC275552 DOI: 10.1093/nar/gkg856] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 09/29/2003] [Accepted: 09/29/2003] [Indexed: 11/14/2022] Open
Abstract
The prophage of coliphage N15 is not integrated into the chromosome but exists as a linear plasmid molecule with covalently closed hairpin ends (telomeres). Upon infection the injected phage DNA circularizes via its cohesive ends. Then, a phage-encoded enzyme, protelomerase, cuts the circle and forms the hairpin telomeres. N15 protelomerase acts as a telomere-resolving enzyme during prophage DNA replication. We characterized the N15 replicon and found that replication of circular N15 miniplasmids requires only the repA gene, which encodes a multidomain protein homologous to replication proteins of bacterial plasmids replicated by a theta-mechanism. Replication of a linear N15 miniplasmid also requires the protelomerase gene and telomere regions. N15 prophage replication is initiated at an internal ori site located within repA and proceeds bidirectionally. Electron microscopy data suggest that after duplication of the left telomere, protelomerase cuts this site generating Y-shaped molecules. Full replication of the molecule and subsequent resolution of the right telomere then results in two linear plasmid molecules. N15 prophage replication thus appears to follow a mechanism that is distinct from that employed by eukaryotic replicons with this type of telomere and suggests the possibility of evolutionarily independent appearances of prokaryotic and eukaryotic replicons with covalently closed telomeres.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre Bioengineering, Russian Academy of Sciences, Prosp. 60-let Oktiabria, Building 7-1, Moscow, 117312, Russia.
| | | | | | | |
Collapse
|
19
|
Clément N, Velu T, Brandenburger A. Construction and production of oncotropic vectors, derived from MVM(p), that share reduced sequence homology with helper plasmids. Cancer Gene Ther 2002; 9:762-70. [PMID: 12189526 DOI: 10.1038/sj.cgt.7700496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2002] [Indexed: 11/08/2022]
Abstract
The production of currently available vectors derived from autonomous parvoviruses requires the expression of capsid proteins in trans, from helper sequences. Cotransfection of a helper plasmid always generates significant amounts of replication-competent virus (RCV) that can be reduced by the integration of helper sequences into a packaging cell line. Although stocks of minute virus of mice (MVM)-based vectors with no detectable RCV could be produced by transfection into packaging cells; the latter appear after one or two rounds of replication, precluding further amplification of the vector stock. Indeed, once RCVs become detectable, they are efficiently amplified and rapidly take over the culture. Theoretically RCV-free vector stocks could be produced if all homology between vector and helper DNA is eliminated, thus preventing homologous recombination. We constructed new vectors based on the structure of spontaneously occurring defective particles of MVM. Based on published observations related to the size of vectors and the sequence of the viral origin of replication, these vectors were modified by the insertion of foreign DNA sequences downstream of the transgene and by the introduction of a consensus NS-1 nick site near the origin of replication to optimize their production. In one of the vectors the inserted fragment of mouse genomic DNA had a synergistic effect with the modified origin of replication in increasing vector production.
Collapse
Affiliation(s)
- Nathalie Clément
- IRIBHN-IBMM, Université Libre de Bruxelles, rue des professeurs Jeener et Brachet, 12, Gosselies, Belgium
| | | | | |
Collapse
|
20
|
Willwand K, Moroianu A, Hörlein R, Stremmel W, Rommelaere J. Specific interaction of the nonstructural protein NS1 of minute virus of mice (MVM) with [ACCA](2) motifs in the centre of the right-end MVM DNA palindrome induces hairpin-primed viral DNA replication. J Gen Virol 2002; 83:1659-1664. [PMID: 12075084 DOI: 10.1099/0022-1317-83-7-1659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The linear single-stranded DNA genome of minute virus of mice (MVM) is replicated via a double-stranded replicative form (RF) intermediate DNA. Amplification of viral RF DNA requires the structural transition of the right-end palindrome from a linear duplex into a double-hairpin structure, which serves for the repriming of unidirectional DNA synthesis. This conformational transition was found previously to be induced by the MVM nonstructural protein NS1. Elimination of the cognate NS1-binding sites, [ACCA](2), from the central region of the right-end palindrome next to the axis of symmetry was shown to markedly reduce the efficiency of hairpin-primed DNA replication, as measured in a reconstituted in vitro replication system. Thus, [ACCA](2) sequence motifs are essential as NS1-binding elements in the context of the structural transition of the right-end MVM palindrome.
Collapse
Affiliation(s)
- Kurt Willwand
- Deutsches Krebsforschungszentrum, Applied Tumour Virology Program, Abteilung F0100, INSERM U375, Postfach 101949, 69009 Heidelberg, Germany1
| | - Adela Moroianu
- University of Heidelberg, Department of Internal Medicine, Bergheimer Str. 58, 69115 Heidelberg, Germany2
| | - Rita Hörlein
- Deutsches Krebsforschungszentrum, Applied Tumour Virology Program, Abteilung F0100, INSERM U375, Postfach 101949, 69009 Heidelberg, Germany1
| | - Wolfgang Stremmel
- University of Heidelberg, Department of Internal Medicine, Bergheimer Str. 58, 69115 Heidelberg, Germany2
| | - Jean Rommelaere
- Deutsches Krebsforschungszentrum, Applied Tumour Virology Program, Abteilung F0100, INSERM U375, Postfach 101949, 69009 Heidelberg, Germany1
| |
Collapse
|
21
|
Affiliation(s)
- E Sadowy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
22
|
Corsini J, Cotmore SF, Tattersall P, Winocour E. The left-end and right-end origins of minute virus of mice DNA differ in their capacity to direct episomal amplification and integration in vivo. Virology 2001; 288:154-63. [PMID: 11543668 DOI: 10.1006/viro.2001.1076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously it was shown that a 53-nucleotide viral replication origin, derived from the left-end (3') telomere of minute virus of mice (MVM) DNA, directed integration of infecting MVM genomes into an Epstein-Barr virus (EBV)-based episome in cell culture. Integration depended upon the presence, in the episome, of a functional origin sequence which could be nicked by NS1, the viral initiator protein. Here we extend our studies to the genomic right-end (5') origin and report that three 131- to 135-nucleotide right-end origin sequences failed to target MVM episomal integration even though the same sequences were functional in NS1-driven DNA replication assays in vitro. Additionally, we observed amplification of episomal DNA in response to MVM infection in cell lines harboring episomes which directed integration, but not in cell lines containing episomes which did not direct integration, including those with inserts of the MVM right-end origin.
Collapse
Affiliation(s)
- J Corsini
- Math and Science Department, Chadron State College, Chadron, Nebraska 69337, USA
| | | | | | | |
Collapse
|
23
|
Christensen J, Cotmore SF, Tattersall P. Minute virus of mice initiator protein NS1 and a host KDWK family transcription factor must form a precise ternary complex with origin DNA for nicking to occur. J Virol 2001; 75:7009-17. [PMID: 11435581 PMCID: PMC114429 DOI: 10.1128/jvi.75.15.7009-7017.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvoviral rolling hairpin replication generates palindromic genomic concatemers whose junctions are resolved to give unit-length genomes by a process involving DNA replication initiated at origins derived from each viral telomere. The left-end origin of minute virus of mice (MVM), oriL, contains binding sites for the viral initiator nickase, NS1, and parvovirus initiation factor (PIF), a member of the emerging KDWK family of transcription factors. oriL is generated as an active form, oriL(TC), and as an inactive form, oriL(GAA), which contains a single additional nucleotide inserted between the NS1 and PIF sites. Here we examined the interactions on oriL(TC) which lead to activation of NS1 by PIF. The two subunits of PIF, p79 and p96, cooperatively bind two ACGT half-sites, which can be flexibly spaced. When coexpressed from recombinant baculoviruses, the PIF subunits preferentially form heterodimers which, in the presence of ATP, show cooperative binding with NS1 on oriL, but this interaction is preferentially enhanced on oriL(TC) compared to oriL(GAA). Without ATP, NS1 is unable to bind stably to its cognate site, but PIF facilitates this interaction, rendering the NS1 binding site, but not the nick site, resistant to DNase I. Varying the spacing of the PIF half-sites shows that the distance between the NS1 binding site and the NS1-proximal half-site is critical for nickase activation, whereas the position of the distal half-site is unimportant. When expressed separately, both PIF subunits form homodimers that bind site specifically to oriL, but only complexes containing p79 activate the NS1 nickase function.
Collapse
Affiliation(s)
- J Christensen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Panum Institute, Copenhagen 2200 N, Denmark
| | | | | |
Collapse
|
24
|
Nüesch JP, Christensen J, Rommelaere J. Initiation of minute virus of mice DNA replication is regulated at the level of origin unwinding by atypical protein kinase C phosphorylation of NS1. J Virol 2001; 75:5730-9. [PMID: 11390575 PMCID: PMC114289 DOI: 10.1128/jvi.75.13.5730-5739.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minute virus of mice nonstructural protein NS1 is a multifunctional protein that is involved in many processes necessary for virus propagation. To perform its distinct activities in timely coordinated manner, NS1 was suggested to be regulated by posttranslational modifications, in particular phosphorylation. In fact, NS1 replicative functions are dependent on protein kinase C (PKC) phosphorylation, most likely due to alteration of the biochemical profile of the viral product as determined by comparing native NS1 with its dephosphorylated counterpart. Through the characterization of NS1 mutants at individual PKC consensus phosphorylation sites for their biochemical activities and nickase function, we were able to identify two target atypical PKC phosphorylation sites, T435 and S473, serving as regulatory elements for the initiation of viral DNA replication. Furthermore, by dissociating the energy-dependent helicase activity from the ATPase-independent trans esterification reaction using partially single-stranded substrates, we could demonstrate that atypical PKC regulation of NS1 nickase activity occurs at the level of origin unwinding prior to trans esterification.
Collapse
Affiliation(s)
- J P Nüesch
- Program of Applied Tumor Virology, Abteilung F0100, INSERM U375, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
25
|
Abstract
The HMG-box proteins, one of the three classes of high mobility group (HMG) chromosomal proteins, bend DNA and bind preferentially to distorted DNA structures. The proteins appear to act primarily as architectural facilitators in the assembly of nucleoprotein complexes; for example, in effecting recombination and in the initiation of transcription. HMG-box proteins might be targeted to particular DNA sites in chromatin by either protein-protein interactions or recognition of specific DNA structures.
Collapse
Affiliation(s)
- J O Thomas
- Cambridge Centre for Molecular Recognition, University of Cambridge, 80 Tennis Court Road, Cambridge, UK CB2 1GA.
| | | |
Collapse
|