1
|
Insights into Sensing of Murine Retroviruses. Viruses 2020; 12:v12080836. [PMID: 32751803 PMCID: PMC7472155 DOI: 10.3390/v12080836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Retroviruses are major causes of disease in animals and human. Better understanding of the initial host immune response to these viruses could provide insight into how to limit infection. Mouse retroviruses that are endemic in their hosts provide an important genetic tool to dissect the different arms of the innate immune system that recognize retroviruses as foreign. Here, we review what is known about the major branches of the innate immune system that respond to mouse retrovirus infection, Toll-like receptors and nucleic acid sensors, and discuss the importance of these responses in activating adaptive immunity and controlling infection.
Collapse
|
2
|
Lee A, Zhu Y, Sabo Y, Goff SP. Embryonic Cells Redistribute SUMO1 upon Forced SUMO1 Overexpression. mBio 2019; 10:e01856-19. [PMID: 31796536 PMCID: PMC6890988 DOI: 10.1128/mbio.01856-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022] Open
Abstract
Conjugation of small ubiquitin-like modifiers (SUMOs) to substrate proteins is a posttranslational protein modification that affects a diverse range of physiological processes. Global inhibition of SUMO conjugation in mice results in embryonic lethality, reflecting the importance of the SUMO pathways for embryonic development. Here, we demonstrated that SUMO1 overexpression was not well tolerated in murine embryonic carcinoma and embryonic stem (ES) cells and that only a few clones were recovered after transduction with vectors delivering SUMO1 expression constructs. Differentiated NIH/3T3 cells overexpress SUMO1 without deleterious effects and maintain high levels of both conjugated and free forms of SUMO1. The few embryonic cells surviving after forced overexpression retained all their SUMO1 in the form of a few high-molecular-weight conjugates and maintained undetectable levels of free SUMO1. The absence of free SUMO in embryonic cells was seen specifically upon overexpression of SUMO1, but not SUMO2. Moreover, blocking SUMO1 conjugation to endogenous substrates by C-terminal mutations of SUMO1 or by overexpression of a SUMO1 substrate "sponge" or by overexpression of the deSUMOylating enzyme SUMO-specific peptidase 1 (SENP1) dramatically restored free SUMO1 overexpression. The data suggest that overexpression of SUMO1 protein leading to an excess accumulation of critical SUMO1-conjugated substrates is not tolerated in embryonic cells. Surviving embryonic cells exhibit SUMO1 conjugation to allowed substrates but a complete absence of free SUMO1.IMPORTANCE Embryonic stem (ES) cells exhibit unusual transcriptional, proteomic, and signal response profiles, reflecting their unusual needs for rapid differentiation and replication. The work reported here demonstrated that mouse embryonic cell lines did not tolerate the overexpression of SUMO1, the small ubiquitin-like modifier protein that is covalently attached to many substrates to alter their intracellular localization and functionality. Forced SUMO1 overexpression is toxic to ES cells, and surviving cell populations adapt by dramatically reducing the levels of free SUMO1. Such a response is not seen in differentiated cells or with SUMO2 or with nonconjugatable SUMO1 mutants or in the presence of a SUMO1 "sponge" substrate that accepts the modification. The findings suggest that excess SUMO1 modification of specific substrates is not tolerated by embryonic cells and highlight a distinctive need for these cells to control the levels of SUMO1 available for conjugation.
Collapse
Affiliation(s)
- Andreia Lee
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Yiping Zhu
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Yosef Sabo
- Department of Medicine, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Palikša S, Alzbutas G, Skirgaila R. Decreased Km to dNTPs is an essential M-MuLV reverse transcriptase adoption required to perform efficient cDNA synthesis in One-Step RT-PCR assay. Protein Eng Des Sel 2019; 31:79-89. [PMID: 29608777 DOI: 10.1093/protein/gzy003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/05/2018] [Indexed: 01/27/2023] Open
Abstract
Personalized medicine and advanced diagnostic tools based on RNA analysis are focusing on fast and direct One-Step RT-PCR assays. First strand complementary DNA (cDNA) synthesized by the reverse transcriptase (RT) is exponentially amplified in the end-point or real-time PCR. Even a minor discrepancy in PCR conditions would result in big deviations during the data analysis. Thus, One-Step RT-PCR composition is typically based on the PCR buffer. In this study, we have used compartmentalized ribosome display technique for in vitro evolution of the Moloney Murine Leukemia Virus reverse transcriptase (M-MuLV RT) that would be able to perform efficient full-length cDNA synthesis in PCR buffer optimized for Thermus aquaticus DNA polymerase. The most frequent mutations found in a selected library were analyzed. Aside from the mutations, which switch off RNase H activity of RT and are beneficial for the full-length cDNA synthesis, we have identified several mutations in the active center of the enzyme (Q221R and V223A/M), which result in 4-5-fold decrease of Km for dNTPs (<0.2 mM). The selected mutations are in surprising agreement with the natural evolution process because they transformed the active center from the oncoretroviral M-MuLV RT-type to the lenitiviral enzyme-type. We believe that this was the major and essential phenotypic adjustment required to perform fast and efficient cDNA synthesis in PCR buffer at 0.2-mM concentration of each dNTP.
Collapse
Affiliation(s)
- S Palikša
- Thermo Fisher Scientific Baltics, UAB, LT-02241 Vilnius, Lithuania.,JSC Diagnolita, LT-10257 Vilnius, Lithuania
| | - G Alzbutas
- Thermo Fisher Scientific Baltics, UAB, LT-02241 Vilnius, Lithuania
| | - R Skirgaila
- Thermo Fisher Scientific Baltics, UAB, LT-02241 Vilnius, Lithuania
| |
Collapse
|
4
|
Lee A, CingÖz O, Sabo Y, Goff SP. Characterization of interaction between Trim28 and YY1 in silencing proviral DNA of Moloney murine leukemia virus. Virology 2018; 516:165-175. [PMID: 29407374 DOI: 10.1016/j.virol.2018.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Moloney Murine Leukemia Virus (M-MLV) proviral DNA is transcriptionally silenced in embryonic cells by a large repressor complex tethered to the provirus by two sequence-specific DNA binding proteins, ZFP809 and YY1. A central component of the complex is Trim28, a scaffold protein that regulates many target genes involved in cell cycle progression, DNA damage responses, and viral gene expression. The silencing activity of Trim28, and its interactions with corepressors are often regulated by post-translational modifications such as sumoylation and phosphorylation. We defined the interaction domains of Trim28 and YY1, and investigated the role of sumoylation and phosphorylation of Trim28 in mediating M-MLV silencing. The RBCC domain of Trim28 was sufficient for interaction with YY1, and acidic region 1 and zinc fingers of YY1 were necessary and sufficient for its interaction with Trim28. Additionally, we found that residue K779 was critical for Trim28-mediated silencing of M-MLV in embryonic cells.
Collapse
Affiliation(s)
- Andreia Lee
- Department of Biological Sciences, United States
| | - Oya CingÖz
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States
| | - Yosef Sabo
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics and Department of Microbiology and Immunology, Howard Hughes Medical Institute, Columbia University Medical Center, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
5
|
Nishimura K, Yokokawa K, Hisayoshi T, Fukatsu K, Kuze I, Konishi A, Mikami B, Kojima K, Yasukawa K. Preparation and characterization of the RNase H domain of Moloney murine leukemia virus reverse transcriptase. Protein Expr Purif 2015; 113:44-50. [PMID: 25959458 DOI: 10.1016/j.pep.2015.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
Moloney murine leukemia virus reverse transcriptase (MMLV RT) contains fingers, palm, thumb, and connection subdomains as well as an RNase H domain. The DNA polymerase active site resides in the palm subdomain, and the RNase H active site is located in the RNase H domain. The RNase H domain contains a positively charged α-helix called the C helix (H(594)GEIYRRR(601)), that is thought to be involved in substrate recognition. In this study, we expressed three versions of the RNase H domain in Escherichia coli, the wild-type domain (WT) (residues Ile498-Leu671) and two variants that lack the regions containing the C helix (Ile593-Leu603 and Gly595-Thr605, which we called ΔC1 and ΔC2, respectively) with a strep-tag at the N-terminus and a deca-histidine tag at the C-terminus. These peptides were purified from the cells by anion-exchange, Ni(2+) affinity, and Strep-Tactin affinity column chromatography, and then the tags were removed by proteolysis. In an RNase H assay using a 25-bp RNA-DNA heteroduplex, WT, ΔC1, and ΔC2 produced RNA fragments ranging from 7 to 16 nucleotides (nt) whereas the full-length MMLV RT (Thr24-Leu671) produced 14-20-nt RNA fragments, suggesting that elimination of the fingers, palm, thumb, and connection subdomains affects the binding of the RNase H domain to the RNA-DNA heteroduplex. The activity levels of WT, ΔC1, and ΔC2 were estimated to be 1%, 0.01%, and 0.01% of full-length MMLV RT activity, indicating that the C helix is important, but not critical, for the activity of the isolated RNase H domain.
Collapse
Affiliation(s)
- Kosaku Nishimura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kanta Yokokawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tetsuro Hisayoshi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kosuke Fukatsu
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ikumi Kuze
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsushi Konishi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Bunzo Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
6
|
A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing. Nature 2014; 515:591-5. [PMID: 25209668 DOI: 10.1038/nature13709] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023]
Abstract
To prime reverse transcription, retroviruses require annealing of a transfer RNA molecule to the U5 primer binding site (U5-PBS) region of the viral genome. The residues essential for primer annealing are initially locked in intramolecular interactions; hence, annealing requires the chaperone activity of the retroviral nucleocapsid (NC) protein to facilitate structural rearrangements. Here we show that, unlike classical chaperones, the Moloney murine leukaemia virus NC uses a unique mechanism for remodelling: it specifically targets multiple structured regions in both the U5-PBS and tRNA(Pro) primer that otherwise sequester residues necessary for annealing. This high-specificity and high-affinity binding by NC consequently liberates these sequestered residues--which are exactly complementary--for intermolecular interactions. Furthermore, NC utilizes a step-wise, entropy-driven mechanism to trigger both residue-specific destabilization and residue-specific release. Our structures of NC bound to U5-PBS and tRNA(Pro) reveal the structure-based mechanism for retroviral primer annealing and provide insights as to how ATP-independent chaperones can target specific RNAs amidst the cellular milieu of non-target RNAs.
Collapse
|
7
|
Abstract
RNase H (retroviral ribonuclease H) cleaves the phosphate backbone of the RNA template within an RNA/DNA hybrid to complete the synthesis of double-stranded viral DNA. In the present study we have determined the complete structure of the RNase H domain from XMRV (xenotropic murine leukaemia virus-related virus) RT (reverse transcriptase). The basic protrusion motif of the XMRV RNase H domain is folded as a short helix and an adjacent highly bent loop. Structural superposition and subsequent mutagenesis experiments suggest that the basic protrusion motif plays a role in direct binding to the major groove in RNA/DNA hybrid, as well as in establishing the co-ordination among modules in RT necessary for proper function.
Collapse
|
8
|
Leo B, Schweimer K, Rösch P, Hartl MJ, Wöhrl BM. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding. Retrovirology 2012; 9:73. [PMID: 22962864 PMCID: PMC3443672 DOI: 10.1186/1742-4690-9-73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/10/2012] [Indexed: 11/13/2022] Open
Abstract
Background The ribonuclease H (RNase H) domains of retroviral reverse transcriptases play an essential role in the replication cycle of retroviruses. During reverse transcription of the viral genomic RNA, an RNA/DNA hybrid is created whose RNA strand needs to be hydrolyzed by the RNase H to enable synthesis of the second DNA strand by the DNA polymerase function of the reverse transcriptase. Here, we report the solution structure of the separately purified RNase H domain from prototype foamy virus (PFV) revealing the so-called C-helix and the adjacent basic loop, which both were suggested to be important in substrate binding and activity. Results The solution structure of PFV RNase H shows that it contains a mixed five-stranded β-sheet, which is sandwiched by four α-helices (A-D), including the C-helix, on one side and one α-helix (helix E) on the opposite side. NMR titration experiments demonstrate that upon substrate addition signal changes can be detected predominantly in the basic loop as well as in the C-helix. All these regions are oriented towards the bound substrate. In addition, signal intensities corresponding to residues in the B-helix and the active site decrease, while only minor or no changes of the overall structure of the RNase H are detectable upon substrate binding. Dynamic studies confirm the monomeric state of the RNase H domain. Structure comparisons with HIV-1 RNase H, which lacks the basic protrusion, indicate that the basic loop is relevant for substrate interaction, while the C-helix appears to fulfill mainly structural functions, i.e. positioning the basic loop in the correct orientation for substrate binding. Conclusions The structural data of PFV RNase H demonstrate the importance of the basic loop, which contains four positively charged lysines, in substrate binding and the function of the C-helix in positioning of the loop. In the dimeric full length HIV-1 RT, the function of the basic loop is carried out by a different loop, which also harbors basic residues, derived from the connection domain of the p66 subunit. Our results suggest that RNases H which are also active as separate domains might need a functional basic loop for proper substrate binding.
Collapse
Affiliation(s)
- Berit Leo
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr, 30, D-95447 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
9
|
Leo B, Hartl MJ, Schweimer K, Mayr F, Wöhrl BM. Insights into the structure and activity of prototype foamy virus RNase H. Retrovirology 2012; 9:14. [PMID: 22325739 PMCID: PMC3305377 DOI: 10.1186/1742-4690-9-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNase H is an endonuclease that hydrolyzes the RNA strand in RNA/DNA hybrids. Retroviral reverse transcriptases harbor a C-terminal RNase H domain whose activity is essential for viral replication. The RNase H degrades the viral genomic RNA after the first DNA strand is synthesized. Here, we report the biophysical and enzymatic properties of the RNase H domain of prototype foamy virus (PFV) as an independently purified protein. Sequence comparisons with other retroviral RNases H indicated that PFV RNase H harbors a basic protrusion, including a basic loop and the so-called C-helix, which was suggested to be important for activity and substrate binding and is absent in the RNase H domain of human immunodeficiency virus. So far, no structure of a retroviral RNase H containing a C-helix is available. RESULTS RNase H activity assays demonstrate that the PFV RNase H domain is active, although its activity is about 200-fold reduced as compared to the full length protease-reverse transcriptase enzyme. Fluorescence equilibrium titrations with an RNA/DNA substrate revealed a KD for the RNase H domain in the low micromolar range which is about 4000-fold higher than that of the full-length protease-reverse transcriptase enzyme. Analysis of the RNase H cleavage pattern using a [32P]-labeled substrate indicates that the independent RNase H domain cleaves the substrate non-specifically. The purified RNase H domain exhibits a well defined three-dimensional structure in solution which is stabilized in the presence of Mg2+ ions. CONCLUSIONS Our data demonstrate that the independent PFV RNase H domain is structured and active. The presence of the C-helix in PFV RNase H could be confirmed by assigning the protein backbone and calculating the chemical shift index using NMR spectroscopy.
Collapse
Affiliation(s)
- Berit Leo
- Universität Bayreuth, Lehrstuhl Biopolymere, Universitätsstr, 30, D-95447 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
10
|
Structural and inhibition studies of the RNase H function of xenotropic murine leukemia virus-related virus reverse transcriptase. Antimicrob Agents Chemother 2012; 56:2048-61. [PMID: 22252812 DOI: 10.1128/aac.06000-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RNase H inhibitors (RNHIs) have gained attention as potential HIV-1 therapeutics. Although several RNHIs have been studied in the context of HIV-1 reverse transcriptase (RT) RNase H, there is no information on inhibitors that might affect the RNase H activity of other RTs. We performed biochemical, virological, crystallographic, and molecular modeling studies to compare the RNase H function and inhibition profiles of the gammaretroviral xenotropic murine leukemia virus-related virus (XMRV) and Moloney murine leukemia virus (MoMLV) RTs to those of HIV-1 RT. The RNase H activity of XMRV RT is significantly lower than that of HIV-1 RT and comparable to that of MoMLV RT. XMRV and MoMLV, but not HIV-1 RT, had optimal RNase H activities in the presence of Mn²⁺ and not Mg²⁺. Using hydroxyl-radical footprinting assays, we demonstrated that the distance between the polymerase and RNase H domains in the MoMLV and XMRV RTs is longer than that in the HIV-1 RT by ∼3.4 Å. We identified one naphthyridinone and one hydroxyisoquinolinedione as potent inhibitors of HIV-1 and XMRV RT RNases H with 50% inhibitory concentrations ranging from ∼0.8 to 0.02 μM. Two acylhydrazones effective against HIV-1 RT RNase H were less potent against the XMRV enzyme. We also solved the crystal structure of an XMRV RNase H fragment at high resolution (1.5 Å) and determined the molecular details of the XMRV RNase H active site, thus providing a framework that would be useful for the design of antivirals that target RNase H.
Collapse
|
11
|
|
12
|
Abstract
Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended.
Collapse
Affiliation(s)
- James J Champoux
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
13
|
Schultz SJ, Champoux JJ. RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 2008; 134:86-103. [PMID: 18261820 PMCID: PMC2464458 DOI: 10.1016/j.virusres.2007.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/20/2023]
Abstract
This review compares the well-studied RNase H activities of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) reverse transcriptases. The RNase H domains of HIV-1 and MoMLV are structurally very similar, with functions assigned to conserved subregions like the RNase H primer grip and the connection subdomain, as well as to distinct features like the C-helix and loop in MoMLV RNase H. Like cellular RNases H, catalysis by the retroviral enzymes appears to involve a two-metal ion mechanism. Unlike cellular RNases H, the retroviral RNases H display three different modes of cleavage: internal, DNA 3' end-directed, and RNA 5' end-directed. All three modes of cleavage appear to have roles in reverse transcription. Nucleotide sequence is an important determinant of cleavage specificity with both enzymes exhibiting a preference for specific nucleotides at discrete positions flanking an internal cleavage site as well as during tRNA primer removal and plus-strand primer generation. RNA 5' end-directed and DNA 3' end-directed cleavages show similar sequence preferences at the positions closest to a cleavage site. A model for how RNase H selects cleavage sites is presented that incorporates both sequence preferences and the concept of a defined window for allowable cleavage from a recessed end. Finally, the RNase H activity of HIV-1 is considered as a target for anti-virals as well as a participant in drug resistance.
Collapse
Affiliation(s)
- Sharon J. Schultz
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, Washington 98195, USA
| | - James J. Champoux
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
14
|
Coté ML, Roth MJ. Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase. Virus Res 2008; 134:186-202. [PMID: 18294720 PMCID: PMC2443788 DOI: 10.1016/j.virusres.2008.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/31/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
Recent X-ray crystal structure determinations of Moloney murine leukemia virus reverse transcriptase (MoMLV RT) have allowed for more accurate structure/function comparisons to HIV-1 RT than were formerly possible. Previous biochemical studies of MoMLV RT in conjunction with knowledge of sequence homologies to HIV-1 RT and overall fold similarities to RTs in general, provided a foundation upon which to build. In addition, numerous crystal structures of the MoMLV RT fingers/palm subdomain had also shed light on one of the critical functions of the enzyme, specifically polymerization. Now in the advent of new structural information, more intricate examination of MoMLV RT in its entirety can be realized, and thus the comparisons with HIV-1 RT may be more critically elucidated. Here, we will review the similarities and differences between MoMLV RT and HIV-1 RT via structural analysis, and propose working models for the MoMLV RT based upon that information.
Collapse
Affiliation(s)
- Marie L. Coté
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane Piscataway, NJ 08854
| | - Monica J. Roth
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane Piscataway, NJ 08854
| |
Collapse
|
15
|
Paulson BA, Zhang M, Schultz SJ, Champoux JJ. Substitution of alanine for tyrosine-64 in the fingers subdomain of M-MuLV reverse transcriptase impairs strand displacement synthesis and blocks viral replication in vivo. Virology 2007; 366:361-76. [PMID: 17532359 PMCID: PMC2045069 DOI: 10.1016/j.virol.2007.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 11/28/2022]
Abstract
A distinctive property of reverse transcriptase is the ability to carry out strand displacement synthesis in the absence of accessory proteins such as helicases or single-strand DNA binding proteins. Structure-function studies indicate that the fingers subdomain in HIV-1 reverse transcriptase contacts the template strand downstream of the primer terminus and is involved in strand displacement synthesis. Based on structural comparisons to the HIV-1 enzyme, we made single amino acid substitutions at the Tyr-64 and Leu-99 positions in the fingers subdomain of the M-MuLV reverse transcriptase to ask whether this subdomain has a similar role in displacement synthesis. In vitro assays comparing non-displacement versus displacement synthesis revealed that substitution of alanine at Tyr-64 generated a reverse transcriptase that was impaired in its capacity to carry out DNA and RNA displacement synthesis without affecting polymerase processivity or RNase H activity. However, substitution of Tyr-64 with phenylalanine and a variety of substitutions at position Leu-99 had no specific effect on displacement synthesis. The Y64A substitution prevented viral replication in vivo, and Y64A virus generated reduced levels of reverse transcription intermediates at all steps beyond the synthesis of minus strong stop DNA. The role of the fingers subdomain and in particular the possible contributions of the Tyr-64 residue in displacement synthesis are discussed.
Collapse
Affiliation(s)
- Benjamin A Paulson
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
16
|
Auerbach MR, Brown KR, Singh IR. Mutational analysis of the N-terminal domain of Moloney murine leukemia virus capsid protein. J Virol 2007; 81:12337-47. [PMID: 17855544 PMCID: PMC2168981 DOI: 10.1128/jvi.01286-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retroviral capsid (CA) proteins contain a structurally conserved N-terminal domain (NTD) consisting of a beta-hairpin and six to seven alpha-helices. To examine the role of this domain in Moloney murine leukemia virus (MoMLV) replication, we analyzed 18 insertional mutations in this region. All mutants were noninfectious. Based on the results of this analysis and our previous studies on additional mutations in this domain, we were able to divide the NTD of MoMLV CA into three functional regions. The first functional region included the region near the N terminus that forms the beta-hairpin and was shown to control normal maturation of virions. The second region included the helix 4/5 loop and was essential for the formation of spherical cores. The third region encompassed most of the NTD except for the above loop. Mutants of this region assembled imperfect cores, as seen by detailed electron microscopy analyses, yet the resulting particles were efficiently released from cells. The mutants were defective at a stage immediately following entry of the core into cells. Despite possessing functional reverse transcriptase machinery, these mutant virions did not initiate reverse transcription in cells. This block could be due to structural defects in the assembling core or failure of an essential host protein to interact with the mutant CA protein, both of which may prevent correct disassembly upon entry of the virus into cells. Future studies are needed to understand the mechanism of these blocks and to target these regions pharmacologically to inhibit retroviral infection at additional stages.
Collapse
Affiliation(s)
- Marcy R Auerbach
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
17
|
Rausch JW, Le Grice SFJ. Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis. Nucleic Acids Res 2006; 35:256-68. [PMID: 17164285 PMCID: PMC1802577 DOI: 10.1093/nar/gkl909] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite extensive study, the mechanism by which retroviral reverse transciptases (RTs) specifically utilize polypurine tract (PPT) RNA for initiation of plus-strand DNA synthesis remains unclear. Three sequence motifs within or adjacent to the purine-rich elements are highly conserved, namely, a rU:dA tract region immediately 5′ to the PPT, an rA:dT-rich sequence constituting the upstream portion of the PPT and a downstream rG:dC tract. Using an in vitro HIV-1 model system, we determined that the former two elements define the 5′ terminus of the (+)-strand primer, whereas the rG:dC tract serves as the primary determinant of initiation specificity. Subsequent analysis demonstrated that G→A or A→G substitution at PPT positions −2, −4 and +1 (relative to the scissile phosphate) substantially reduces (+)-strand priming. We explored this observation further using PPT substrates substituted with a variety of nucleoside analogs [inosine (I), purine riboside (PR), 2-aminopurine (2-AP), 2,6-diaminopurine (2,6-DAP), isoguanine (iG)], or one of the naturally occurring bases at these positions. Our results demonstrate that for PPT positions −2 or +1, substituting position 2 of the purine was an important determinant of cleavage specificity. In addition, cleavage specificity was greatly affected by substituting −4G with an analog containing a 6-NH2 moiety.
Collapse
Affiliation(s)
| | - Stuart F. J. Le Grice
- To whom correspondence should be addressed. Tel: +1 301 846 5256; Fax: +1 301 846 6013;
| |
Collapse
|
18
|
Lim D, Gregorio GG, Bingman C, Martinez-Hackert E, Hendrickson WA, Goff SP. Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol 2006; 80:8379-89. [PMID: 16912289 PMCID: PMC1563865 DOI: 10.1128/jvi.00750-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A crystallographic study of the Moloney murine leukemia virus (Mo-MLV) RNase H domain was performed to provide information about its structure and mechanism of action. These efforts resulted in the crystallization of a mutant Mo-MLV RNase H lacking the putative helix C (DeltaC). The 1.6-Angstroms resolution structure resembles the known structures of the human immunodeficiency virus type 1 (HIV-1) and Escherichia coli RNase H. The structure revealed the coordination of a magnesium ion within the catalytic core comprised of the highly conserved acidic residues D524, E562, and D583. Surface charge mapping of the Mo-MLV structure revealed a high density of basic charges on one side of the enzyme. Using a model of the Mo-MLV structure superimposed upon a structure of HIV-1 reverse transcriptase bound to an RNA/DNA hybrid substrate, Mo-MLV RNase H secondary structures and individual amino acids were examined for their potential roles in binding substrate. Identified regions included Mo-MLV RNase H beta1-beta2, alphaA, and alphaB and residues from alphaB to alphaD and its following loop. Most of the identified substrate-binding residues corresponded with residues directly binding nucleotides in an RNase H from Bacillus halodurans as observed in a cocrystal structure with RNA/DNA. Finally, superimposition of RNases H of Mo-MLV, E. coli, and HIV-1 revealed that a loop of the HIV-1 connection domain resides within the same region of the Mo-MLV and E. coli C-helix. The HIV-1 connection domain may serve to recognize and bind the RNA/DNA substrate major groove.
Collapse
Affiliation(s)
- David Lim
- Integrated Program in Cellular, Molecular and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
19
|
Auerbach MR, Brown KR, Kaplan A, de Las Nueces D, Singh IR. A small loop in the capsid protein of Moloney murine leukemia virus controls assembly of spherical cores. J Virol 2006; 80:2884-93. [PMID: 16501097 PMCID: PMC1395457 DOI: 10.1128/jvi.80.6.2884-2893.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We report the identification of a novel domain in the Gag protein of Moloney murine leukemia virus (MoLV) that is important for the formation of spherical cores. Analysis of 18 insertional mutations in the N-terminal domain of the capsid protein (CA) identified 3 that were severely defective for viral assembly and release. Transmission electron microscopy of cells producing these mutants showed assembly of Gag proteins in large, flat or dome-shaped patches at the plasma membrane. Spherical cores were not formed, and viral particles were not released. This late assembly/release block was partially rescued by wild-type virus. All three mutations localized to the small loop between alpha-helices 4 and 5 of CA, analogous to the cyclophilin A-binding loop of human immunodeficiency virus type 1 CA. In the X-ray structure of the hexameric form of MLV CA, this loop is located at the periphery of the hexamer. The phenotypes of mutations in this loop suggest that formation of a planar lattice of Gag is unhindered by mutations in the loop. However, the lack of progression of these planar structures to spherical ones suggests that mutations in this loop may prevent formation of pentamers or of stable pentamer-hexamer interactions, which are essential for the formation of a closed, spherical core. This region in CA, focused to a few residues of a small loop, may offer a novel therapeutic target for retroviral diseases.
Collapse
Affiliation(s)
- Marcy R Auerbach
- Department of Pathology, Columbia University Medical Center, 630 West 168th Street, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
20
|
Atwood-Moore A, Ejebe K, Levin HL. Specific recognition and cleavage of the plus-strand primer by reverse transcriptase. J Virol 2006; 79:14863-75. [PMID: 16282486 PMCID: PMC1287563 DOI: 10.1128/jvi.79.23.14863-14875.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptases (RTs) of retroviruses and long terminal repeat (LTR)-retrotransposons possess DNA polymerase and RNase H activities. During reverse transcription these activities are necessary for the programmed sequence of events that include template switching and primer processing. Integrase then inserts the completed cDNA into the genome of the host cell. The RT of the LTR-retrotransposon Tf1 was subjected to random mutagenesis, and the resulting transposons were screened with genetic assays to test which mutations reduced reverse transcription and which inhibited integration. We identified a cluster of mutations in the RNase H domain of RT that were surprising because they blocked integration without reducing cDNA levels. The results of immunoblots demonstrated that these mutations did not reduce levels of RT or integrase. DNA blots showed that the mutations did not lower the amounts of full-length cDNA. The sequences of the 3' ends of the cDNA revealed that mutations within the cluster in RNase H specifically reduced the removal of the polypurine tract (PPT) primer from the ends of the cDNA. These results indicate that primer removal is not a necessary component of reverse transcription. The residues mutated in Tf1 RNase H are conserved in human immunodeficiency virus type 1 and make direct contact with DNA opposite the PPT. Thus, our results identify a conserved element in RT that contacts the PPT and is specifically required for PPT removal.
Collapse
Affiliation(s)
- Angela Atwood-Moore
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
21
|
Miles LR, Agresta BE, Khan MB, Tang S, Levin JG, Powell MD. Effect of polypurine tract (PPT) mutations on human immunodeficiency virus type 1 replication: a virus with a completely randomized PPT retains low infectivity. J Virol 2005; 79:6859-67. [PMID: 15890925 PMCID: PMC1112125 DOI: 10.1128/jvi.79.11.6859-6867.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 01/20/2005] [Indexed: 12/22/2022] Open
Abstract
We introduced polypurine tract (PPT) mutations, which we had previously tested in an in vitro assay, into the viral clone NL4-3KFSdelta nef. Each mutant was tested for single-round infectivity and virion production. All of the PPT mutations had an effect on replication; however, mutation of the 5' end appeared to have less of an effect on infectivity than mutation of the 3' end of the PPT sequence. Curiously, a mutation in which the entire PPT sequence was randomized (PPTSUB) retained 12% of the infectivity of the wild type (WT) in a multinuclear activation of galactosidase indicator assay. Supernatants from these infections contained viral particles, as evidenced by the presence of p24 antigen. Two-long terminal repeat (2-LTR) circle junction analysis following PPTSUB infection revealed that the mutant could form a high percentage of normal junctions. Quantification of the 2-LTR circles using real-time PCR revealed that number of 2-LTR circles from cells infected with the PPTSUB mutant was 3.5 logs greater than 2-LTR circles from cells infected with WT virus. To determine whether the progeny virions from a PPTSUB infection could undergo further rounds of replication, we introduced the PPTSUB mutation into a replication-competent virus. Our results show that the mutant virus is able to replicate and that the infectivity of the progeny virions increases with each passage, quickly reverting to a WT PPT sequence. Together, these experiments confirm that the 3' end of the PPT is important for plus-strand priming and that a virus that completely lacks a PPT can replicate at a low level.
Collapse
Affiliation(s)
- Lesa R Miles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. S. W., Atlanta, GA 30310, USA
| | | | | | | | | | | |
Collapse
|
22
|
Boyer PL, Stenbak CR, Clark PK, Linial ML, Hughes SH. Characterization of the polymerase and RNase H activities of human foamy virus reverse transcriptase. J Virol 2004; 78:6112-21. [PMID: 15163704 PMCID: PMC416499 DOI: 10.1128/jvi.78.12.6112-6121.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foamy virus (FV) replication, while related to that of orthoretroviruses, differs at a number of steps. Several of these differences involve the reverse transcriptase (RT). There appear to be fewer RTs present in FV than in orthoretroviruses; we previously proposed that the polymerase of FV RT was more active than orthoretroviral RTs to compensate for the numerical difference. Here we present further characterization of the RT of FV. The polymerase activity of FV RT was greater than that of human immunodeficiency virus type 1 RT in a variety of assays. We also examined the RNase H activity of FV RT, and we propose that FV RT has a basic loop in the RNase H domain. Although the sequence of the basic loop of FV RT is different from the basic loop of either Moloney leukemia virus RNase H or Escherichia coli RNase H, the FV RT basic loop appears to have a similar function.
Collapse
Affiliation(s)
- Paul L Boyer
- HIV Drug Resistance Program, National Cancer Institute-FCRDC, P.O. Box B, Building 539, Room 130A, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
23
|
Dash C, Yi-Brunozzi HY, Le Grice SFJ. Two modes of HIV-1 polypurine tract cleavage are affected by introducing locked nucleic acid analogs into the (-) DNA template. J Biol Chem 2004; 279:37095-102. [PMID: 15220330 DOI: 10.1074/jbc.m403306200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Unusual base-pairing in a co-crystal of reverse transcriptase (RT) and a human immunodeficiency virus type 1 (HIV-1) polypurine tract (PPT)-containing RNA/DNA hybrid suggests local nucleic acid flexibility mediates selection of the plus-strand primer. Structural elements of HIV-1 RT potentially participating in recognition of this duplex include the thumb subdomain and the ribonuclease H (RNase H) primer grip, the latter comprising elements of the connection subdomain and RNase H domain. To investigate how stabilizing HIV-1 PPT structure influences its recognition, we modified the (-) DNA template by inserting overlapping locked nucleic acid (LNA) doublets and triplets. Modified RNA/DNA hybrids were evaluated for cleavage at the PPT/U3 junction. Altered specificity was observed when the homopolymeric dA.rU tract immediately 5' of the PPT was modified, whereas PPT/U3 cleavage was lost after substitutions in the adjacent dT.rA tract. In contrast, the "unzipped" portion of the PPT was moderately insensitive to LNA insertions. Although a portion of the dC.rG and neighboring dT.rA tract were minimally affected by LNA insertion, RNase H activity was highly sensitive to altering the junction between these structural elements. Using 3'-end-labeled PPT RNA primers, we also identified novel cleavage sites ahead (+5/+6) of the PPT/U3 junction. Differential cleavage at the PPT/U3 junction and U3 + 5/+6 site in response to LNA-induced template modification suggests two binding modes for HIV-1 RT, both of which may be controlled by the interaction of its thumb subdomain (potentially via the minor groove binding track) at either site of the unzipped region.
Collapse
Affiliation(s)
- Chandravanu Dash
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | |
Collapse
|
24
|
Auerbach MR, Shu C, Kaplan A, Singh IR. Functional characterization of a portion of the Moloney murine leukemia virus gag gene by genetic footprinting. Proc Natl Acad Sci U S A 2003; 100:11678-83. [PMID: 14504385 PMCID: PMC208817 DOI: 10.1073/pnas.2034020100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviral Gag proteins perform important functions in viral assembly, but are also involved in other steps in the viral life cycle. Conventional mutational analysis has yielded considerable information about domains essential for these functions, yet many regions of gag remain uncharacterized. We used genetic footprinting, a technique that permits the generation and simultaneous analysis of large numbers of mutations, to perform a near-saturation mutagenesis and functional analysis of 639 nucleotides in the gag region of Moloney murine leukemia virus. We report here the resulting functional map defined by eight footprints representing regions of Moloney murine leukemia virus gag, some previously uncharacterized, that are essential for replication. We found that significant portions of matrix and p12 proteins were tolerant of insertions, in contrast to the N-terminal half of capsid, which was not. We analyzed 30 mutants from our library by using conventional methods to validate the footprints. Six of these mutants were characterized in detail, identifying the precise stage at which their replication is blocked. In addition to providing the most comprehensive functional map of a retroviral gag gene, our study demonstrates the abundance of information that can be gleaned by genetic footprinting of viral sequences.
Collapse
Affiliation(s)
- Marcy R Auerbach
- Department of Pathology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
25
|
Julias JG, McWilliams MJ, Sarafianos SG, Alvord WG, Arnold E, Hughes SH. Mutation of amino acids in the connection domain of human immunodeficiency virus type 1 reverse transcriptase that contact the template-primer affects RNase H activity. J Virol 2003; 77:8548-54. [PMID: 12857924 PMCID: PMC165255 DOI: 10.1128/jvi.77.15.8548-8554.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Accepted: 05/03/2003] [Indexed: 01/18/2023] Open
Abstract
The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase in a complex with an RNA-DNA template-primer identified amino acids in the connection domain that make specific contacts with the nucleic acid. We analyzed the effects of mutations in these amino acids by using a one-round HIV-1 vector. Mutations in amino acids in the connection domain generally had small effects on virus titers. To determine whether the mutations affected the level of RNase H activity or the specificity of RNase H cleavage, we used the two-long-terminal-repeat circle junction as a surrogate for the ends of linear viral DNA; specific RNase H cleavages determine the ends of the viral DNA. Several of the mutations in the connection domain affected the frequency of the generation of viral DNAs with aberrant ends. The mutation H361A had the largest effect on the titer and on the generation of DNAs with aberrant ends. H361 contacts the phosphate backbone of the nucleic acid in the same location as amino acid Y501 in the RNase H primer grip. Mutations at Y501 have been shown to decrease the virus titer and affect the specificity of RNase H cleavage. H361A affected the frequency of the generation of linear viral DNAs with aberrant ends, but in general the connection domain mutations had subtle effects on the efficiency of RNase H cleavage. The results of this study suggest that, in addition to its primary role in linking the polymerase and RNase H domains, the connection subdomain has a modest role in binding and positioning the nucleic acid.
Collapse
Affiliation(s)
- John G Julias
- HIV Drug Resistance Program, Frederick Cancer Research and Development Center, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|