1
|
Rapid evolution of in vivo-selected sequences and structures replacing 20% of a subviral RNA. Virology 2015; 483:149-62. [PMID: 25974866 DOI: 10.1016/j.virol.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022]
Abstract
The 356 nt noncoding satellite RNA C (satC) of Turnip crinkle virus (TCV) is composed of 5' sequences from a second TCV satRNA (satD) and 3' sequences derived from TCV. SHAPE structure mapping revealed that 76 nt in the poorly-characterized satD-derived region form an extended hairpin (H2). Pools of satC in which H2 was replaced with 76, 38, or 19 random nt were co-inoculated with TCV helper virus onto plants and satC fitness assessed using in vivo functional selection (SELEX). The most functional progeny satCs, including one as fit as wild-type, contained a 38-39 nt H2 region that adopted a hairpin structure and exhibited an increased ratio of dimeric to monomeric molecules. Some progeny of satC with H2 deleted featured a duplication of 38 nt, partially rebuilding the deletion. Therefore, H2 can be replaced by a 38-39 nt hairpin, sufficient for overall structural stability of the 5' end of satC.
Collapse
|
2
|
Abstract
Carmovirus is a genus of small, single-stranded, positive-strand RNA viruses in the Tombusviridae. One member of the carmoviruses, Turnip crinkle virus (TCV), has been used extensively as a model for examining the structure and function of RNA elements in 3'UTR as well as in other regions of the virus. Using a variety of genetic, biochemical and computational methods, a structure for the TCV 3'UTR has emerged where secondary structures and tertiary interactions combine to adopt higher order 3-D structures including an internal, ribosome-binding tRNA-shaped configuration that functions as a 3' cap-independent translation enhancer (3'CITE). The TCV 3'CITE also serves as a scaffold for non-canonical interactions throughout the 3'UTR and extending into the upstream open reading frame, interactions that are significantly disrupted upon binding by the RNA-dependent RNA polymerase. Long-distance interactions that connect elements in the 3'UTR with both the 5' end and the internal ribosome recoding site suggest that 3'UTR of carmoviruses are intimately involved in multiple functions in the virus life cycle. Although carmoviruses share very similar genome organizations, lengths of 5' and 3'UTRs, and structural features at the 3' end, the similarity rapidly breaks down the further removed from the 3' terminus revealing different 3'CITEs and unique virus-specific structural features. This review summarizes 20 years of work dissecting the structure and function of the 3'UTR of TCV and other carmoviruses. The astonishing structural complexity of the 3'UTRs of these simple carmoviruses provides lessons that are likely applicable to many other plant and animal RNA viruses.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, United States.
| |
Collapse
|
3
|
Gao F, Kasprzak WK, Szarko C, Shapiro BA, Simon AE. The 3' untranslated region of Pea Enation Mosaic Virus contains two T-shaped, ribosome-binding, cap-independent translation enhancers. J Virol 2014; 88:11696-712. [PMID: 25100834 PMCID: PMC4178710 DOI: 10.1128/jvi.01433-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023] Open
Abstract
Many plant viruses without 5' caps or 3' poly(A) tails contain 3' proximal, cap-independent translation enhancers (3'CITEs) that bind to ribosomal subunits or translation factors thought to assist in ribosome recruitment. Most 3'CITEs participate in a long-distance kissing-loop interaction with a 5' proximal hairpin to deliver ribosomal subunits to the 5' end for translation initiation. Pea Enation Mosaic Virus (PEMV) contains two adjacent 3'CITEs in the center of its 703-nucleotide 3' untranslated region (3'UTR), the ribosome-binding, kissing-loop T-shaped structure (kl-TSS) and eukaryotic translation initiation factor 4E-binding Panicum mosaic virus-like translation enhance (PTE). We now report that PEMV contains a third, independent 3'CITE located near the 3' terminus. This 3'CITE is composed of three hairpins and two pseudoknots, similar to the TSS 3'CITE of the carmovirus Turnip crinkle virus (TCV). As with the TCV TSS, the PEMV 3'TSS is predicted to fold into a T-shaped structure that binds to 80S ribosomes and 60S ribosomal subunits. A small hairpin (kl-H) upstream of the 3'TSS contains an apical loop capable of forming a kissing-loop interaction with a 5' proximal hairpin and is critical for the accumulation of full-length PEMV in protoplasts. Although the kl-H and 3'TSS are dispensable for the translation of a reporter construct containing the complete PEMV 3'UTR in vitro, deleting the normally required kl-TSS and PTE 3'CITEs and placing the kl-H and 3'TSS proximal to the reporter termination codon restores translation to near wild-type levels. This suggests that PEMV requires three 3'CITEs for proper translation and that additional translation enhancers may have been missed if reporter constructs were used in 3'CITE identification. Importance: The rapid life cycle of viruses requires efficient translation of viral-encoded proteins. Many plant RNA viruses contain 3' cap-independent translation enhancers (3'CITEs) to effectively compete with ongoing host translation. Since only single 3'CITEs have been identified for the vast majority of individual viruses, it is widely accepted that this is sufficient for a virus's translational needs. Pea Enation Mosaic Virus possesses a ribosome-binding 3'CITE that can connect to the 5' end through an RNA-RNA interaction and an adjacent eukaryotic translation initiation factor 4E-binding 3'CITE. We report the identification of a third 3'CITE that binds weakly to ribosomes and requires an upstream hairpin to form a bridge between the 3' and 5' ends. Although both ribosome-binding 3'CITEs are critical for virus accumulation in vivo, only the CITE closest to the termination codon of a reporter open reading frame is active, suggesting that artificial constructs used for 3'CITE identification may underestimate the number of CITEs that participate in translation.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christine Szarko
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| | - Bruce A. Shapiro
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA
| |
Collapse
|
4
|
Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses. J Virol 2013; 88:1972-89. [PMID: 24284329 DOI: 10.1128/jvi.03031-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.
Collapse
|
5
|
Evolution of a helper virus-derived, ribosome binding translational enhancer in an untranslated satellite RNA of Turnip crinkle virus. Virology 2011; 419:10-6. [PMID: 21862095 DOI: 10.1016/j.virol.2011.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 07/27/2011] [Accepted: 07/31/2011] [Indexed: 01/01/2023]
Abstract
SatC is a noncoding subviral RNA associated with Turnip crinkle virus (TCV). A 100-nt stretch in the 3' UTR of TCV contains three hairpins and two pseudoknots that fold into a tRNA-shaped structure (TSS) that binds 80S ribosomes. The 3' half of satC is derived from TCV and contains 6-nt differences in the TSS-analogous region. SatC binds poorly to 80S ribosomes, and molecular modeling that predicted the 3D structure of the TSS did not predict a similar structure for satC. When the satC TSS region was step-wise converted to the original TCV TSS bases, ribosome binding increased to TCV TSS levels without significantly affecting satC replication. However, mutant satC was less fit when accumulating in plants and gave rise to numerous second site changes that weakened one of two satC conformations. These results suggest that minor changes from the original TCV sequence in satC reflect requirements other than elimination of ribosome binding.
Collapse
|
6
|
Huang YW, Hu CC, Lin CA, Liu YP, Tsai CH, Lin NS, Hsu YH. Structural and functional analyses of the 3' untranslated region of Bamboo mosaic virus satellite RNA. Virology 2009; 386:139-53. [PMID: 19201437 DOI: 10.1016/j.virol.2009.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/16/2008] [Accepted: 01/10/2009] [Indexed: 12/29/2022]
Abstract
The 3'-untranslated region (UTR) of RNA genomes of viruses and satellite RNAs plays essential roles in viral replication and transcription. The structural features of the 3'-UTR of the satellite RNA of Bamboo mosaic virus (satBaMV) involved in its replication were analyzed in this study. By the use of enzymatic probing, the secondary structure of satBaMV 3'-UTR was confirmed to comprise two small stem-loops (SLA and SLB), one large stem-loop (SLC), and a poly(A) tail of mainly 75-200 adenylate residues, which is similar to those on the genomic RNA of the helper virus, BaMV. Five sets of mutants of satBaMV were constructed to analyze the biological functions of the structural elements of the 3'-UTR. The data revealed that both the polyadenylation signal and poly(A) tail are required for satBaMV RNA replication. The structural conservation of SLA, SLB, and SLC is also important for efficient satBaMV accumulation, whereas the nucleotides in these regions may also possess sequence-specific functions. In contrast to the requirement for the accumulation of BaMV genomic RNA, mutations in the conserved hexanucleotide (ACCUAA) in the loop region of SLC had limited effect on the accumulation of satBaMV RNA. In addition, replacing the 5'-, 3'-UTR, or both regions of satBaMV by those of BaMV greatly decreased the accumulation of satBaMV RNA. Taken together, these data indicate that satBaMV might have adopted a 3'-UTR structure similar to that of BaMV but may have evolved distinct features for its efficient replication.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
7
|
Structural plasticity and rapid evolution in a viral RNA revealed by in vivo genetic selection. J Virol 2008; 83:927-39. [PMID: 19004956 DOI: 10.1128/jvi.02060-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Satellite RNAs usually lack substantial homology with their helper viruses. The 356-nucleotide satC of Turnip crinkle virus (TCV) is unusual in that its 3'-half shares high sequence similarity with the TCV 3' end. Computer modeling, structure probing, and/or compensatory mutagenesis identified four hairpins and three pseudoknots in this TCV region that participate in replication and/or translation. Two hairpins and two pseudoknots have been confirmed as important for satC replication. One portion of the related 3' end of satC that remains poorly characterized corresponds to juxtaposed TCV hairpins H4a and H4b and pseudoknot psi(3), which are required for the TCV-specific requirement of translation (V. A. Stupina et al., RNA 14:2379-2393, 2008). Replacement of satC H4a with randomized sequence and scoring for fitness in plants by in vivo genetic selection (SELEX) resulted in winning sequences that contain an H4a-like stem-loop, which can have additional upstream sequence composing a portion of the stem. SELEX of the combined H4a and H4b region in satC generated three distinct groups of winning sequences. One group models into two stem-loops similar to H4a and H4b of TCV. However, the selected sequences in the other two groups model into single hairpins. Evolution of these single-hairpin SELEX winners in plants resulted in satC that can accumulate to wild-type (wt) levels in protoplasts but remain less fit in planta when competed against wt satC. These data indicate that two highly distinct RNA conformations in the H4a and H4b region can mediate satC fitness in protoplasts.
Collapse
|
8
|
Stupina VA, Meskauskas A, McCormack JC, Yingling YG, Shapiro BA, Dinman JD, Simon AE. The 3' proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. RNA (NEW YORK, N.Y.) 2008; 14:2379-93. [PMID: 18824512 PMCID: PMC2578866 DOI: 10.1261/rna.1227808] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 08/20/2008] [Indexed: 05/19/2023]
Abstract
During cap-dependent translation of eukaryotic mRNAs, initiation factors interact with the 5' cap to attract ribosomes. When animal viruses translate in a cap-independent fashion, ribosomes assemble upstream of initiation codons at internal ribosome entry sites (IRES). In contrast, many plant viral genomes do not contain 5' ends with substantial IRES activity but instead have 3' translational enhancers that function by an unknown mechanism. A 393-nucleotide (nt) region that includes the entire 3' UTR of the Turnip crinkle virus (TCV) synergistically enhances translation of a reporter gene when associated with the TCV 5' UTR. The major enhancer activity was mapped to an internal region of approximately 140 nt that partially overlaps with a 100-nt structural domain previously predicted to adopt a form with some resemblance to a tRNA, according to a recent study by J.C. McCormack and colleagues. The T-shaped structure binds to 80S ribosomes and 60S ribosomal subunits, and binding is more efficient in the absence of surrounding sequences and in the presence of a pseudoknot that mimics the tRNA-acceptor stem. Untranslated TCV satellite RNA satC, which contains the TCV 3' end and 6-nt differences in the region corresponding to the T-shaped element, does not detectably bind to 80S ribosomes and is not predicted to form a comparable structure. Binding of the TCV T-shaped element by 80S ribosomes was unaffected by salt-washing, reduced in the presence of AcPhe-tRNA, which binds to the P-site, and enhanced binding of Phe-tRNA to the ribosome A site. Mutations that reduced translation in vivo had similar effects on ribosome binding in vitro. This strong correlation suggests that ribosome entry in the 3' UTR is a key function of the 3' translational enhancer of TCV and that the T-shaped element contains some tRNA-like properties.
Collapse
Affiliation(s)
- Vera A Stupina
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Seemann SE, Gorodkin J, Backofen R. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. Nucleic Acids Res 2008; 36:6355-62. [PMID: 18836192 PMCID: PMC2582601 DOI: 10.1093/nar/gkn544] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Computational methods for determining the secondary structure of RNA sequences from given alignments are currently either based on thermodynamic folding, compensatory base pair substitutions or both. However, there is currently no approach that combines both sources of information in a single optimization problem. Here, we present a model that formally integrates both the energy-based and evolution-based approaches to predict the folding of multiple aligned RNA sequences. We have implemented an extended version of Pfold that identifies base pairs that have high probabilities of being conserved and of being energetically favorable. The consensus structure is predicted using a maximum expected accuracy scoring scheme to smoothen the effect of incorrectly predicted base pairs. Parameter tuning revealed that the probability of base pairing has a higher impact on the RNA structure prediction than the corresponding probability of being single stranded. Furthermore, we found that structurally conserved RNA motifs are mostly supported by folding energies. Other problems (e.g. RNA-folding kinetics) may also benefit from employing the principles of the model we introduce. Our implementation, PETfold, was tested on a set of 46 well-curated Rfam families and its performance compared favorably to that of Pfold and RNAalifold.
Collapse
Affiliation(s)
- Stefan E Seemann
- Division of Genetics and Bioinformatics, IBHV and Center for Applied Bioinformatics, University of Copenhagen, Groennegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | | | | |
Collapse
|
10
|
Abstract
The genomes of positive-strand RNA viruses undergo conformational shifts that complicate efforts to equate structures with function. We have initiated a detailed analysis of secondary and tertiary elements within the 3' end of Turnip crinkle virus (TCV) that are required for viral accumulation in vivo. MPGAfold, a massively parallel genetic algorithm, suggested the presence of five hairpins (H4a, H4b, and previously identified hairpins H4, H5, and Pr) and one H-type pseudoknot (Psi(3)) within the 3'-terminal 194 nucleotides (nt). In vivo compensatory mutagenesis analyses confirmed the existence of H4a, H4b, Psi(3) and a second pseudoknot (Psi(2)) previously identified in a TCV satellite RNA. In-line structure probing of the 194-nt fragment supported the coexistence of H4, H4a, H4b, Psi(3) and a pseudoknot that connects H5 and the 3' end (Psi(1)). Stepwise replacements of TCV elements with the comparable elements from Cardamine chlorotic fleck virus indicated that the complete 142-nt 3' end, and subsets containing Psi(3), H4a, and H4b or Psi(3), H4a, H4b, H5, and Psi(2), form functional domains for virus accumulation in vivo. A new 3-D molecular modeling protocol (RNA2D3D) predicted that H4a, H4b, H5, Psi(3), and Psi(2) are capable of simultaneous existence and bears some resemblance to a tRNA. The related Japanese iris necrotic ring virus does not have comparable domains. These results provide a framework for determining how interconnected elements participate in processes that require 3' untranslated region sequences such as translation and replication.
Collapse
|
11
|
Zhang J, Zhang G, Guo R, Shapiro BA, Simon AE. A pseudoknot in a preactive form of a viral RNA is part of a structural switch activating minus-strand synthesis. J Virol 2006; 80:9181-91. [PMID: 16940529 PMCID: PMC1563917 DOI: 10.1128/jvi.00295-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RNA can adopt different conformations in response to changes in the metabolic status of cells, which can regulate processes such as transcription, translation, and RNA cleavage. We previously proposed that an RNA conformational switch in an untranslated satellite RNA (satC) of Turnip crinkle virus (TCV) regulates initiation of minus-strand synthesis (G. Zhang, J. Zhang, A. T. George, T. Baumstark, and A. E. Simon, RNA 12:147-162, 2006). This model was based on the lack of phylogenetically inferred hairpins or a known pseudoknot in the "preactive" structure assumed by satC transcripts in vitro. We now provide evidence that a second pseudoknot (Psi(2)), whose disruption reduces satC accumulation in vivo and enhances transcription by the TCV RNA-dependent RNA polymerase in vitro, stabilizes the preactive satC structure. Alteration of either Psi(2) partner caused nearly identical structural changes, including single-stranded-specific cleavages in the pseudoknot sequences and strong cleavages in a distal element previously proposed to mediate the conformational switch. These results indicate that the preactive structure identified in vitro has biological relevance in vivo and support a requirement for this alternative structure and a conformational switch in high-level accumulation of satC in vivo.
Collapse
Affiliation(s)
- Jiuchun Zhang
- Department of Cell Biology and Molecular Genetics, Microbiology Building, University of Maryland-College Park, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
12
|
Zhang J, Zhang G, McCormack JC, Simon AE. Evolution of virus-derived sequences for high-level replication of a subviral RNA. Virology 2006; 351:476-88. [PMID: 16682064 PMCID: PMC2921640 DOI: 10.1016/j.virol.2006.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 03/07/2006] [Accepted: 03/09/2006] [Indexed: 12/17/2022]
Abstract
Turnip crinkle virus (TCV) and its 356-nt satellite RNA satC share 151 nt of 3'-terminal sequence, which contain 8 positional differences and are predicted to fold into virtually identical structures, including a series of four phylogenetically inferred hairpins. SatC and TCV containing reciprocal exchanges of this region accumulate to only 15% or 1% of wild-type levels, respectively. Step-wise conversion of satC and TCV 3'-terminal sequences into the counterpart's sequence revealed the importance of having the cognate core promoter (Pr), which is composed of a single hairpin that differs in both sequence and stability, and an adjacent short 3'-terminal segment. The negative impact of the more stable TCV Pr on satC could not be attributed to lack of formation of a known tertiary interaction involving the 3'-terminal bases, nor an effect of coat protein, which binds specifically to TCV-like Pr and not the satC Pr. The satC Pr was a substantially better promoter than the TCV Pr when assayed in vitro using purified recombinant TCV RdRp, either in the context of satC or when assayed downstream of non-TCV-related sequence. Poor activity of the TCV Pr in vitro occurred despite solution structure probing indicating that its conformation in the context of satC is similar to the active form of the satC Pr, which is thought to form following a required conformational switch. These results suggest that evolution of satC following its initial formation generated a Pr that can function more efficiently in the absence of additional TCV sequence that may be required for full functionality of the TCV Pr.
Collapse
Affiliation(s)
- Jiuchun Zhang
- Department of Cell Biology and Molecular Genetics University of Maryland College Park, MD 20742
| | - Guohua Zhang
- Department of Cell Biology and Molecular Genetics University of Maryland College Park, MD 20742
| | - John C. McCormack
- Department of Cell Biology and Molecular Genetics University of Maryland College Park, MD 20742
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics University of Maryland College Park, MD 20742
| |
Collapse
|
13
|
Sun X, Simon AE. A cis-replication element functions in both orientations to enhance replication of Turnip crinkle virus. Virology 2006; 352:39-51. [PMID: 16757010 PMCID: PMC2937274 DOI: 10.1016/j.virol.2006.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/14/2005] [Accepted: 03/14/2006] [Indexed: 01/10/2023]
Abstract
Turnip crinkle virus (TCV) (family Tombusviridae, genus Carmovirus) is a positive-sense RNA virus containing a 4054-base genome. Previous results indicated that insertion of Hairpin 4 (H4) into a TCV-associated satellite RNA enhanced replication 6-fold in vivo (Nagy, P., Pogany, J., Simon, A. E., 1999. EMBO J. 18:5653-5665). A detailed structural and functional analysis of H4 has now been performed to investigate its role in TCV replication. RNA structural probing of H4 in full-length TCV supported the sequence forming hairpin structures in both orientations in vitro. Deletion and mutational analyses determined that H4 is important for efficient accumulation of TCV in protoplasts, with a 98% reduction of genomic RNA levels when H4 was deleted. In vitro transcription using p88 [the TCV RNA-dependent RNA polymerase] demonstrated that H4 in its plus-sense orientation [H4(+)] caused a nearly 2-fold increase in RNA synthesis from a core hairpin promoter located on TCV plus-strands. H4 in its minus-sense orientation [H4(-)] stimulated RNA synthesis by 100-fold from a linear minus-strand promoter. Gel mobility shift assays indicated that p88 binds H4(+) and H4(-) with equal affinity, which was substantially greater than the binding affinity to the core promoters. These results support roles for H4(+) and H4(-) in TCV replication by enhancing syntheses of both strands through attracting the RdRp to the template.
Collapse
Affiliation(s)
| | - Anne E. Simon
- Corresponding Author: Department of Cell Biology and Molecular Genetics, Microbiology Building, University of Maryland College Park, College Park, MD 20742, Phone: 301-405-8975, Fax: 301-805-1318,
| |
Collapse
|
14
|
Zhang G, Zhang J, George AT, Baumstark T, Simon AE. Conformational changes involved in initiation of minus-strand synthesis of a virus-associated RNA. RNA (NEW YORK, N.Y.) 2006; 12:147-62. [PMID: 16301603 PMCID: PMC1370894 DOI: 10.1261/rna.2166706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Synthesis of wild-type levels of turnip crinkle virus (TCV)-associated satC complementary strands by purified, recombinant TCV RNA-dependent RNA polymerase (RdRp) in vitro was previously determined to require 3' end pairing to the large symmetrical internal loop of a phylogenetically conserved hairpin (H5) located upstream from the hairpin core promoter. However, wild-type satC transcripts, which fold into a single detectable conformation in vitro as determined by temperature-gradient gel electrophoresis, do not contain either the phylogenetically inferred H5 structure or the 3' end/H5 interaction. This implies that conformational changes are required to produce the phylogenetically inferred H5 structure for its pairing with the 3' end, which takes place subsequent to the initial conformation assumed by the RNA and prior to transcription initiation. The DR region, located 140 nucleotides upstream from the 3' end and previously determined to be important for transcription in vitro and replication in vivo, is proposed to have a role in the conformational switch, since stabilizing the phylogenetically inferred H5 structure decreases the negative effects of a DR mutation in vivo. In addition, high levels of aberrant transcription correlate with a specific conformational change in the Pr while maintaining the same conformation of the 3' terminus. These results suggest that a series of events that promote conformational changes is needed to expose the 3' terminus to the RdRp for accurate synthesis of wild-type levels of complementary strands in vitro.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
15
|
Na H, White KA. Structure and prevalence of replication silencer-3' terminus RNA interactions in Tombusviridae. Virology 2005; 345:305-16. [PMID: 16298411 DOI: 10.1016/j.virol.2005.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/12/2005] [Accepted: 09/07/2005] [Indexed: 11/25/2022]
Abstract
Tombusviridae is a large positive-strand RNA virus family. Tomato bushy stunt virus (TBSV), the type virus of this family, has a genome ending with AGCCC(-OH), termed the 3'-complementary silencer sequence (3'CSS). The 3'CSS is able to base pair with a complementary internally-located sequence, 5'GGGCU, called the replication silencer element (RSE). In TBSV, previous compensatory mutational analysis of the RSE-3'CSS interaction showed it to be functionally important for viral RNA synthesis both in vitro and in vivo. However, these investigations also revealed that the RSE and 3'CSS are very sensitive to nucleotide changes, even when base pairing potential between the two elements is maintained. Consequently, an alternative investigative approach was used in this study where the wild-type sequences of these elements were preserved and their surrounding contexts were modified. Results from these analyses, using a TBSV DI RNA, revealed important new structural requirements necessary for the RSE and 3'CSS to operate in vivo. Collectively, the data suggest that accessibility of the elements and their proximity to adjoining stem structures are important functional parameters. Based on these findings, a working structural model for the TBSV RSE-3'CSS interaction is proposed that involves coaxial stacking of adjacent helices at either end of the RSE-3'CSS interaction. Components of this structural model are extendable to potential RSE-3'CSS interactions that were identified throughout Tombusviridae by comparative sequence analysis. This survey also revealed a significant level of diversity and modularity with respect to RSEs, 3'CSSs and their structural contexts and, moreover, suggests that RSE-3'CSS interactions are prevalent in Tombusviridae and related viruses.
Collapse
Affiliation(s)
- Hong Na
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
16
|
Zhang J, Simon AE. Importance of sequence and structural elements within a viral replication repressor. Virology 2005; 333:301-15. [PMID: 15721364 DOI: 10.1016/j.virol.2004.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/17/2004] [Accepted: 12/09/2004] [Indexed: 11/21/2022]
Abstract
Efficient replication of plus-strand RNA viruses requires a 3' proximal core promoter and an increasingly diverse inventory of supporting elements such as enhancers, repressors, and 5' terminal sequences. While core promoters have been well characterized, much less is known about structure-functional relationships of these supporting elements. Members of the genus Carmovirus family Tombusviridae contain a hairpin (H5) proximal to the core promoter that functions as a repressor of minus-strand synthesis in vitro through an interaction between its large symmetrical internal loop (LSL) and 3' terminal bases. Turnip crinkle virus satellite RNA satC with the H5 of carmovirus Japanese iris necrosis virus or Cardamine chlorotic fleck virus (CCFV) did not accumulate to detectable levels even though 3' end base-pairing would be maintained. Replacement of portions of the satC H5 with analogous portions from CCFV revealed that the cognate LSL and lower stem were of greater importance for satC accumulation than the upper stem. In vivo selex of the H5 upper stem and terminal GNRA tetraloop revealed considerable plasticity in the upper stem, including the presence of three- to six-base terminal loops, allowed for H5 function. In vivo selex of the lower stem revealed that both a stable stem and specific base pairs contributed to satC fitness. Surprisingly, mutations in H5 had a disproportionate effect on plus-strand accumulation that was unrelated to the stability of the mutant plus-strands. In addition, fitness to accumulate in plants did not always correlate with enhanced ability to accumulate in protoplasts, suggesting that H5 may be multifunctional.
Collapse
Affiliation(s)
- Jiuchun Zhang
- Department of Cell Biology and Molecular Genetics, 1109 Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
17
|
Sun X, Zhang G, Simon AE. Short internal sequences involved in replication and virion accumulation in a subviral RNA of turnip crinkle virus. J Virol 2005; 79:512-24. [PMID: 15596844 PMCID: PMC538713 DOI: 10.1128/jvi.79.1.512-524.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
cis-acting sequences and structural elements in untranslated regions of viral genomes allow viral RNA-dependent RNA polymerases to correctly initiate and transcribe asymmetric levels of plus and minus strands during replication of plus-sense RNA viruses. Such elements include promoters, enhancers, and transcriptional repressors that may require interactions with distal RNA sequences for function. We previously determined that a non-sequence-specific hairpin (M1H) in the interior of a subviral RNA (satC) associated with Turnip crinkle virus is required for fitness and that its function might be to bridge flanking sequences (X. Sun and A. E. Simon, J. Virol. 77:7880-7889, 2003). To establish the importance of the flanking sequences in replication and satC-specific virion repression, segments on both sides of M1H were randomized and subjected to in vivo functional selection (in vivo SELEX). Analyses of winning (functional) sequences revealed three different conserved elements within the segments that could be specifically assigned roles in replication, virion repression, or both. One of these elements was also implicated in the molecular switch that releases the 3' end from its interaction with the repressor hairpin H5, which is possibly involved in controlling the level of minus-strand synthesis.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
18
|
Zhang J, Stuntz RM, Simon AE. Analysis of a viral replication repressor: sequence requirements for a large symmetrical internal loop. Virology 2004; 326:90-102. [PMID: 15262498 DOI: 10.1016/j.virol.2004.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 05/07/2004] [Indexed: 11/19/2022]
Abstract
Nearly all members of the Carmovirus genus contain a structurally conserved 3' proximal hairpin (H5) with a large internal symmetrical loop (LSL). H5 has been identified as a repressor of minus-strand synthesis in a satellite RNA (satC), which shares partial sequence similarity with its helper virus Turnip crinkle virus (TCV). Repression was due to sequestration of the 3' end mediated by base pairing between 3' end sequence and the 3' side of the LSL (G. Zhang, J. Zhang and A. E. Simon, J. Virol., in press). Single site mutational analysis and in vivo genetic selection (SELEX) of the 14 base satC H5 LSL indicated specific sequences in the middle and upper regions on both sides of the LSL are necessary for robust satC accumulation in plants and protoplasts. Fitness of wild-type satC and satC LSL mutants to accumulate in plants, however, did not necessarily correlate with the ability of these RNAs to replicate in protoplasts. This suggests that the LSL might be involved in processes in addition to repression of minus-strand synthesis.
Collapse
Affiliation(s)
- Jiuchun Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|