1
|
Huang J, Zhang X, Nie X, Zhang X, Wang Y, Huang L, Geng X, Li D, Zhang L, Gao G, Gao P. Assembly and activation of EBV latent membrane protein 1. Cell 2024; 187:4996-5009.e14. [PMID: 38996527 DOI: 10.1016/j.cell.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Latent membrane protein 1 (LMP1) is the primary oncoprotein of Epstein-Barr virus (EBV) and plays versatile roles in the EBV life cycle and pathogenesis. Despite decades of extensive research, the molecular basis for LMP1 folding, assembly, and activation remains unclear. Here, we report cryo-electron microscopy structures of LMP1 in two unexpected assemblies: a symmetric homodimer and a higher-order filamentous oligomer. LMP1 adopts a non-canonical and unpredicted fold that supports the formation of a stable homodimer through tight and antiparallel intermolecular packing. LMP1 dimers further assemble side-by-side into higher-order filamentous oligomers, thereby allowing the accumulation and specific organization of the flexible cytoplasmic tails for efficient recruitment of downstream factors. Super-resolution microscopy and cellular functional assays demonstrate that mutations at both dimeric and oligomeric interfaces disrupt LMP1 higher-order assembly and block multiple LMP1-mediated signaling pathways. Our research provides a framework for understanding the mechanism of LMP1 and for developing potential therapies targeting EBV-associated diseases.
Collapse
Affiliation(s)
- Jiafeng Huang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolin Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Nie
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuyuan Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlong Huang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohan Geng
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
2
|
Halabi MA, Jaccard A, Moulinas R, Bahri R, Al Mouhammad H, Mammari N, Feuillard J, Ranger-Rogez S. Clonal deleted latent membrane protein 1 variants of Epstein-Barr virus are predominant in European extranodal NK/T lymphomas and disappear during successful treatment. Int J Cancer 2016; 139:793-802. [PMID: 27061907 DOI: 10.1002/ijc.30128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 12/30/2022]
Abstract
Extranodal natural killer/T-cell lymphomas (NK/TL), rare in Europe, are Epstein-Barr virus (EBV) associated lymphomas with poor outcomes. Here, we determined the virus type and analyzed the EBV latent membrane protein-1 (LMP1) gene sequence in NK/TL from French patients. Six clones of viral LMP1 were sequenced by Sanger technology in blood from 13 patients before treatment with an l-asparaginase based regimen and, for 8 of them, throughout the treatment. Blood LMP1 sequences from 21 patients without any known malignancy were tested as controls. EBV Type A was identified for 11/13 patients and for all controls. Before treatment, a clonal LMP1 gene containing a 30 bp deletion (del30) was found in 46.1% of NK/TL and only in 4.8% of controls. Treatment was less effective in these patients who died more rapidly than the others. Patients with a deleted strain evolving toward a wild-type strain during treatment reached complete remission. The LMP1 gene was sequenced by highly sensitive next-generation sequencing technology in five NK/TL nasopharyngeal biopsies, two of them originating from the previous patients. Del30 was present in 100% of the biopsies; two viruses at least coexisted in three biopsies. These results suggest that del30 may be associated with poor prognosis NK/TL and that strain evolution could be used as a potential marker to monitor treatment.
Collapse
Affiliation(s)
| | - Arnaud Jaccard
- Department of Clinical Hematology, University Hospital Dupuytren, Limoges, France
| | | | - Racha Bahri
- Department of Microbiology, Faculty of Pharmacy, Limoges, France
| | | | - Nour Mammari
- Department of Microbiology, Faculty of Pharmacy, Limoges, France
| | - Jean Feuillard
- Department of Biological Hematology, University Hospital Dupuytren, Limoges, France
| | - Sylvie Ranger-Rogez
- Department of Microbiology, Faculty of Pharmacy, Limoges, France.,Department of Virology, University Hospital Dupuytren, CBRS, Limoges, France
| |
Collapse
|
3
|
Ajiro M, Zheng ZM. Oncogenes and RNA splicing of human tumor viruses. Emerg Microbes Infect 2014; 3:e63. [PMID: 26038756 PMCID: PMC4185361 DOI: 10.1038/emi.2014.62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/29/2014] [Accepted: 06/29/2014] [Indexed: 02/07/2023]
Abstract
Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein–Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, MD 21702, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, MD 21702, USA
| |
Collapse
|
4
|
Ontiveros EP, Halwani A, Stunz LL, Kamberos N, Olivier AK, Janz S, Bishop GA. A new model of LMP1-MYC interaction in B cell lymphoma. Leuk Lymphoma 2014; 55:2917-23. [PMID: 24605938 DOI: 10.3109/10428194.2014.900762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epstein-Barr virus (EBV) is associated with aggressive B cell lymphomas (BCLs). Latent membrane protein 1 (LMP1) of EBV is an oncogenic protein required for EBV B cell transformation. However, LMP1 is a weak oncogene in mice. Mice expressing Myc inserted 5' of the Eμ enhancer (iMyc(Eμ)), mimicking the t(8;14) translocation of endemic Burkitt lymphoma, develop delayed onset BCLs. To investigate potential cooperation between LMP1 and oncogenic MYC, we produced mice expressing the LMP1 signaling domain via a hybrid CD40-LMP1 transgene (mCD40-LMP1), and the dysregulated MYC protein of aggressive EBV+ BCLs. mCD40-LMP1/iMyc(Eμ) mice trended toward earlier BCL onset. BCLs from mCD40-LMP1/iMyc(Eμ) mice expressed LMP1 and were transplantable into immunocompetent recipients. iMyc(Eμ) and mCD40-LMP1/iMyc(Eμ) mice developed BCLs with similar immunophenotypes. LMP1 signaling was intact in BCLs as shown by inducible interleukin-6. Additionally, LMP1 signaling to tumor cells induced the two isoforms of Pim1, a constitutively active prosurvival kinase implicated in lymphomagenesis.
Collapse
|
5
|
Zheng ZM. Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci 2010; 6:730-55. [PMID: 21152115 PMCID: PMC2999850 DOI: 10.7150/ijbs.6.730] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/27/2010] [Indexed: 12/13/2022] Open
Abstract
Viral oncogenes are responsible for oncogenesis resulting from persistent virus infection. Although different human tumor viruses express different viral oncogenes and induce different tumors, their oncoproteins often target similar sets of cellular tumor suppressors or signal pathways to immortalize and/or transform infected cells. Expression of the viral E6 and E7 oncogenes in papillomavirus, E1A and E1B oncogenes in adenovirus, large T and small t antigen in polyomavirus, and Tax oncogene in HTLV-1 are regulated by alternative RNA splicing. However, this regulation is only partially understood. DNA tumor viruses also encode noncoding RNAs, including viral microRNAs, that disturb normal cell functions. Among the determined viral microRNA precursors, EBV encodes 25 from two major clusters (BART and BHRF1), KSHV encodes 12 from a latent region, human polyomavirus MCV produce only one microRNA from the late region antisense to early transcripts, but HPVs appears to produce no viral microRNAs.
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- Tumor Virus RNA Biology Laboratory, HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Zinc coordination is required for and regulates transcription activation by Epstein-Barr nuclear antigen 1. PLoS Pathog 2009; 5:e1000469. [PMID: 19521517 PMCID: PMC2690687 DOI: 10.1371/journal.ppat.1000469] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 05/12/2009] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential. Epstein-Barr virus (EBV) infects human B-cells and immortalizes them. Immortalization results in diseases that range from infectious mononucleosis to malignancies such as lymphomas. During immortalization, EBV expresses a small number of viral genes that modulate cellular proliferation and differentiation. One of the genes expressed by EBV, Epstein-Barr nuclear antigen 1 (EBNA1), activates the expression of the other viral genes required for immortalization. In this report, we have explored the mechanism by which EBNA1 activates gene expression. We have determined that EBNA1 uses the micronutrient zinc to self-associate, and that self-association is necessary for it to activate gene expression. Further, we have determined that environmental conditions such as oxygen tension and oxidative stress modulate EBNA1's capacity to self-associate, and therefore to activate gene expression. The gene expression profile and proliferative phenotype of EBV-infected cells is known to vary in differing environmental niches in the human body, such as lymph nodes and in peripheral circulation. We interpret our results to postulate that these differences arise as a consequence of varying oxygen tension in these microenvironments on EBNA1's capacity to activate viral gene expression. Our findings can be exploited to devise novel therapeutics against EBV-associated diseases that target EBNA1 through oxidative stress.
Collapse
|
7
|
Terrin L, Dolcetti R, Corradini I, Indraccolo S, Dal Col J, Bertorelle R, Bonaldi L, Esposito G, De Rossi A. hTERT inhibits the Epstein-Barr virus lytic cycle and promotes the proliferation of primary B lymphocytes: implications for EBV-driven lymphomagenesis. Int J Cancer 2007; 121:576-87. [PMID: 17417773 DOI: 10.1002/ijc.22661] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transformation of primary B lymphocytes by Epstein-Barr Virus (EBV) requires the establishment of a latent infection, the expression of several latent viral proteins and a sustained telomerase activity. We investigated the interplay between the activation of human telomerase reverse transcriptase (hTERT), the catalytic rate-limiting component of the telomerase complex, and the expression of latent/lytic EBV genes during the establishment of a stably latent EBV infection of normal B lymphocytes. Cell cultures at early passages after EBV infection greatly differed in their timing of hTERT expression and telomerase activation. Induction of hTERT was dependent on the balance between latent and lytic EBV gene expression, being positively associated with a high ratio of latent/lytic isoforms of latent membrane protein 1, and negatively associated with the expression of BZLF1 gene, the main activator of the viral lytic cycle. In turn, hTERT expression was followed by a decrease in EBV lytic gene expression and virus production. Ectopic expression of hTERT in BZLF1-positive B cell cultures resulted in BZLF1 down-regulation, increased resistance to lytic cycle induction, and enhanced in vitro growth properties, whereas hTERT inhibition by siRNA triggered the activation of the EBV lytic cycle. These findings indicate that hTERT contributes by multiple mechanisms to the EBV-driven transformation of B lymphocytes and suggest that hTERT may constitute a therapeutic target for EBV-associated B cell lymphomas.
Collapse
Affiliation(s)
- Liliana Terrin
- Department of Oncology and Surgical Sciences, Section of Oncology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li L, Li Z, Zhou S, Xiao L, Guo L, Tao Y, Tang M, Shi Y, Li W, Yi W, Cao Y. Ubiquitination of MDM2 modulated by Epstein-Barr virus encoded latent membrane protein 1. Virus Res 2007; 130:275-80. [PMID: 17576019 DOI: 10.1016/j.virusres.2007.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/12/2007] [Accepted: 05/12/2007] [Indexed: 10/23/2022]
Abstract
Epstein-Barr virus encoded latent membrane protein 1 (LMP1), an oncogenic protein, plays an important role in the carcinogenesis of nasopharyngeal carcinoma. The MDM2 gene is a cellular pro-oncogene that is abnormally up-regulated in human tumors. MDM2 is overexpressed in nasopharyngeal carcinoma, which is associated with the presence of EBV and cervical lymph node metastasis. Because MDM2 is capable of self-ubiquitination, and the ubiquitin proteasome pathway-dependent degradation is an important mechanism for regulating MDM2 levels in cells. Here we show that LMP1 augment MDM2 protein expression in dose-dependent level, and also lead to a drastic accumulation of ubiquitinated MDM2 species, this effect is associated with the stability of MDM2 modulated by LMP1. This is the first time to explain LMP1-regulated MDM2 through a post-ubiquitination mechanism.
Collapse
Affiliation(s)
- Lili Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pandya J, Walling DM. Oncogenic activity of Epstein-Barr virus latent membrane protein 1 (LMP-1) is down-regulated by lytic LMP-1. J Virol 2006; 80:8038-46. [PMID: 16873260 PMCID: PMC1563807 DOI: 10.1128/jvi.00180-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) is an oncogenic human herpesvirus. EBV latent membrane protein 1 (LMP-1) is a viral oncogene that manifests its oncogenic phenotype through activation of cellular signaling pathways involved in cell growth, survival, differentiation, and transformation. Lytic LMP-1 (lyLMP-1) is a related EBV gene without oncogenic properties. The lyLMP-1 gene is found in 60% of the EBV strains circulating in nature, but it is not found in EBV strains associated with nasopharyngeal carcinoma. We recently demonstrated that lyLMP-1 down-regulates the half-life of LMP-1 in epithelial cells. Therefore in this study, we tested the hypothesis that lyLMP-1 concomitantly down-regulates LMP-1 oncogenic activity. The results demonstrated that lyLMP-1 inhibits LMP-1-mediated intracellular signaling activation, epithelial cell growth and survival, and fibroblast cell transformation in a dose-dependent manner. Lytic LMP-1 manifested this effect through the promotion of LMP-1 degradation and a reduction in the expressed quantity of LMP-1. Thus, lyLMP-1 functions as a posttranslational negative regulator of LMP-1 oncogenesis. These results support a model of EBV-associated epithelial oncogenesis in which lyLMP-1 may act in vivo to reduce the risk of LMP-1-mediated transformation and is therefore subjected to negative selection in nasopharyngeal carcinoma pathogenesis.
Collapse
Affiliation(s)
- Jyotsna Pandya
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0435, USA
| | | |
Collapse
|
10
|
Nagamine M, Takahara M, Kishibe K, Nagato T, Ishii H, Bandoh N, Ogino T, Harabuchi Y. Sequence variations of Epstein-Barr virus LMP1 gene in nasal NK/T-cell lymphoma. Virus Genes 2006; 34:47-54. [PMID: 16917737 DOI: 10.1007/s11262-006-0008-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 05/09/2006] [Indexed: 12/11/2022]
Abstract
Nasal natural killer (NK)/T-cell lymphoma is a peculiar lymphoma with an unique immunophenotype. Etiologically, the authors previously first demonstrated the presence of Epstein-Barr virus (EBV) genomes and their products in this lymphoma (Lancet 1990; 335). It is suggested that some of sequence variations such as a 30-bp deletion and multiple base substitutions and as amino acid changes at HLA-A2 restricted CTL epitopes were associated with an increase in tumorigenicity and with a decrease in immune recognition. In this study, we determined full-length of LMP1 sequence isolated from 7 patients with nasal NK/T-cell lymphoma using polymerase chain reaction (PCR) method and compared the sequences with those referred to previous reports. In the carboxyl-terminal site, all 7 patients showed 4 copies of the 11 amino acids repeat (codon 254-302) and 30-bp deletion corresponding to codon 343-352 of the B95-8 strain. Within the NF-kB-activating domains, all 7 patients showed amino acid changes at codon 189 (Gln to Pro), 192 (Ser to Thr) and 212 (Gly to Ser) on either site of the PXQXT (codon 204-208) motif. In the major HLA-A2 restricted T-cell epitope sequence YLLEMLWRL (codon 125-133), all 7 patients showed amino acid changes at codon 126 (Leu to Phe) and 129 (Met to Ile). In the epitopes ALLVLYSFA (codon 51-59), VLFIFGCLL (codon 110-118) and WLLLFLAIL (codon 173-181), several patients showed novel amino acid changes at codon 59 (Ala to Gly), 110 (Val to Leu) and 174 (Leu to Ile), respectively. Although it is still not clear what the most specific and biologic variation of LMP1 gene in nasal NK/T-cell lymphoma is, the sequence data may be valuable on the study for pathogenesis of nasal NK/T-cell lymphoma and EBV molecular epidemiology.
Collapse
Affiliation(s)
- Masayoshi Nagamine
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka E2-1-1-1, Asahikawa, 078-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|