1
|
Liu X, Wang H, Yuan M, Zhang T, Wang Q, Chen N, Zhou X, He M, Ji Z, Shen H. m 6A-modified RIOK3 activated the NF-κB-signaling pathway by CDC42, promoting the replication and proliferation of enterovirus. Int J Biol Macromol 2025; 305:140988. [PMID: 39961559 DOI: 10.1016/j.ijbiomac.2025.140988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Enterovirus infections are implicated in the pathogenesis of inflammatory diseases, such as viral myocarditis, meningitis, and pancreatitis. These infections activate innate and inflammatory immune responses upon viral entry into host cells. However, the precise mechanisms through which enteroviruses induce inflammation to facilitate viral replication remain unclear. N(6)-methyladenosine (m6A), one of the most abundant internal modifications on eukaryotic mRNAs, is regulated by METTL3, a key "writer" enzyme in the m6A methyltransferase complex. This study identifies RIO kinase 3 (RIOK3), a serine-threonine protein kinase, involved in innate immunity, inflammation, and cell cycle regulation, as a critical factor in Coxsackievirus B3 (CVB3) infection. CVB3 infection significantly increases RIOK3 expression both in vivo and in vitro, accompanied by elevated m6A modifications on RIOK3 mRNA. METTL3-mediated m6A modification enhances RIOK3 transcription, which in turn downregulates CDC42, a small GTPase of the Rho subfamily, that regulates key cellular processes, including antiviral signaling. This suppression of CDC42 promotes CVB3 replication. Additionally, RIOK3 and CDC42 modulate the NF-κB signaling pathway, a pivotal regulator of inflammatory and immune responses during infection. These findings reveal that m6A-modified RIOK3 promotes enterovirus replication by activating the NF-κB signaling pathway via CDC42 suppression, providing novel insights into the molecular mechanisms of enterovirus pathogenesis.
Collapse
Affiliation(s)
- Xiaolan Liu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China; Department of Clinical Laboratory, Norinco General Hospital, Xi'an, Shaanxi 710065, PR China
| | - Hua Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengran Yuan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Tianyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Qimeng Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Nuo Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoxiang Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Min He
- Nanjing Center for Disease Control and Prevention, Nanjing 210003, PR China
| | - Zengjun Ji
- Department of Laboratory Medicine, Taizhou Second People's Hospital, Taizhou 225599, PR China.
| | - Hongxing Shen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Fan M, Luo Y, Zhang B, Wang J, Chen T, Liu B, Sun Y, Nan Y, Hiscox JA, Zhao Q, Zhou EM. Cell Division Control Protein 42 Interacts With Hepatitis E Virus Capsid Protein and Participates in Hepatitis E Virus Infection. Front Microbiol 2021; 12:775083. [PMID: 34790187 PMCID: PMC8591454 DOI: 10.3389/fmicb.2021.775083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatitis E Virus (HEV) causes viral hepatitis in humans worldwide, while a subset of HEV species, avian HEV, causes hepatitis-splenomegaly syndrome in chickens. To date, there are few reports on the host proteins interacting with HEV and being involved in viral infection. Previous pull-down assay combining mass spectrometry indicated that cell division control protein 42 (CDC42), a member belonging to the Rho GTPase family, was pulled down by avian HEV capsid protein. We confirmed the direct interaction between CDC42 and avian and mammalian HEV capsid proteins. The interaction can increase the amount of active guanosine triphosphate binding CDC42 state (GTP-CDC42). Subsequently, we determined that the expression and activity of CDC42 were positively correlated with HEV infection in the host cells. Using the different inhibitors of CDC42 downstream signaling pathways, we found that CDC42-MRCK (a CDC42-binding kinase)-non-myosin IIA (NMIIA) pathway is involved in naked avian and mammalian HEV infection, CDC42-associated p21-activated kinase 1 (PAK1)-NMIIA/Cofilin pathway is involved in quasi-enveloped mammalian HEV infection and CDC42-neural Wiskott-Aldrich syndrome protein-actin-polymerizing protein Arp2/3 pathway (CDC42-(N-)WASP-Arp2/3) pathway participates in naked and quasi-enveloped mammalian HEV infection. Collectively, these results demonstrated for the first time that HEV capsid protein can directly bind to CDC42, and non- and quasi-enveloped HEV use different CDC42 downstream signaling pathways to participate in viral infection. The study provided some new insights to understand the life cycle of HEV in host cells and a new target of drug design for combating HEV infection.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Beibei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jiaxi Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tianxiang Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Molecular Mechanisms That Define Redox Balance Function in Pathogen-Host Interactions-Is There a Role for Dietary Bioactive Polyphenols? Int J Mol Sci 2019; 20:ijms20246222. [PMID: 31835548 PMCID: PMC6940965 DOI: 10.3390/ijms20246222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
To ensure a functional immune system, the mammalian host must detect and respond to the presence of pathogenic bacteria during infection. This is accomplished in part by generating reactive oxygen species (ROS) that target invading bacteria; a process that is facilitated by NADPH oxidase upregulation. Thus, bacterial pathogens must overcome the oxidative burst produced by the host innate immune cells in order to survive and proliferate. In this way, pathogenic bacteria develop virulence, which is related to the affinity to secrete effector proteins against host ROS in order to facilitate microbial survival in the host cell. These effectors scavenge the host generated ROS directly, or alternatively, manipulate host cell signaling mechanisms designed to benefit pathogen survival. The redox-balance of the host is important for the regulation of cell signaling activities that include mitogen-activated protein kinase (MAPK), p21-activated kinase (PAK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor κB (NF-κB) pathways. An understanding of the function of pathogenic effectors to divert host cell signaling is important to ascertain the mechanisms underlying pathogen virulence and the eventual host–pathogen relationship. Herein, we examine the effectors produced by the microbial secretion system, placing emphasis on how they target molecular signaling mechanisms involved in a host immune response. Moreover, we discuss the potential impact of bioactive polyphenols in modulating these molecular interactions that will ultimately influence pathogen virulence.
Collapse
|
4
|
Singh V, Davidson A, Hume PJ, Koronakis V. Pathogenic Escherichia coli Hijacks GTPase-Activated p21-Activated Kinase for Actin Pedestal Formation. mBio 2019; 10:e01876-19. [PMID: 31431554 PMCID: PMC6703428 DOI: 10.1128/mbio.01876-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli (EPEC and EHEC, respectively) are extracellular pathogens that reorganize the host cell cytoskeleton to form "actin pedestals" beneath the tightly adherent bacteria, a critical step in pathogenesis. EPEC and EHEC inject effector proteins that manipulate host cell signaling cascades to trigger pedestal assembly. One such effector, EspG, has been reported to bind and activate p21-activated kinase (PAK), a key cytoskeletal regulator, but the function of this interaction and whether it impacts pedestal assembly are unknown. Here, we demonstrate that deletion of espG significantly impairs pedestal formation and attachment by both EPEC and EHEC. This role of EspG is shown to be dependent on its interaction with PAK. Unexpectedly, EspG was able to subvert PAK only in the presence of Rho family small GTPases, which function to both concentrate PAK at the membrane and stimulate PAK activation. Our findings reveal a novel mechanism by which EspG hijacks PAK and sustains its active state to drive bacterial attachment to host cells.IMPORTANCE Enteropathogenic E. coli and enterohemorrhagic E. coli (EPEC and EHEC, respectively) remain a significant global health problem. Both EPEC and EHEC initiate infection by attaching to cells in the host intestine, triggering the formation of actin-rich "pedestal" structures directly beneath the adherent pathogen. These bacteria inject their own receptor into host cells, which upon binding to a protein on the pathogen surface triggers pedestal formation. Multiple other proteins are also delivered into the cells of the host intestine, but how they contribute to disease is often less clear. Here, we show how one of these injected proteins, EspG, hijacks a host signaling pathway for pedestal production. This provides new insights into this essential early stage in EPEC and EHEC disease.
Collapse
Affiliation(s)
- Vikash Singh
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony Davidson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Hume
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Lamas-Murua M, Stolp B, Kaw S, Thoma J, Tsopoulidis N, Trautz B, Ambiel I, Reif T, Arora S, Imle A, Tibroni N, Wu J, Cui G, Stein JV, Tanaka M, Lyck R, Fackler OT. HIV-1 Nef Disrupts CD4 + T Lymphocyte Polarity, Extravasation, and Homing to Lymph Nodes via Its Nef-Associated Kinase Complex Interface. THE JOURNAL OF IMMUNOLOGY 2018; 201:2731-2743. [PMID: 30257886 DOI: 10.4049/jimmunol.1701420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 08/21/2018] [Indexed: 12/31/2022]
Abstract
HIV-1 Nef is a multifunctional protein that optimizes virus spread and promotes immune evasion of infected cells to accelerate disease progression in AIDS patients. As one of its activities, Nef reduces the motility of infected CD4+ T lymphocytes in confined space. In vivo, Nef restricts T lymphocyte homing to lymph nodes as it reduces the ability for extravasation at the diapedesis step. Effects of Nef on T lymphocyte motility are typically mediated by its ability to reduce actin remodeling. However, interference with diapedesis does not depend on residues in Nef required for inhibition of host cell actin dynamics. In search for an alternative mechanism by which Nef could alter T lymphocyte extravasation, we noted that the viral protein interferes with the polarization of primary human CD4+ T lymphocytes upon infection with HIV-1. Expression of Nef alone is sufficient to disrupt T cell polarization, and this effect is conserved among lentiviral Nef proteins. Nef acts by arresting the oscillation of CD4+ T cells between polarized and nonpolarized morphologies. Mapping studies identified the binding site for the Nef-associated kinase complex (NAKC) as critical determinant of this Nef activity and a NAKC-binding-deficient Nef variant fails to impair CD4+ T lymphocyte extravasation and homing to lymph nodes. These results thus imply the disruption of T lymphocyte polarity via its NAKC binding site as a novel mechanism by which lentiviral Nef proteins alter T lymphocyte migration in vivo.
Collapse
Affiliation(s)
- Miguel Lamas-Murua
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sheetal Kaw
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, University of Heidelberg, 69120 Heidelberg, Germany
| | - Nikolaos Tsopoulidis
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Birthe Trautz
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ina Ambiel
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tatjana Reif
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sakshi Arora
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Andrea Imle
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jingxia Wu
- T Cell Metabolism (D140), German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Guoliang Cui
- T Cell Metabolism (D140), German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; and
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, University of Heidelberg, 69120 Heidelberg, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland; and
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
6
|
Ospina Stella A, Turville S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018; 10:v10020063. [PMID: 29401736 PMCID: PMC5850370 DOI: 10.3390/v10020063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.
Collapse
Affiliation(s)
- Alberto Ospina Stella
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| | - Stuart Turville
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| |
Collapse
|
7
|
John Von Freyend S, Kwok-Schuelein T, Netter HJ, Haqshenas G, Semblat JP, Doerig C. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens. Pathogens 2017; 6:pathogens6020017. [PMID: 28430160 PMCID: PMC5488651 DOI: 10.3390/pathogens6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.
Collapse
Affiliation(s)
- Simona John Von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Terry Kwok-Schuelein
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Hans J Netter
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia.
| | - Gholamreza Haqshenas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
8
|
Association with PAK2 Enables Functional Interactions of Lentiviral Nef Proteins with the Exocyst Complex. mBio 2015; 6:e01309-15. [PMID: 26350970 PMCID: PMC4600113 DOI: 10.1128/mbio.01309-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) Nef enhances virus replication and contributes to immune evasion in vivo, but the underlying molecular mechanisms remain incompletely defined. Nef interferes with host cell actin dynamics to restrict T lymphocyte responses to chemokine stimulation and T cell receptor engagement. This relies on the assembly of a labile multiprotein complex including the host kinase PAK2 that Nef usurps to phosphorylate and inactivate the actin-severing factor cofilin. Components of the exocyst complex (EXOC), an octameric protein complex involved in vesicular transport and actin remodeling, were recently reported to interact with Nef via the same molecular surface that mediates PAK2 association. Exploring the functional relevance of EXOC in Nef-PAK2 complex assembly/function, we found Nef-EXOC interactions to be specifically mediated by the PAK2 interface of Nef, to occur in infected human T lymphocytes, and to be conserved among lentiviral Nef proteins. In turn, EXOC was dispensable for direct downstream effector functions of Nef-associated PAK2. Surprisingly, PAK2 was essential for Nef-EXOC association, which required a functional Rac1/Cdc42 binding site but not the catalytic activity of PAK2. EXOC was dispensable for Nef functions in vesicular transport but critical for inhibition of actin remodeling and proximal signaling upon T cell receptor engagement. Thus, Nef exploits PAK2 in a stepwise mechanism in which its kinase activity cooperates with an adaptor function for EXOC to inhibit host cell actin dynamics. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) Nef contributes to AIDS pathogenesis, but the underlying molecular mechanisms remain incompletely understood. An important aspect of Nef function is to facilitate virus replication by disrupting T lymphocyte actin dynamics in response to stimulation via its association with the host cell kinase PAK2. We report here that the molecular surface of Nef for PAK2 association also mediates interaction of Nef with EXOC and establish that PAK2 provides an essential adaptor function for the subsequent formation of Nef-EXOC complexes. PAK2 and EXOC specifically cooperate in the inhibition of actin dynamics and proximal signaling induced by T cell receptor engagement by Nef. These results establish EXOC as a functionally relevant Nef interaction partner, emphasize the suitability of the PAK2 interaction surface for future therapeutic interference with Nef function, and show that such strategies need to target activity-independent PAK2 functions.
Collapse
|
9
|
Gustin JK, Bai Y, Moses AV, Douglas JL. Ebola Virus Glycoprotein Promotes Enhanced Viral Egress by Preventing Ebola VP40 From Associating With the Host Restriction Factor BST2/Tetherin. J Infect Dis 2015; 212 Suppl 2:S181-90. [PMID: 25821226 DOI: 10.1093/infdis/jiv125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND BST2/tetherin is an innate immune molecule with the unique ability to restrict the egress of human immunodeficiency virus (HIV) and other enveloped viruses, including Ebola virus (EBOV). Coincident with this discovery was the finding that the HIV Vpu protein down-regulates BST2 from the cell surface, thereby promoting viral release. Evidence suggests that the EBOV envelope glycoprotein (GP) also counteracts BST2, although the mechanism is unclear. RESULTS We find that total levels of BST2 remain unchanged in the presence of GP, whereas surface BST2 is significantly reduced. GP is known to sterically mask surface receptors via its mucin domain. Our evaluation of mutant GP molecules indicate that masking of BST2 by GP is probably responsible for the apparent surface BST2 down-regulation; however, this masking does not explain the observed virus-like particle egress enhancement. We discovered that VP40 coimmunoprecipitates and colocalizes with BST2 in the absence but not in the presence of GP. CONCLUSIONS These results suggest that GP may overcome the BST2 restriction by blocking an interaction between VP40 and BST2. Furthermore, we have observed that GP may enhance BST2 incorporation into virus-like particles. Understanding this novel EBOV immune evasion strategy will provide valuable insights into the pathogenicity of this deadly pathogen.
Collapse
Affiliation(s)
- Jean K Gustin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton
| | - Ying Bai
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton
| | - Ashlee V Moses
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton
| | - Janet L Douglas
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton
| |
Collapse
|
10
|
Percario ZA, Ali M, Mangino G, Affabris E. Nef, the shuttling molecular adaptor of HIV, influences the cytokine network. Cytokine Growth Factor Rev 2014; 26:159-73. [PMID: 25529283 DOI: 10.1016/j.cytogfr.2014.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 12/17/2022]
Abstract
Several viruses manipulate host innate immune responses to avoid immune recognition and improve viral replication and spreading. The viral protein Nef of Human Immunodeficiency Virus is mainly involved in this "hijacking" activity and is a well established virulence factor. In the last few years there have been remarkable advances in outlining a defined framework of its functions. In particular Nef appears to be a shuttling molecular adaptor able to exert its effects both on infected and non infected bystander cell. In addition it is emerging fact that it has an important impact on the chemo-cytokine network. Nef protein represents an interesting new target to develop therapeutic drugs for treatment of seropositive patients. In this review we have tried to provide a unifying view of the multiple functions of this viral protein on the basis of recently available experimental data.
Collapse
Affiliation(s)
| | - Muhammad Ali
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
| | | |
Collapse
|
11
|
Abstract
Eukaryotic, prokaryotic and viral pathogens are known to interfere with signaling pathways of their host to promote their own survival and proliferation. Here, we present selected examples of modulation of PAK activity in human cells by both intracellular and extracellular pathogens, focusing on one eukaryotic pathogen, the human malaria parasite Plasmodium falciparum, two Gram-negative bacteria (Helicobacter pylori and Pseudomonas aeruginosa), and two viruses belonging to distinct groups, the lentivirus HIV and the orthomyxovirus Influenza virus A.
Collapse
|
12
|
Hashimoto M, Nasser H, Chihara T, Suzu S. Macropinocytosis and TAK1 mediate anti-inflammatory to pro-inflammatory macrophage differentiation by HIV-1 Nef. Cell Death Dis 2014; 5:e1267. [PMID: 24874739 PMCID: PMC4047869 DOI: 10.1038/cddis.2014.233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/23/2014] [Accepted: 03/28/2014] [Indexed: 01/02/2023]
Abstract
Macrophages (MΦ) are functionally classified into two types, anti-inflammatory M2 and pro-inflammatory M1. Importantly, we recently revealed that soluble HIV-1 proteins, particularly the pathogenetic protein Nef, preferentially activate M2-MΦ and drive them towards an M1-like MΦ, which might explain the sustained immune activation seen in HIV-1-infected patients. Here, we show that the preferential effect of Nef on M2-MΦ is mediated by TAK1 (TGF-β-activated kinase 1) and macropinocytosis. As with MAP kinases and NF-κB pathway, Nef markedly activated TAK1 in M-CSF-derived M2-MΦ but not in GM-CSF-derived M1-MΦ. Two Nef mutants, which were unable to activate MAP kinases and NF-κB pathway, failed to activate TAK1. Indeed, the TAK1 inhibitor 5Z-7-oxozeaenol as well as the ectopic expression of a dominant-negative mutant of TAK1 or TRAF2, an upstream molecule of TAK1, inhibited Nef-induced signaling activation and M1-like phenotypic differentiation of M2-MΦ. Meanwhile, the preferential effect of Nef on M2-MΦ correlated with the fact the Nef entered M2-MΦ more efficiently than M1-MΦ. Importantly, the macropinosome formation inhibitor EIPA completely blocked the internalization of Nef into M2-MΦ. Because the macropinocytosis activity of M2-MΦ was higher than that of M1-MΦ, our findings indicate that Nef enters M2-MΦ efficiently by exploiting their higher macropinocytosis activity and drives them towards M1-like MΦ by activating TAK1.
Collapse
Affiliation(s)
- M Hashimoto
- Center for AIDS Research, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - H Nasser
- Center for AIDS Research, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - T Chihara
- Center for AIDS Research, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - S Suzu
- Center for AIDS Research, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Geist MM, Pan X, Bender S, Bartenschlager R, Nickel W, Fackler OT. Heterologous Src homology 4 domains support membrane anchoring and biological activity of HIV-1 Nef. J Biol Chem 2014; 289:14030-44. [PMID: 24706755 DOI: 10.1074/jbc.m114.563528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 pathogenicity factor Nef enhances viral replication by modulation of multiple host cell transport and signaling pathways. Nef associates with membranes via an N-terminal Src homology 4 (SH4) domain, and membrane association is believed to be essential for its biological functions. At which subcellular site(s) Nef exerts its different functions and how kinetics of membrane interactions contribute to its biological activity are unknown. To address how specific characteristics of Nef membrane association affect its biological properties, the SH4 domain of Nef was replaced by heterologous membrane targeting domains. The use of a panel of heterologous SH4 domains resulted in chimeric Nef proteins with distinct steady state subcellular localization, membrane association efficiency, and anterograde transport routes. Irrespective of these modifications, cardinal Nef functions affecting host cell vesicular transport and actin dynamics were fully preserved. In contrast, stable targeting of Nef to the surface of mitochondria, peroxisomes, or the Golgi apparatus, and thus prevention of plasma membrane delivery, caused potent and broad loss of Nef activity. These results support the concept that Nef adopts its active conformation in the membrane-associated state but exclude that membrane-associated Nef simply acts by recruiting soluble factors independently of its local microenvironment. Rather than its steady state subcellular localization or membrane affinity, the ability to undergo dynamic anterograde and internalization cycles appear to determine Nef function. These results reveal that functional membrane interactions of Nef underlie critical spatiotemporal regulation and suggest that delivery to distinct subcellular sites via such transport cycles provides the basis for the multifunctionality of Nef.
Collapse
Affiliation(s)
- Miriam M Geist
- From the Department of Infectious Diseases, Integrative Virology and
| | - Xiaoyu Pan
- From the Department of Infectious Diseases, Integrative Virology and
| | - Silke Bender
- Molecular Virology, University Hospital Heidelberg,69120 Heidelberg, Germany and
| | - Ralf Bartenschlager
- Molecular Virology, University Hospital Heidelberg,69120 Heidelberg, Germany and
| | - Walter Nickel
- the Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- From the Department of Infectious Diseases, Integrative Virology and
| |
Collapse
|
14
|
Arenaccio C, Cabezas SC, Federico M. HIV-1-infected cells transiently express lentiviral RNA shuttled by exosomes. Future Virol 2014. [DOI: 10.2217/fvl.13.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Aims: Exosomes are lipid bilayer vesicles of 50–100 nm released by basically all cell types. We recently reported that full-length HIV-1 RNA and lentiviral vector (LV) genome associate with exosomes through similar mechanisms. Here, we investigated the fate of lentiviral RNA shuttled by exosomes in target cells. Material & methods: Exosomes from cells transduced by a LV expressing green fluorescent protein under the control of an heterologous promoter were purified by iodixanol gradients and used to evaluate the LV expression in target cells. Results: The genome of LV incorporated in exosomes can be expressed in HIV-1-infected cells, but not in those that are uninfected, despite apparently similar levels of exosome internalization. The expression disappeared 2–3 days after challenge, and was blocked by pre-treatment with azidothymidine. Conclusion: Lentiviral genome incorporated in exosomes can be expressed in target cells having reverse transcriptase activity.
Collapse
Affiliation(s)
- Claudia Arenaccio
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Maurizio Federico
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
15
|
Cool CD, Voelkel NF, Bull T. Viral infection and pulmonary hypertension: is there an association? Expert Rev Respir Med 2014; 5:207-16. [DOI: 10.1586/ers.11.17] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res 2013; 28:656-72. [PMID: 23943274 DOI: 10.1002/ptr.5054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Over 35 years research on PAKs, RAC/CDC42(p21)-activated kinases, comes of age, and in particular PAK1 has been well known to be responsible for a variety of diseases such as cancer (mainly solid tumors), Alzheimer's disease, acquired immune deficiency syndrome and other viral/bacterial infections, inflammatory diseases (asthma and arthritis), diabetes (type 2), neurofibromatosis, tuberous sclerosis, epilepsy, depression, schizophrenia, learning disability, autism, etc. Although several distinct synthetic PAK1-blockers have been recently developed, no FDA-approved PAK1 blockers are available on the market as yet. Thus, patients suffering from these PAK1-dependent diseases have to rely on solely a variety of herbal therapeutics such as propolis and curcumin that block PAK1 without affecting normal cell growth. Furthermore, several recent studies revealed that some of these herbal therapeutics significantly extend the lifespan of nematodes (C. elegans) and fruit flies (Drosophila), and PAK1-deficient worm lives longer than the wild type. Here, I outline mainly pathological phenotypes of hyper-activated PAK1 and a list of herbal therapeutics that block PAK1, but cause no side (harmful) effect on healthy people or animals.
Collapse
|
17
|
Pan X, Geist MM, Rudolph JM, Nickel W, Fackler OT. HIV-1 Nef disrupts membrane-microdomain-associated anterograde transport for plasma membrane delivery of selected Src family kinases. Cell Microbiol 2013; 15:1605-21. [DOI: 10.1111/cmi.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyu Pan
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Miriam M. Geist
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Jochen M. Rudolph
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Walter Nickel
- Biochemistry Center; Heidelberg University; INF 328; 69120; Heidelberg; Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| |
Collapse
|
18
|
Cruz NVG, Amorim R, Oliveira FE, Speranza FAC, Costa LJ. Mutations in the nef and vif genes associated with progression to AIDS in elite controller and slow-progressor patients. J Med Virol 2013; 85:563-74. [PMID: 23417613 DOI: 10.1002/jmv.23512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 11/07/2022]
Abstract
Progression towards AIDS can vary from 5 to 10 years from the establishment of the primary infection by HIV-1 to more than 10 years in the complete absence of antiretroviral therapy. Several factors can contribute to the outcome of HIV infection, including host genetic and viral replicating characteristics. Historically, nef-deleted viral genomes have been associated with disease progression. Therefore, the lentiviral Nef protein is regarded as a progression factor. The objective of this work was to characterize the nef gene from a group of treatment naive patients infected with HIV-1 for more than 10 years. These patients were classified as long-term non-progressors, elite controller, and slow-progressors according to clinical and laboratorial data. A premature stop codon within the nef gene leading to the expression of a truncated peptide was observed on samples from the elite controller patient. For the slow-progressor patients, several degrees of deletions at the C-terminal of Nef were observed predicting a loss of function of this protein. The vif gene was characterized for these patients and a rare mutation that predicts a miss localization of the Vif protein to the nucleus of infected cells that could prevent its function as an APOBEC neutralization factor was also observed. These data indicate the importance of the HIV accessory proteins as factors that contribute to the outcome of AIDS.
Collapse
Affiliation(s)
- Nadia V G Cruz
- Department of Virology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
19
|
Bond LM, Brandstaetter H, Kendrick-Jones J, Buss F. Functional roles for myosin 1c in cellular signaling pathways. Cell Signal 2013; 25:229-35. [PMID: 23022959 PMCID: PMC3715701 DOI: 10.1016/j.cellsig.2012.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/24/2012] [Indexed: 02/01/2023]
Abstract
Cellular signaling pathways underlie the transfer of information throughout the cell and to adjoining cells and so govern most critical cellular functions. Increasing evidence points to the molecular motor myosin 1c as a prominent player in many signaling cascades, from the integrin-dependent signaling involved in cell migration to the signaling events underlying insulin resistance. Myosin 1c functions on these pathways both via an important role in regulating lipid raft recycling and also via direct involvement in signaling cascades. This review provides an overview of the functional involvement of myosin 1c in cellular signaling and discusses the possible potential for myosin 1c as a target for drug-based treatments for human diseases.
Collapse
Affiliation(s)
- Lisa M Bond
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | | | | | | |
Collapse
|
20
|
Lattanzi L, Federico M. A strategy of antigen incorporation into exosomes: comparing cross-presentation levels of antigens delivered by engineered exosomes and by lentiviral virus-like particles. Vaccine 2012; 30:7229-37. [PMID: 23099330 DOI: 10.1016/j.vaccine.2012.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/20/2012] [Accepted: 10/06/2012] [Indexed: 12/25/2022]
Abstract
Among strategies aimed at developing new nanoparticle-based vaccines, exosomes hold much promise. They are nanovesicles released by basically all eukaryotic cell types originating from intraluminal vesicles which accumulate in multivesicular bodies. Exosomes have immunogenic properties whose strength correlates with the amounts of associated antigens. Engineering antigens to target them in exosomes represents the last frontier in terms of nanoparticle-based vaccines. Here we report a new method to incorporate protein antigens in exosomes relying on the unique properties of a mutant of the HIV-1 Nef protein, Nef(mut). This is a biologically inactive mutant we found incorporating into exosomes at high levels also when fused at its C-terminus with foreign proteins. We compared both biochemical and antigenic properties of Nef(mut) exosomes with those of previously characterized Nef(mut) -based lentiviral virus-like particles (VLPs). We found that exosomes incorporate Nef(mut) and fusion protein derivatives with similar efficiency of VLPs. When an envelope fusion protein was associated with both exosomes and VLPs to favor cross-presentation of associated antigens, Nef(mut) and its derivatives incorporated in exosomes were cross-presented at levels at least similar to what observed when the antigens were delivered by engineered VLPs. This occurred despite exosomes entered target cells with an apparent lower efficiency than VLPs. The unique properties of HIV-1 Nef(mut) in terms of exosome incorporation efficiency, carrier of foreign antigens, and lack of anti-cellular effects open the way toward the development of a flexible, safe, cost-effective exosome-based CD8(+) T cell vaccine platform.
Collapse
Affiliation(s)
- Laura Lattanzi
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
21
|
Abraham L, Bankhead P, Pan X, Engel U, Fackler OT. HIV-1 Nef limits communication between linker of activated T cells and SLP-76 to reduce formation of SLP-76-signaling microclusters following TCR stimulation. THE JOURNAL OF IMMUNOLOGY 2012; 189:1898-910. [PMID: 22802418 DOI: 10.4049/jimmunol.1200652] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Signal initiation by engagement of the TCR triggers actin rearrangements, receptor clustering, and dynamic organization of signaling complexes to elicit and sustain downstream signaling. Nef, a pathogenicity factor of HIV, disrupts early TCR signaling in target T cells. To define the mechanism underlying this Nef-mediated signal disruption, we employed quantitative single-cell microscopy following surface-mediated TCR stimulation that allows for dynamic visualization of distinct signaling complexes as microclusters (MCs). Despite marked inhibition of actin remodeling and cell spreading, the induction of MCs containing TCR-CD3 or ZAP70 was not affected significantly by Nef. However, Nef potently inhibited the subsequent formation of MCs positive for the signaling adaptor Src homology-2 domain-containing leukocyte protein of 76 kDa (SLP-76) to reduce MC density in Nef-expressing and HIV-1-infected T cells. Further analyses suggested that Nef prevents formation of SLP-76 MCs at the level of the upstream adaptor protein, linker of activated T cells (LAT), that couples ZAP70 to SLP-76. Nef did not disrupt pre-existing MCs positive for LAT. However, the presence of the viral protein prevented de novo recruitment of active LAT into MCs due to retargeting of LAT to an intracellular compartment. These modulations in MC formation and composition depended on Nef's ability to simultaneously disrupt both actin remodeling and subcellular localization of TCR-proximal machinery. Nef thus employs a dual mechanism to disturb early TCR signaling by limiting the communication between LAT and SLP-76 and preventing the dynamic formation of SLP-76-signaling MCs.
Collapse
Affiliation(s)
- Libin Abraham
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
22
|
Mukerji J, Olivieri KC, Misra V, Agopian KA, Gabuzda D. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation. Retrovirology 2012; 9:33. [PMID: 22534017 PMCID: PMC3382630 DOI: 10.1186/1742-4690-9-33] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 04/25/2012] [Indexed: 12/16/2022] Open
Abstract
Background HIV-1 Nef protein contributes to pathogenesis via multiple functions that include enhancement of viral replication and infectivity, alteration of intracellular trafficking, and modulation of cellular signaling pathways. Nef stimulates formation of tunneling nanotubes and virological synapses, and is transferred to bystander cells via these intercellular contacts and secreted microvesicles. Nef associates with and activates Pak2, a kinase that regulates T-cell signaling and actin cytoskeleton dynamics, but how Nef promotes nanotube formation is unknown. Results To identify Nef binding partners involved in Pak2-association dependent Nef functions, we employed tandem mass spectrometry analysis of Nef immunocomplexes from Jurkat cells expressing wild-type Nef or Nef mutants defective for the ability to associate with Pak2 (F85L, F89H, H191F and A72P, A75P in NL4-3). We report that wild-type, but not mutant Nef, was associated with 5 components of the exocyst complex (EXOC1, EXOC2, EXOC3, EXOC4, and EXOC6), an octameric complex that tethers vesicles at the plasma membrane, regulates polarized exocytosis, and recruits membranes and proteins required for nanotube formation. Additionally, Pak2 kinase was associated exclusively with wild-type Nef. Association of EXOC1, EXOC2, EXOC3, and EXOC4 with wild-type, but not mutant Nef, was verified by co-immunoprecipitation assays in Jurkat cells. Furthermore, shRNA-mediated depletion of EXOC2 in Jurkat cells abrogated Nef-mediated enhancement of nanotube formation. Using bioinformatic tools, we visualized protein interaction networks that reveal functional linkages between Nef, the exocyst complex, and the cellular endocytic and exocytic trafficking machinery. Conclusions Exocyst complex proteins are likely a key effector of Nef-mediated enhancement of nanotube formation, and possibly microvesicle secretion. Linkages revealed between Nef and the exocyst complex suggest a new paradigm of exocyst involvement in polarized targeting for intercellular transfer of viral proteins and viruses.
Collapse
Affiliation(s)
- Joya Mukerji
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | |
Collapse
|
23
|
Li X, Utomo A, Cullere X, Choi MM, Milner DA, Venkatesh D, Yun SH, Mayadas TN. The β-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe 2012; 10:603-15. [PMID: 22177564 DOI: 10.1016/j.chom.2011.10.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/29/2011] [Accepted: 10/04/2011] [Indexed: 11/25/2022]
Abstract
Resistance to fungal infections is attributed to engagement of host pattern-recognition receptors, notably the β-glucan receptor Dectin-1 and the integrin Mac-1, which induce phagocytosis and antifungal immunity. However, the mechanisms by which these receptors coordinate fungal clearance are unknown. We show that upon ligand binding, Dectin-1 activates Mac-1 to also recognize fungal components, and this stepwise process is critical for neutrophil cytotoxic responses. Both Mac-1 activation and Dectin-1- and Mac-1-induced neutrophil effector functions require Vav1 and Vav3, exchange factors for RhoGTPases. Mac-1- or Vav1,3-deficient mice have increased susceptibility to systemic candidiasis that is not due to impaired neutrophil recruitment but defective intracellular killing of C. albicans yeast forms, and Mac-1 or Vav1,3 reconstitution in hematopoietic cells restores resistance. Our results demonstrate that antifungal immunity depends on Dectin-1-induced activation of Mac-1 functions that is coordinated by Vav proteins, a pathway that may localize cytotoxic responses of circulating neutrophils to infected tissues.
Collapse
Affiliation(s)
- Xun Li
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chihara T, Hashimoto M, Osman A, Hiyoshi-Yoshidomi Y, Suzu I, Chutiwitoonchai N, Hiyoshi M, Okada S, Suzu S. HIV-1 proteins preferentially activate anti-inflammatory M2-type macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:3620-3627. [PMID: 22407921 DOI: 10.4049/jimmunol.1101593] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HIV-1 proteins, including Tat, gp120, and Nef, activate macrophages (MΦ), which is consistent with the fact that HIV-1 infection is characterized by sustained immune activation. Meanwhile, MΦ are functionally classified into two types: proinflammatory M1-MΦ and anti-inflammatory M2-MΦ. We show that HIV-1 proteins, particularly Nef, preferentially activate M2-MΦ. Extracellular Tat, gp120, and Nef activated MAPK and NF-κB pathways in human peripheral blood monocyte-derived MΦ. However, the activation was marked in M-CSF-derived M2-MΦ but not GM-CSF-derived M1-MΦ. Nef was the most potent activator, and its signaling activation was comparable to that by TNF-α. Indeed, Nef was internalized more rapidly by M2-MΦ than by M1-MΦ. The myristoylation and proline-rich motif of Nef were responsible for the observed signaling activation. Consistent with the activation of MAPK/NF-κB pathways, Nef stimulated the production of a number of proinflammatory cytokines/chemokines by M2-MΦ. However, Nef reduced the expression of CD163 and phagocytosis, the characteristic markers of M2-MΦ, indicating that Nef drives an M2-like to M1-like phenotypic shift. Because the differentiation of most tissue MΦ depends on M-CSF and its receptor, which is the essential axis for the anti-inflammatory M2-MΦ phenotype, the current study reveals an efficient mechanism by which HIV-1 proteins, such as Nef, induce the proinflammatory MΦ.
Collapse
Affiliation(s)
- Takashi Chihara
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dahiya S, Nonnemacher MR, Wigdahl B. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. J Gen Virol 2012; 93:1151-1172. [PMID: 22422068 DOI: 10.1099/vir.0.041186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte-macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein-protein and protein-DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
26
|
Brodde A, Teigler A, Brugger B, Lehmann WD, Wieland F, Berger J, Just WW. Impaired neurotransmission in ether lipid-deficient nerve terminals. Hum Mol Genet 2012; 21:2713-24. [PMID: 22403185 DOI: 10.1093/hmg/dds097] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Isolated defects of ether lipid (EL) biosynthesis in humans cause rhizomelic chondrodysplasia punctata type 2 and type 3, serious peroxisomal disorders. Using a previously described mouse model [Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., and Just, W.W. (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet., 12, 1881-1895], we investigated the effect of EL deficiency in isolated murine nerve terminals (synaptosomes) on the pre-synaptic release of the neurotransmitters (NTs) glutamate and acetylcholine. Both Ca(2+)-dependent exocytosis and Ca(2+)-independent efflux of the transmitters were affected. EL-deficient synaptosomes respire at a reduced rate and exhibit a lowered adenosin-5'-triphosphate/adenosine diphosphate (ATP/ADP) ratio. Consequently, ATP-driven processes, such as synaptic vesicle cycling and maintenance of Na(+), K(+) and Ca(2+) homeostasis, might be disturbed. Analyzing reactive oxygen species in EL-deficient neural and non-neural tissues revealed that plasmalogens (PLs), the most abundant EL species in mammalian central nervous system, considerably contribute to the generation of the lipid peroxidation product malondialdehyde. Although EL-deficient tissue contains less lipid peroxidation products, fibroblasts lacking ELs are more susceptible to induced oxidative stress. In summary, these results suggest that due to the reduced energy state of EL-deficient tissue, the Ca(2+)-independent efflux of NTs increases while the Ca(2+)-dependent release declines. Furthermore, lack of PLs is mainly compensated for by an increase in the concentration of phosphatidylethanolamine and results in a significantly lowered level of lipid peroxidation products in the brain cortex and cerebellum.
Collapse
Affiliation(s)
- Alexander Brodde
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Fritz JV, Tibroni N, Keppler OT, Fackler OT. HIV-1 Vpu's lipid raft association is dispensable for counteraction of the particle release restriction imposed by CD317/Tetherin. Virology 2012; 424:33-44. [PMID: 22222210 DOI: 10.1016/j.virol.2011.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/20/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
Abstract
HIV-1 Vpu antagonizes the block to particle release mediated by CD317 (BST-2/HM1.24/Tetherin) via incompletely understood mechanisms. Vpu and CD317 partially reside in cholesterol-rich lipid rafts where HIV-1 budding preferentially occurs. Here we find that lipid raft association of ectopically expressed or endogenous CD317 was unaltered upon co-expression with Vpu or following HIV-1 infection. Similarly, Vpu's lipid raft association remained unchanged upon expression of CD317. We identify amino acids V25 and Y29 of Vpu as crucial for microdomain partitioning and single substitution of these amino acids resulted in Vpu variants with markedly reduced or undetectable lipid raft association. These mutations did not affect Vpu's subcellular distribution and binding capacity to CD317, nor its ability to downmodulate cell surface CD317 and promote HIV-1 release from CD317-positive cells. We conclude that (i) lipid raft incorporation is dispensable for Vpu-mediated CD317 antagonism and (ii) Vpu does not antagonize CD317 by extraction from lipid rafts.
Collapse
Affiliation(s)
- Joëlle V Fritz
- Department of Infectious Diseases, Virology, University of Heidelberg, INF 324, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
28
|
Chan PM, Manser E. PAKs in Human Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:171-87. [DOI: 10.1016/b978-0-12-396456-4.00011-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Olivieri KC, Mukerji J, Gabuzda D. Nef-mediated enhancement of cellular activation and human immunodeficiency virus type 1 replication in primary T cells is dependent on association with p21-activated kinase 2. Retrovirology 2011; 8:64. [PMID: 21819585 PMCID: PMC3169461 DOI: 10.1186/1742-4690-8-64] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 08/05/2011] [Indexed: 12/13/2022] Open
Abstract
Background The HIV-1 accessory protein Nef is an important determinant of lentiviral pathogenicity that contributes to disease progression by enhancing viral replication and other poorly understood mechanisms. Nef mediates diverse functions including downmodulation of cell surface CD4 and MHC Class I, enhancement of viral infectivity, and enhancement of T cell activation. Nef interacts with a multiprotein signaling complex that includes Src family kinases, Vav1, CDC42, and activated PAK2 (p21-activated kinase 2). Although previous studies have attempted to identify a biological role for the Nef-PAK2 signaling complex, the importance of this complex and its constituent proteins in Nef function remains unclear. Results Here, we show that Nef mutants defective for PAK2-association, but functional for CD4 and MHC Class I downmodulation and infectivity enhancement, are also defective for the ability to enhance viral replication in primary T cells that are infected and subsequently activated by sub-maximal stimuli (1 μg/ml PHA-P). In contrast, these Nef mutants had little or no effect on HIV-1 replication in T cells activated by stronger stimuli (2 μg/ml PHA-P or anti-CD3/CD28-coated beads). Viruses bearing wild-type Nefs, but not Nef mutants defective for PAK2 association, enhanced NFAT and IL2 receptor promoter activity in Jurkat cells. Moreover, expression of wild-type Nefs, but not mutant Nefs defective for PAK2 association, was sufficient to enhance responsiveness of primary CD4 and CD8 T cells to activating stimuli in Nef-expressing and bystander cells. siRNA knockdown of PAK2 in Jurkat cells reduced NFAT activation induced by anti-CD3/CD28 stimulation both in the presence and absence of Nef, and expression of a PAK2 dominant mutant inhibited Nef-mediated enhancement of CD25 expression. Conclusion Nef-mediated enhancement of cellular activation and viral replication in primary T cells is dependent on PAK2 and on the strength of the activating stimuli, and correlates with the ability of Nef to associate with PAK2. PAK2 is likely to play a role in Nef-mediated enhancement of viral replication and immune activation in vivo.
Collapse
Affiliation(s)
- Kevin C Olivieri
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | |
Collapse
|
30
|
Stolp B, Fackler OT. How HIV takes advantage of the cytoskeleton in entry and replication. Viruses 2011; 3:293-311. [PMID: 21994733 PMCID: PMC3185699 DOI: 10.3390/v3040293] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/11/2011] [Accepted: 03/19/2011] [Indexed: 01/08/2023] Open
Abstract
The host cell cytoskeleton plays a key role in the life cycle of viral pathogens whose propagation depends on mandatory intracellular steps. Accordingly, also the human immunodeficiency virus type 1 (HIV-1) has evolved strategies to exploit and modulate in particular the actin cytoskeleton for its purposes. This review will recapitulate recent findings on how HIV-1 hijacks the cytoskeleton to facilitate entry into, transport within and egress from host cells as well as to commandeer communication of infected with uninfected bystander cells.
Collapse
Affiliation(s)
- Bettina Stolp
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
31
|
Sigalov AB. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. SELF/NONSELF 2010; 1:192-224. [PMID: 21487477 PMCID: PMC3047783 DOI: 10.4161/self.1.3.12794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Protein-protein interactions play a central role in biological processes and thus represent an appealing target for innovative drug design and development. They can be targeted by small molecule inhibitors, modulatory peptides and peptidomimetics, which represent a superior alternative to protein therapeutics that carry many disadvantages. Considering that transmembrane signal transduction is an attractive process to therapeutically control multiple diseases, it is fundamentally and clinically important to mechanistically understand how signal transduction occurs. Uncovering specific protein-protein interactions critical for signal transduction, a general platform for receptor-mediated signaling, the signaling chain homooligomerization (SCHOOL) platform, suggests these interactions as universal therapeutic targets. Within the platform, the general principles of signaling are similar for a variety of functionally unrelated receptors. This suggests that global therapeutic strategies targeting key protein-protein interactions involved in receptor triggering and transmembrane signal transduction may be used to treat a diverse set of diseases. This also assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T cell-mediated skin diseases and platelet disorders or combined to develop novel pharmacological approaches. Intriguingly, human viruses use the SCHOOL-like strategies to modulate and/or escape the host immune response. These viral mechanisms are highly optimized over the millennia, and the lessons learned from viral pathogenesis can be used practically for rational drug design. Proof of the SCHOOL concept in the development of novel therapies for atopic dermatitis, rheumatoid arthritis, cancer, platelet disorders and other multiple indications with unmet needs opens new horizons in therapeutics.
Collapse
|
32
|
Waheed AA, Freed EO. The Role of Lipids in Retrovirus Replication. Viruses 2010; 2:1146-1180. [PMID: 20740061 PMCID: PMC2927015 DOI: 10.3390/v2051146] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 11/17/2022] Open
Abstract
Retroviruses undergo several critical steps to complete a replication cycle. These include the complex processes of virus entry, assembly, and budding that often take place at the plasma membrane of the host cell. Both virus entry and release involve membrane fusion/fission reactions between the viral envelopes and host cell membranes. Accumulating evidence indicates important roles for lipids and lipid microdomains in virus entry and egress. In this review, we outline the current understanding of the role of lipids and membrane microdomains in retroviral replication.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
33
|
Abstract
Pulmonary arterial hypertension (PAH) remains a vexing clinical disease with no cure. Despite advances and the discovery of a gene (BMPR2) associated with many of the hereditary forms of the disease, and some cases not previously known to be inherited, the reasons for mutations in this gene as a cause remain somewhat elusive. Clearly, a complex interplay exists between genetic alterations, environmental exposures (including infections), and disease development. This article addresses the advances in the genetics of PAH, including the identification of genetic etiologies and modulators, and the role of genetics in predicting disease progression and targeting therapeutics.
Collapse
|
34
|
Lentiviral Nef proteins utilize PAK2-mediated deregulation of cofilin as a general strategy to interfere with actin remodeling. J Virol 2010; 84:3935-48. [PMID: 20147394 DOI: 10.1128/jvi.02467-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nef is an accessory protein and pathogenicity factor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) which elevates virus replication in vivo. We recently described for HIV type 1(SF2) (HIV-1(SF2)) the potent interference of Nef with T-lymphocyte chemotaxis via its association with the cellular kinase PAK2. Mechanistic analysis revealed that this interaction results in deregulation of the actin-severing factor cofilin and thus blocks the chemokine-mediated actin remodeling required for cell motility. However, the efficiency of PAK2 association is highly variable among Nef proteins from different lentiviruses, prompting us to evaluate the conservation of this actin-remodeling/cofilin-deregulating mechanism. Based on the analysis of a total of 17 HIV-1, HIV-2, and SIV Nef proteins, we report here that inhibition of chemokine-induced actin remodeling as well as inactivation of cofilin are strongly conserved activities of lentiviral Nef proteins. Of note, even for Nef variants that display only marginal PAK2 association in vitro, these activities require the integrity of a PAK2 recruitment motif and the presence of endogenous PAK2. Thus, reduced in vitro affinity to PAK2 does not indicate limited functionality of Nef-PAK2 complexes in intact HIV-1 host cells. These results establish hijacking of PAK2 for deregulation of cofilin and inhibition of triggered actin remodeling as a highly conserved function of lentiviral Nef proteins, supporting the notion that PAK2 association may be critical for Nef's activity in vivo.
Collapse
|
35
|
Van den Broeke C, Radu M, Chernoff J, Favoreel HW. An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol 2010; 20:160-9. [PMID: 20071173 DOI: 10.1016/j.tcb.2009.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 01/28/2023]
Abstract
p21-activated protein kinases (Paks) are cytosolic serine/threonine protein kinases that act as effectors for small (p21) GTPases of the Cdc42 and Rac families. It has long been established that Paks play a major role in a host of vital cellular functions such as proliferation, survival and motility, and abnormal Pak function is associated with a number of human diseases. Here, we discuss emerging evidence that these enzymes also play a major role in the entry, replication and spread of many important pathogenic human viruses, including HIV. Careful assessment of the potential role of Paks in antiviral immunity will be pivotal to evaluate thoroughly the potential of agents that inhibit Pak as a new class of anti-viral therapeutics.
Collapse
Affiliation(s)
- Celine Van den Broeke
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | |
Collapse
|
36
|
Muratori C, Bona R, Federico M. Lentivirus-based virus-like particles as a new protein delivery tool. Methods Mol Biol 2010; 614:111-124. [PMID: 20225039 DOI: 10.1007/978-1-60761-533-0_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Virus Like Particles (VLPs) are self-assembling, nonreplicating, nonpathogenic, genomeless particles similar in size and conformation to intact infectious virions. The possibility of engineering VLPs to incorporate heterologous polypeptides/proteins renders VLPs attractive candidates for vaccine strategies, as well as for protein delivery for basic science. Among the wide number of VLP types, our expertise focused on both retro- and lentivirus based VLPs as protein delivery tools. In particular, here we describe a system relying on the finding that some HIV-1 Nef mutants are incorporated at high levels into both Human Immunodeficiency virus (HIV)-1 and Moloney Leukemia Virus (MLV)-based VLPs. Most importantly, these Nef mutants can efficiently act as anchoring proteins upon fusion with heterologous proteins up to 630 amino acids in length. This chapter describes the preparation of prototypic HIV-1 based VLPs incorporating Nef mutant-GFP fusion molecules. Besides having potential utility in the field of basic virology, these VLPs represent a useful reference model for recovering alternative retro- or lentiviral based VLPs for the cell delivery of polypeptides/proteins of interest.
Collapse
Affiliation(s)
- Claudia Muratori
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
37
|
Characterization of Lassa virus glycoprotein oligomerization and influence of cholesterol on virus replication. J Virol 2009; 84:983-92. [PMID: 19889753 DOI: 10.1128/jvi.02039-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.
Collapse
|
38
|
Waheed AA, Freed EO. Lipids and membrane microdomains in HIV-1 replication. Virus Res 2009; 143:162-76. [PMID: 19383519 PMCID: PMC2731011 DOI: 10.1016/j.virusres.2009.04.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
Several critical steps in the replication cycle of human immunodeficiency virus type 1 (HIV-1) - entry, assembly and budding - are complex processes that take place at the plasma membrane of the host cell. A growing body of data indicates that these early and late steps in HIV-1 replication take place in specialized plasma membrane microdomains, and that many of the viral and cellular components required for entry, assembly, and budding are concentrated in these microdomains. In particular, a number of studies have shown that cholesterol- and sphingolipid-enriched microdomains known as lipid rafts play important roles in multiple steps in the virus replication cycle. In this review, we provide an overview of what is currently known about the involvement of lipids and membrane microdomains in HIV-1 replication.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
39
|
Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution? Nat Rev Microbiol 2009; 7:467-76. [PMID: 19305418 DOI: 10.1038/nrmicro2111] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the subset of primate lentiviruses that contain a vpu gene - HIV-1 and its simian precursors - the Nef protein has lost the ability to down-modulate CD3, block T cell activation and suppress programmed death. Vpu counteracts a host restriction factor induced by the inflammatory cytokine interferon-alpha. I propose that the acquisition of vpu may have allowed the viral lineage that gave rise to HIV-1 to evolve towards greater pathogenicity by removing the selective pressure for a protective Nef function that prevents damagingly high levels of immune activation.
Collapse
|
40
|
Huang J, Ren T, Guan H, Jiang Y, Cheng H. HTLV-1 Tax is a critical lipid raft modulator that hijacks IkappaB kinases to the microdomains for persistent activation of NF-kappaB. J Biol Chem 2009; 284:6208-17. [PMID: 19129196 DOI: 10.1074/jbc.m806390200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Upon T cell activation, IkappaB kinases (IKKs) are transiently recruited to the plasma membrane-associated lipid raft microdomains for activation of NF-kappaB in promoting T cell proliferation. Retroviral Tax proteins from human T cell leukemia virus type 1 and type 2 (HTLV-1 and -2) are capable of activating IKK, yet only HTLV-1 infection causes T cell leukemia, which correlates with persistent activation of NF-kappaB induced by Tax1. Here, we show that the Tax proteins exhibit differential modes of IKK activation. The subunits of IKK are constitutively present in lipid rafts in activated forms in HTLV-1-infected T cells that express Tax. Disruption of lipid rafts impairs IkappaB kinase activation by Tax1. We also show that the cytoplasmic Tax1 protein persistently resides in the Golgi-associated lipid raft microdomains. Tax1 directs lipid raft translocation of IKK through selective interaction with IKKgamma and accordingly, depletion of IKKgamma impairs Tax1-directed lipid raft recruitment of IKKalpha and IKKbeta. In contrast, Tax2 activates NF-kappaB in a manner independent of lipid raft recruitment of IKK. These findings indicate that Tax1 actively recruits IKK to the lipid raft microdomains for persistent activation of NF-kappaB, thereby contributing to HTLV-1 oncogenesis.
Collapse
Affiliation(s)
- Jiannan Huang
- Penn State Cancer Institute, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
41
|
Witte V, Laffert B, Gintschel P, Krautkrämer E, Blume K, Fackler OT, Baur AS. Induction of HIV Transcription by Nef Involves Lck Activation and Protein Kinase Cθ Raft Recruitment Leading to Activation of ERK1/2 but Not NFκB. THE JOURNAL OF IMMUNOLOGY 2008; 181:8425-32. [DOI: 10.4049/jimmunol.181.12.8425] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Noisakran S, Dechtawewat T, Avirutnan P, Kinoshita T, Siripanyaphinyo U, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N. Association of dengue virus NS1 protein with lipid rafts. J Gen Virol 2008; 89:2492-2500. [PMID: 18796718 DOI: 10.1099/vir.0.83620-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
During the replication of dengue virus, a viral non-structural glycoprotein, NS1, associates with the membrane on the cell surface and in the RNA replication complex. NS1 lacks a transmembrane domain, and the mechanism by which it associates with the membrane remains unclear. This study aimed to investigate whether membrane-bound NS1 is present in lipid rafts in dengue virus-infected cells. Double immunofluorescence staining of infected HEK-293T cells revealed that NS1 localized with raft-associated molecules, ganglioside GM1 and CD55, on the cell surface. In a flotation gradient centrifugation assay, a small proportion of NS1 in Triton X-100 cell lysate consistently co-fractionated with raft markers. Association of NS1 with lipid rafts was detected for all four dengue serotypes, as well as for Japanese encephalitis virus. Analysis of recombinant NS1 forms showed that glycosylated NS1 dimers stably expressed in HEK-293T cells without an additional C-terminal sequence, or with a heterologous transmembrane domain, failed to associate with lipid rafts. In contrast, glycosylphosphatidylinositol-linked recombinant NS1 exhibited a predilection for lipid rafts. These results indicate an association of a minor subpopulation of NS1 with lipid rafts during dengue virus infection and suggest that modification of NS1, possibly lipidation, is required for raft association.
Collapse
Affiliation(s)
- Sansanee Noisakran
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Thanyaporn Dechtawewat
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute of Microbial Diseases, Osaka University, Osaka, Japan
| | - Uamporn Siripanyaphinyo
- Thailand-Japan Research Collaboration Center on Emerging and Re-Emerging Infections (RCC-ERI), Nonthaburi 11000, Thailand
| | - Chunya Puttikhunt
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Watchara Kasinrerk
- Department of Clinical Immunology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Prida Malasit
- Medical Molecular Biology Unit, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10400, Thailand
| |
Collapse
|
43
|
Lee CMY, Gala S, Stewart GJ, Williamson P. The Proline-Rich Region of HIV-1 Nef Affects CXCR4-Mediated Chemotaxis in Jurkat T Cells. Viral Immunol 2008; 21:347-54. [DOI: 10.1089/vim.2007.0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Carol Man Yuk Lee
- The Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Wales, Australia
- Faculty of Medicine, The Unversity of Sydney, Sydney, New South Wales, Australia
| | - Salvador Gala
- The Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Wales, Australia
| | - Graeme John Stewart
- The Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Wales, Australia
- Faculty of Medicine, The Unversity of Sydney, Sydney, New South Wales, Australia
| | - Peter Williamson
- The Institute for Immunology and Allergy Research, Westmead Millennium Institute, Sydney, New South Wales, Australia
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Schindler M, Schmökel J, Specht A, Li H, Münch J, Khalid M, Sodora DL, Hahn BH, Silvestri G, Kirchhoff F. Inefficient Nef-mediated downmodulation of CD3 and MHC-I correlates with loss of CD4+T cells in natural SIV infection. PLoS Pathog 2008; 4:e1000107. [PMID: 18636106 PMCID: PMC2444047 DOI: 10.1371/journal.ppat.1000107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 06/19/2008] [Indexed: 01/22/2023] Open
Abstract
Recent data suggest that Nef-mediated downmodulation of TCR-CD3 may protect SIVsmm-infected sooty mangabeys (SMs) against the loss of CD4+ T cells. However, the mechanisms underlying this protective effect remain unclear. To further assess the role of Nef in nonpathogenic SIV infection, we cloned nef alleles from 11 SIVsmm-infected SMs with high (>500) and 15 animals with low (<500) CD4+ T-cells/µl in bulk into proviral HIV-1 IRES/eGFP constructs and analyzed their effects on the phenotype, activation, and apoptosis of primary T cells. We found that not only efficient Nef-mediated downmodulation of TCR-CD3 but also of MHC-I correlated with preserved CD4+ T cell counts, as well as with high numbers of Ki67+CD4+ and CD8+CD28+ T cells and reduced CD95 expression by CD4+ T cells. Moreover, effective MHC-I downregulation correlated with low proportions of effector and high percentages of naïve and memory CD8+ T cells. We found that T cells infected with viruses expressing Nef alleles from the CD4low SM group expressed significantly higher levels of the CD69, interleukin (IL)-2 and programmed death (PD)-1 receptors than those expressing Nefs from the CD4high group. SIVsmm Nef alleles that were less active in downmodulating TCR-CD3 were also less potent in suppressing the activation of virally infected T cells and subsequent cell death. However, only nef alleles from a single animal with very low CD4+ T cell counts rendered T cells hyper-responsive to activation, similar to those of HIV-1. Our data suggest that Nef may protect the natural hosts of SIV against the loss of CD4+ T cells by at least two mechanisms: (i) downmodulation of TCR-CD3 to prevent activation-induced cell death and to suppress the induction of PD-1 that may impair T cell function and survival, and (ii) downmodulation of MHC-I to reduce CTL lysis of virally infected CD4+ T cells and/or bystander CD8+ T cell activation. The accessory Nef protein is commonly considered a “pathogenicity” factor of primate lentiviruses. However, SIVs do not cause disease in their natural hosts, although they all encode nef genes and sustain high levels of viremia. To better understand the role of Nef in natural nonpathogenic SIV infection, we compared the function of Nef alleles from two groups of SIVsmm-infected sooty mangabeys: (i) those that maintained normal CD4+ T cell counts and (ii) a small subset (10%–15%) of animals that exhibited a considerable loss of CD4+ helper T cells. We found that the efficiency of two specific Nef functions, i.e., downmodulation of TCR-CD3 and MHC-I, correlated with preserved CD4+ T cell homeostasis, as well as with other immunological features, such as high numbers of proliferating CD4+ Ki67+ T cells. Moreover, lack of CD3 surface expression was associated with low levels of apoptosis and PD-1 expression by virally infected T cells. Thus, the ability of Nef to remove TCR-CD3 and MHC-I from the cell surface may help the natural hosts of SIV to maintain normal CD4+ T cell counts despite high levels of viral replication by preventing activation-induced cell death and CTL lysis of infected T cells and/or CD8+ T cell activation.
Collapse
Affiliation(s)
| | - Jan Schmökel
- Institute of Virology, University of Ulm, Germany
| | - Anke Specht
- Institute of Virology, University of Ulm, Germany
| | - Hui Li
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jan Münch
- Institute of Virology, University of Ulm, Germany
| | | | - Donald L. Sodora
- University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Guido Silvestri
- Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
45
|
Schneider F, Neugebauer J, Griese J, Liefold N, Kutz H, Briseño C, Kieser A. The viral oncoprotein LMP1 exploits TRADD for signaling by masking its apoptotic activity. PLoS Biol 2008; 6:e8. [PMID: 18198944 PMCID: PMC2174972 DOI: 10.1371/journal.pbio.0060008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 12/04/2007] [Indexed: 01/14/2023] Open
Abstract
The tumor necrosis factor (TNF)-receptor 1–associated death domain protein (TRADD) mediates induction of apoptosis as well as activation of NF-κB by cellular TNF-receptor 1 (TNFR1). TRADD is also recruited by the latent membrane protein 1 (LMP1) oncoprotein of Epstein-Barr virus, but its role in LMP1 signaling has remained enigmatic. In human B lymphocytes, we have generated, to our knowledge, the first genetic knockout of TRADD to investigate TRADD's role in LMP1 signal transduction. Our data from TRADD-deficient cells demonstrate that TRADD is a critical signaling mediator of LMP1 that is required for LMP1 to recruit and activate I-κB kinase β (IKKβ). However, in contrast to TNFR1, LMP1-induced TRADD signaling does not induce apoptosis. Searching for the molecular basis for this observation, we characterized the 16 C-terminal amino acids of LMP1 as an autonomous and unique virus-derived TRADD-binding domain. Replacing the death domain of TNFR1 by LMP1′s TRADD-binding domain converts TNFR1 into a nonapoptotic receptor that activates NF-κB through a TRAF6-dependent pathway, like LMP1 but unlike wild-type TNFR1. Thus, the unique interaction of LMP1 with TRADD encodes the transforming phenotype of viral TRADD signaling and masks TRADD's pro-apoptotic function. For viral infection to succeed, viral proteins must interact with the cellular signaling machinery of its target cell. An oncoprotein encoded by the Epstein-Barr virus (EBV) called latent membrane protein 1 (LMP1) is a primary contributor to the transformation of human B cells by the virus and the development of EBV-associated B cell malignancies by recruiting signaling molecules provided by the host. One such molecule, the cellular adapter protein TRADD, is among the few direct interaction partners of LMP1. But because TRADD promotes cell death (apoptosis) in the cellular tumor necrosis factor-receptor 1 (TNFR1) signaling pathway, it seems counterintuitive that TRADD could play a role in LMP1 biology, since LMP1 promotes cell survival and proliferation. We provide genetic evidence that TRADD is critical for LMP1 to assemble its transforming signaling network. LMP1 requires TRADD to recruit and activate I-κB kinase β and, thus, to induce canonical NF-κB signaling. Simultaneously, LMP1 masks TRADD's pro-apoptotic activity. We show that LMP1 carries a unique and autonomous viral TRADD-binding domain, which dictates an unusual structure of the LMP1-TRADD complex and the nonapoptotic phenotype of TRADD signaling, irrespective of the receptor context in which this domain is located. Thus, DNA tumor viruses alter the functional properties of cellular signaling molecules to exploit them for their own purpose of cell transformation. A unique Epstein Barr virus-derived protein interaction domain uses the cellular death domain protein TRADD to assemble its transforming signaling complex and dictates a transferable nonapoptitic phenotype of TRADD signaling.
Collapse
Affiliation(s)
- Frank Schneider
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Julia Neugebauer
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Janine Griese
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Nicola Liefold
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Helmut Kutz
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Cinthia Briseño
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
| | - Arnd Kieser
- Department of Gene Vectors, GSF–National Research Center for Environment and Health, Munich, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Ueno T, Motozono C, Dohki S, Mwimanzi P, Rauch S, Fackler OT, Oka S, Takiguchi M. CTL-Mediated Selective Pressure Influences Dynamic Evolution and Pathogenic Functions of HIV-1 Nef. THE JOURNAL OF IMMUNOLOGY 2008; 180:1107-16. [DOI: 10.4049/jimmunol.180.2.1107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Abstract
Protein-protein interactions play a central role in biological processes and thus are an appealing target for innovative drug design a nd development. They can be targeted bysmall molecule inhibitors, peptides and peptidomimetics, which represent an alternative to protein therapeutics that carry many disadvantages. In this chapter, I describe specific protein-protein interactions suggested by a novel model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, to be critical for cell activation mediated by multichain immune recognition receptors (MIRRs) expressed on different cells of the hematopoietic system. Unraveling a long-standing mystery of MIRR triggering and transmembrane signaling, the SCHOOL model reveals the intrareceptor transmembrane interactions and interreceptor cytoplasmic homointeractions as universal therapeutic targets for a diverse variety of disorders mediated by immune cells. Further, assuming that the general principles underlying MIRR-mediated transmembrane signaling mechanisms are similar, the SCHOOL model can be applied to any particular receptor of the MIRR family. Thus, an important application of the SCHOOL model is that global therapeutic strategies targeting key protein-protein interactions involved in MIRR triggering and transmembrane signal transduction may be used to treat a diverse set of immune-mediated diseases. This assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T-cell-mediated skin diseases and platelet disorders, or combined to develop novel pharmacological approaches. Intriguingly, the SCHOOL model unravels the molecular mechanisms underlying ability of different human viruses such as human immunodeficiency virus, cytomegalovirus and severe acute respiratory syndrome coronavirus to modulate and/or escape the host immune response. It also demonstrates how the lessons learned from viral pathogenesis can be used practically for rational drug design. Application of this model to platelet collagen receptor signaling has already led to the development of a novel concept of platelet inhibition and the invention of new platelet inhibitors, thus proving the suggested hypothesis and highlighting the importance and broad perspectives of the SCHOOL model in the development of new targeting strategies.
Collapse
|
48
|
Human immunodeficiency virus type 1 Nef recruits the guanine exchange factor Vav1 via an unexpected interface into plasma membrane microdomains for association with p21-activated kinase 2 activity. J Virol 2007; 82:2918-29. [PMID: 18094167 DOI: 10.1128/jvi.02185-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alterations of T-cell receptor signaling by human immunodeficiency virus type 1 (HIV-1) Nef involve its association with a highly active subpopulation of p21-activated kinase 2 (PAK2) within a dynamic signalosome assembled in detergent-insoluble membrane microdomains. Nef-PAK2 complexes contain the GTPases Rac and Cdc42 as well as a factor providing guanine nucleotide exchange factor (GEF) activity for Rac/Cdc42. However, the identity of this GEF has remained controversial. Previous studies suggested the association of Nef with at least three independent GEFs, Vav, DOCK2/ELMO1, and betaPix. Here we used a broad panel of approaches to address which of these GEFs is involved in the functional interaction of Nef with PAK2 activity. Biochemical fractionation and confocal microscopy revealed that Nef recruits Vav1, but not DOCK2/ELMO1 or betaPix, to membrane microdomains. Transient RNAi knockdown, analysis of cell lines defective for expression of Vav1 or DOCK2 as well as use of a betaPix binding-deficient PAK2 variant confirmed a role for Vav1 but not DOCK2 or betaPix in Nef's association with PAK2 activity. Nef-mediated microdomain recruitment of Vav1 occurred independently of the Src homology 3 domain binding PxxP motif, which is known to connect Nef to many cellular signaling processes. Instead, a recently described protein interaction surface surrounding Nef residue F195 was identified as critical for Nef-mediated raft recruitment of Vav1. These results identify Vav1 as a relevant component of the Nef-PAK2 signalosome and provide a molecular basis for the role of F195 in formation of a catalytically active Nef-PAK2 complex.
Collapse
|
49
|
Haller C, Rauch S, Fackler OT. HIV-1 Nef employs two distinct mechanisms to modulate Lck subcellular localization and TCR induced actin remodeling. PLoS One 2007; 2:e1212. [PMID: 18030346 PMCID: PMC2075162 DOI: 10.1371/journal.pone.0001212] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/17/2007] [Indexed: 01/09/2023] Open
Abstract
The Nef protein acts as critical factor during HIV pathogenesis by increasing HIV replication in vivo via the modulation of host cell vesicle transport and signal transduction processes. Recent studies suggested that Nef alters formation and function of immunological synapses (IS), thereby modulating exogenous T-cell receptor (TCR) stimulation to balance between partial T cell activation required for HIV-1 spread and prevention of activation induced cell death. Alterations of IS function by Nef include interference with cell spreading and actin polymerization upon TCR engagement, a pronounced intracellular accumulation of the Src kinase Lck and its reduced IS recruitment. Here we use a combination of Nef mutagenesis and pharmacological inhibition to analyze the relative contribution of these effects to Nef mediated alterations of IS organization and function on TCR stimulatory surfaces. Inhibition of actin polymerization and IS recruitment of Lck were governed by identical Nef determinants and correlated well with Nef's association with Pak2 kinase activity. In contrast, Nef mediated Lck endosomal accumulation was separable from these effects, occurred independently of Pak2, required integrity of the microtubule rather than the actin filament system and thus represents a distinct Nef activity. Finally, reduction of TCR signal transmission by Nef was linked to altered actin remodeling and Lck IS recruitment but did not require endosomal Lck rerouting. Thus, Nef affects IS function via multiple independent mechanisms to optimize virus replication in the infected host.
Collapse
Affiliation(s)
- Claudia Haller
- Abteilung Virologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Susanne Rauch
- Abteilung Virologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Oliver T. Fackler
- Abteilung Virologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Brügger B, Krautkrämer E, Tibroni N, Munte CE, Rauch S, Leibrecht I, Glass B, Breuer S, Geyer M, Kräusslich HG, Kalbitzer HR, Wieland FT, Fackler OT. Human immunodeficiency virus type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains. Retrovirology 2007; 4:70. [PMID: 17908312 PMCID: PMC2065869 DOI: 10.1186/1742-4690-4-70] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/01/2007] [Indexed: 01/03/2023] Open
Abstract
Background The Nef protein of Human Immunodeficiency Viruses optimizes viral spread in the infected host by manipulating cellular transport and signal transduction machineries. Nef also boosts the infectivity of HIV particles by an unknown mechanism. Recent studies suggested a correlation between the association of Nef with lipid raft microdomains and its positive effects on virion infectivity. Furthermore, the lipidome analysis of HIV-1 particles revealed a marked enrichment of classical raft lipids and thus identified HIV-1 virions as an example for naturally occurring membrane microdomains. Since Nef modulates the protein composition and function of membrane microdomains we tested here if Nef also has the propensity to alter microdomain lipid composition. Results Quantitative mass spectrometric lipidome analysis of highly purified HIV-1 particles revealed that the presence of Nef during virus production from T lymphocytes enforced their raft character via a significant reduction of polyunsaturated phosphatidylcholine species and a specific enrichment of sphingomyelin. In contrast, Nef did not significantly affect virion levels of phosphoglycerolipids or cholesterol. The observed alterations in virion lipid composition were insufficient to mediate Nef's effect on particle infectivity and Nef augmented virion infectivity independently of whether virus entry was targeted to or excluded from membrane microdomains. However, altered lipid compositions similar to those observed in virions were also detected in detergent-resistant membrane preparations of virus producing cells. Conclusion Nef alters not only the proteome but also the lipid composition of host cell microdomains. This novel activity represents a previously unrecognized mechanism by which Nef could manipulate HIV-1 target cells to facilitate virus propagation in vivo.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Nadine Tibroni
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| | - Claudia E Munte
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | - Susanne Rauch
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| | - Iris Leibrecht
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Bärbel Glass
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| | - Sebastian Breuer
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, Dortmund, Germany
| | - Matthias Geyer
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, Dortmund, Germany
| | | | - Hans Robert Kalbitzer
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | - Felix T Wieland
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Oliver T Fackler
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|