1
|
Combs LR, Combs J, McKenna R, Toth Z. Protein Degradation by Gammaherpesvirus RTAs: More Than Just Viral Transactivators. Viruses 2023; 15:730. [PMID: 36992439 PMCID: PMC10055789 DOI: 10.3390/v15030730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the Gammaherpesvirus subfamily that encodes several viral proteins with intrinsic E3 ubiquitin ligase activity or the ability to hijack host E3 ubiquitin ligases to modulate the host's immune response and to support the viral life cycle. This review focuses specifically on how the immediate-early KSHV protein RTA (replication and transcription activator) hijacks the host's ubiquitin-proteasome pathway (UPP) to target cellular and viral factors for protein degradation to allow for robust lytic reactivation. Notably, RTA's targets are either potent transcription repressors or they are activators of the innate and adaptive immune response, which block the lytic cycle of the virus. This review mainly focuses on what is currently known about the role of the E3 ubiquitin ligase activity of KSHV RTA in the regulation of the KSHV life cycle, but we will also discuss the potential role of other gammaherpesviral RTA homologs in UPP-mediated protein degradation.
Collapse
Affiliation(s)
- Lauren R. Combs
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Long W, Zhao G, Wu Y, Liu Y. Gallic acid inhibits Kaposi's Sarcoma-associated herpesvirus lytic reactivation by suppressing RTA transcriptional activities. Food Sci Nutr 2021; 9:847-854. [PMID: 33598168 PMCID: PMC7866607 DOI: 10.1002/fsn3.2048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus, has two life cycle modes: the latent and lytic phases. KSHV lytic reactivation is known to be important both for viral propagation and for KSHV-induced tumorigenesis. The KSHV replication and transcription activator (RTA) protein is essential for lytic reactivation. Gallic acid (GA), one of the most abundant phenolic acids in the plant kingdom, has been shown potential chemotherapeutic efficacy against microbial and cancer. However, the effects of GA on KSHV replication and KSHV-induced tumorigenesis have not yet been reported. Here, we report that GA induces apoptotic cell death in BCBL-1 cells in a dose-dependent manner. GA inhibits KSHV reactivation and reduces the production of progeny virus from KSHV-harboring cells. GA inhibits RTA transcriptional activities by suppressing its binding to target gene promoters. These results suggest that GA may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.
Collapse
Affiliation(s)
- Wen‐Ying Long
- Central LaboratoryThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| | - Guo‐hua Zhao
- Department of NeurologyThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| | - Yao Wu
- Central LaboratoryThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| | - Ying Liu
- Central LaboratoryThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| |
Collapse
|
3
|
Tayal N, Choudhary P, Pandit SB, Sandhu KS. Evolutionarily conserved and conformationally constrained short peptides might serve as DNA recognition elements in intrinsically disordered regions. MOLECULAR BIOSYSTEMS 2014; 10:1469-80. [PMID: 24668165 DOI: 10.1039/c3mb70539k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite recent advances, it is yet not clear how intrinsically disordered regions in proteins recognize their targets without any defined structures. Short linear motifs had been proposed to mediate molecular recognition by disordered regions; however, the underlying structural prerequisite remains elusive. Moreover, the role of short linear motifs in DNA recognition has not been studied. We report a repertoire of short evolutionarily Conserved Recognition Elements (CoREs) in long intrinsically disordered regions, which have very distinct amino-acid propensities from those of known motifs, and exhibit a strong tendency to retain their three-dimensional conformations compared to adjacent regions. The majority of CoREs directly interact with the DNA in the available 3D structures, which is further supported by literature evidence, analyses of ΔΔG values of DNA-binding energies and threading-based prediction of DNA binding potential. CoREs were enriched in cancer-associated missense mutations, further strengthening their functional nature. Significant enrichment of glycines in CoREs and the preference of glycyl ϕ-Ψ values within the left-handed bridge range in the l-disallowed region of the Ramachandran plot suggest that Gly-to-nonGly mutations within CoREs might alter the backbone conformation and consequently the function, a hypothesis that we reconciled using available mutation data. We conclude that CoREs might serve as bait for DNA recognition by long disordered regions and that certain mutations in these peptides can disrupt their DNA binding potential and consequently the protein function. We further hypothesize that the preferred conformations of CoREs and of glycyl residues therein might play an important role in DNA binding. The highly ordered nature of CoREs hints at a therapeutic strategy to inhibit malicious molecular interactions using small molecules mimicking CoRE conformations.
Collapse
Affiliation(s)
- Nitish Tayal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) - Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | | | | | | |
Collapse
|
4
|
Perales G, Burguete-García AI, Dimas J, Bahena-Román M, Bermúdez-Morales VH, Moreno J, Madrid-Marina V. A polymorphism in the AT-hook motif of the transcriptional regulatorAKNAis a risk factor for cervical cancer. Biomarkers 2010; 15:470-4. [DOI: 10.3109/1354750x.2010.485332] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
5
|
Mühlbach H, Mohr CA, Ruzsics Z, Koszinowski UH. Dominant-negative proteins in herpesviruses - from assigning gene function to intracellular immunization. Viruses 2009; 1:420-40. [PMID: 21994555 PMCID: PMC3185506 DOI: 10.3390/v1030420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 11/17/2022] Open
Abstract
Investigating and assigning gene functions of herpesviruses is a process, which profits from consistent technical innovation. Cloning of bacterial artificial chromosomes encoding herpesvirus genomes permits nearly unlimited possibilities in the construction of genetically modified viruses. Targeted or randomized screening approaches allow rapid identification of essential viral proteins. Nevertheless, mapping of essential genes reveals only limited insight into function. The usage of dominant-negative (DN) proteins has been the tool of choice to dissect functions of proteins during the viral life cycle. DN proteins also facilitate the analysis of host-virus interactions. Finally, DNs serve as starting-point for design of new antiviral strategies.
Collapse
Affiliation(s)
| | | | - Zsolt Ruzsics
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| | - Ulrich H. Koszinowski
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| |
Collapse
|
6
|
Palmeri D, Spadavecchia S, Carroll KD, Lukac DM. Promoter- and cell-specific transcriptional transactivation by the Kaposi's sarcoma-associated herpesvirus ORF57/Mta protein. J Virol 2007; 81:13299-314. [PMID: 17913801 PMCID: PMC2168867 DOI: 10.1128/jvi.00732-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) Mta protein, encoded by open reading frame 57, is a transactivator of gene expression that is essential for productive viral replication. Previous studies have suggested both transcriptional and posttranscriptional roles for Mta, but little is known regarding Mta's transcriptional function. In this study, we demonstrate that Mta cooperates with the KSHV lytic switch protein, Rta, to reactivate KSHV from latency, but Mta has little effect on reactivation when expressed alone. We demonstrate that the Mta and Rta proteins are expressed with similar but distinct kinetics during KSHV reactivation. In single-cell analyses, Mta expression coincides tightly with progression to full viral reactivation. We demonstrate with promoter reporter assays that while Rta activates transcription in all cell lines tested, Mta's ability to transactivate promoters, either alone or synergistically with Rta, is cell and promoter specific. In particular, Mta robustly transactivates the nut-1/PAN promoter independently of Rta in 293 and Akata-31 cells. Using nuclear run-on assays, we demonstrate that Mta stimulates transcriptional initiation in 293 cells. Rta and Mta physically interact in infected cell extracts, and this interaction requires the intact leucine repeat and central region of Rta in vitro. We demonstrate that Mta also binds to the nut-1/PAN promoter DNA in vitro and in infected cells. An Mta mutant with a lesion in a putative A/T hook domain is altered in DNA binding and debilitated in transactivation. We propose that one molecular mechanism of Mta-mediated transactivation is a direct effect on transcription by direct and indirect promoter association.
Collapse
Affiliation(s)
- Diana Palmeri
- Department of Microbiology and Molecular Genetics and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey/New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
7
|
Staudt MR, Dittmer DP. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr Top Microbiol Immunol 2006; 312:71-100. [PMID: 17089794 DOI: 10.1007/978-3-540-34344-8_3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The replication and transcription activator protein, Rta, is encoded by Orf50 in Kaposi's sarcoma-associated herpesvirus (KSHV) and other known gammaherpesviruses including Epstein-Barr virus (EBV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS), and murine herpesvirus 68 (MHV-68). Each Rta/Orf50 homologue of each gammaherpesvirus plays a pivotal role in the initiation of viral lytic gene expression and lytic reactivation from latency. Here we discuss the Rta/Orf50 of KSHV in comparison to the Rta/Orf50s of other gammaherpesviruses in an effort to identify structural motifs, mechanisms of action, and modulating host factors.
Collapse
Affiliation(s)
- M R Staudt
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Bldg, CB 7290, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
8
|
Bowser BS, Morris S, Song MJ, Sun R, Damania B. Characterization of Kaposi's sarcoma-associated herpesvirus (KSHV) K1 promoter activation by Rta. Virology 2006; 348:309-27. [PMID: 16546233 DOI: 10.1016/j.virol.2006.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/07/2005] [Accepted: 02/08/2006] [Indexed: 11/25/2022]
Abstract
The K1 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a 46-kDa transmembrane glycoprotein that possesses transforming properties, initiates signaling pathways in B cells, and prevents apoptosis. Here, we demonstrate a mechanism for activation of the K1 promoter by the Rta transactivator. Electrophoretic mobility shift assay (EMSA) analysis of the K1 promoter demonstrated that purified Rta protein bound to the K1 promoter at three locations, independent of other DNA-binding factors. Transcriptional assays revealed that only two of these Rta DNA-binding sites are functionally significant, and that they could impart Rta responsiveness to a heterologous E4 TATA box promoter. In addition, TATA-binding protein (TBP) bound to a TATA box element located 25 bp upstream of the K1 transcription start site and was also shown to associate with Rta by coimmunoprecipitation analysis. Rta transactivation may therefore be mediated in part through recruitment of TBP to target promoters.
Collapse
Affiliation(s)
- Brian S Bowser
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | |
Collapse
|
9
|
Wakenshaw L, Walters MS, Whitehouse A. The Herpesvirus saimiri replication and transcription activator acts synergistically with CCAAT enhancer binding protein alpha to activate the DNA polymerase promoter. J Virol 2005; 79:13548-60. [PMID: 16227275 PMCID: PMC1262591 DOI: 10.1128/jvi.79.21.13548-13560.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The open reading frame (ORF) 50 gene product, also known as the replication and transcription activator (Rta), is an immediate-early gene which is well conserved among all gamma-2 herpesviruses and plays a pivotal role in regulating the latent-lytic switch. Herpesvirus saimiri (HVS) ORF 50a functions as a sequence-specific transactivator capable of activating delayed-early (DE) gene expression via binding directly to an ORF 50 response element (RE) within the respective promoter. Analysis of the ORF 50 REs have identified two distinct types within HVS gene promoters. The first comprises a consensus sequence motif, CCN(9)GG, the second an AT-rich sequence. Here we demonstrate that ORF 50a is capable of transactivating the DE ORF 9 promoter which encodes the DNA polymerase. Deletion analysis of the ORF 9 promoter mapped the ORF 50 RE to a 95-bp region situated 126 bp upstream of the initiation codon. Gel retardation analysis further mapped the RE to a 28-bp fragment, which was able to confer ORF 50 responsiveness on an enhancerless simian virus 40 minimal promoter. Furthermore, sequence analysis identified multiple CCAAT enhancer binding protein alpha (C/EBPalpha) binding sites within the ORF 9 promoter and specifically two within the close vicinity of the AT-rich ORF 50 RE. Analysis demonstrated that the HVS ORF 50a and C/EBPalpha proteins associate with the ORF 9 promoter in vivo, interact directly, and synergistically activate the ORF 9 promoter by binding to adjacent binding motifs. Overall, these data suggest a cooperative interaction between HVS ORF 50a and C/EBPalpha proteins to activate the DNA polymerase promoter during early stages of the lytic replication cycle.
Collapse
Affiliation(s)
- Louise Wakenshaw
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
10
|
Walters MS, Hall KT, Whitehouse A. The herpesvirus saimiri Rta gene autostimulates via binding to a non-consensus response element. J Gen Virol 2005; 86:581-587. [PMID: 15722517 DOI: 10.1099/vir.0.80723-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Herpesvirus saimiri ORF 50a protein expression is sufficient to reactivate the entire lytic-replication cycle. ORF 50a functions as a sequence-specific transactivator that is capable of activating delayed-early gene expression via direct binding to an ORF 50 response element (RE) within the respective promoter. Here, it is shown that ORF 50a is capable of transactivating its own promoter. Deletion analysis of the ORF 50a promoter showed that the ORF 50-responsive element is contained within an 80 bp fragment, situated 293–373 bp from the transcription initiation site. Gel-retardation analysis further mapped the RE to a 34 bp fragment that was able to confer ORF 50 responsiveness to an enhancerless SV40 minimal promoter. Sequence analysis showed that this RE has no direct similarity to previously identified ORF 50 REs. Therefore, it is concluded that ORF 50a is capable of stimulating its own promoter via a novel RE.
Collapse
Affiliation(s)
- Matthew S Walters
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | - Kersten T Hall
- Institute of Cardiovascular Research, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- Molecular and Cellular Biology Research Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|