1
|
Eddy J, Pham F, Chee R, Park E, Dapprich N, DeRuiter SL, Shen A. Intestinal endothelial cells increase HIV infection and latency in resting and activated CD4 + T cells, particularly affecting CCR6 + CD4 + T cells. Retrovirology 2023; 20:7. [PMID: 37202790 PMCID: PMC10197447 DOI: 10.1186/s12977-023-00621-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND With suppressive antiretroviral therapy, HIV infection is well-managed in most patients. However, eradication and cure are still beyond reach due to latent viral reservoirs in CD4 + T cells, particularly in lymphoid tissue environments including the gut associated lymphatic tissues. In HIV patients, there is extensive depletion of T helper cells, particularly T helper 17 cells from the intestinal mucosal area, and the gut is one of the largest viral reservoir sites. Endothelial cells line lymphatic and blood vessels and were found to promote HIV infection and latency in previous studies. In this study, we examined endothelial cells specific to the gut mucosal area-intestinal endothelial cells-for their impact on HIV infection and latency in T helper cells. RESULTS We found that intestinal endothelial cells dramatically increased productive and latent HIV infection in resting CD4 + T helper cells. In activated CD4 + T cells, endothelial cells enabled the formation of latent infection in addition to the increase of productive infection. Endothelial-cell-mediated HIV infection was more prominent in memory T cells than naïve T cells, and it involved the cytokine IL-6 but did not involve the co-stimulatory molecule CD2. The CCR6 + T helper 17 subpopulation was particularly susceptible to such endothelial-cell-promoted infection. CONCLUSION Endothelial cells, which are widely present in lymphoid tissues including the intestinal mucosal area and interact regularly with T cells physiologically, significantly increase HIV infection and latent reservoir formation in CD4 + T cells, particularly in CCR6 + T helper 17 cells. Our study highlighted the importance of endothelial cells and the lymphoid tissue environment in HIV pathology and persistence.
Collapse
Affiliation(s)
- Jessica Eddy
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Fisher Pham
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Rachel Chee
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Esther Park
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Nathan Dapprich
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Stacy L. DeRuiter
- Department of Mathematics & Statistics, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Anding Shen
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| |
Collapse
|
2
|
Palakeel JJ, Ali M, Chaduvula P, Chhabra S, Lamsal Lamichhane S, Ramesh V, Opara CO, Khan FY, Kabiraj G, Kauser H, Mostafa JA. An Outlook on the Etiopathogenesis of Pulmonary Hypertension in HIV. Cureus 2022; 14:e27390. [PMID: 36046315 PMCID: PMC9418639 DOI: 10.7759/cureus.27390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Although overall survival rates of patients infected with human immunodeficiency virus (HIV) have been significantly improved by antiretroviral therapy (ART), chronic comorbidities associated with HIV result in a worsening quality of life. Pulmonary arterial hypertension (PAH) is the most prevalent comorbidity associated with HIV infection. Despite low viremia and a non-replicative state maintained by ART, few people develop PAH. Previous data from animal models and human pulmonary microvascular endothelial cells (HPMVECs) suggests a constellation of events occurring during the propagation of HIV-associated PAH (HIV-PAH). However, these studies have not successfully isolated HIV virions, HIV-DNA, protein 24 antigen (p24), or HIV-RNA from the pulmonary endothelial cells (ECs). It provides an insight into an ongoing inflammatory process that could be attributed to viral proteins. Several studies have demonstrated the role of viral proteins on vascular remodeling. A composite of chronic inflammatory changes mediated by cytokines and growth factors along with several inciting risk factors such as Hepatitis C virus (HCV) co-infection, genetic factors, male predominance, illegal drug usage, and duration of HIV infection have led to molecular changes that result in an initial phase of apoptosis followed by the formation of apoptotic resistant hyperproliferative ECs with altered phenotype. This study aims to identify the risk factors and mechanisms behind HIV-PAH pathobiology at the host-pathogen interface at the intracellular level.
Collapse
|
3
|
Card CM, Abrenica B, McKinnon LR, Ball TB, Su RC. Endothelial Cells Promote Productive HIV Infection of Resting CD4 + T Cells by an Integrin-Mediated Cell Adhesion-Dependent Mechanism. AIDS Res Hum Retroviruses 2022; 38:111-126. [PMID: 34465136 PMCID: PMC8861939 DOI: 10.1089/aid.2021.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Resting CD4+ T cells are primary targets of early HIV infection events in vivo, but do not readily support HIV replication in vitro. This barrier to infection can be overcome by exposing resting CD4+ T cells to endothelial cells (ECs). ECs line blood vessels and direct T cell trafficking into inflamed tissues. Cell trafficking pathways have been shown to have overlapping roles in facilitating HIV replication, but their relevance to EC-mediated enhancement of HIV susceptibility in resting CD4+ T cells has not previously been examined. We characterized the phenotype of primary human resting CD4+ T cells that became productively infected with HIV when cocultured with primary human blood and lymphatic ECs. The infected CD4+ T cells were primarily central memory cells enriched for high expression of the integrins LFA-1 and VLA-4. ICAM-1 and VCAM-1, the cognate ligands for LFA-1 and VLA-4, respectively, were expressed by the ECs in the coculture. Blocking LFA-1 and VLA-4 on resting CD4+ T cells inhibited infection by 65.4%–96.9%, indicating that engagement of these integrins facilitates EC-mediated enhancement of productive HIV infection in resting CD4+ T cells. The demonstration that ECs influence cellular HIV susceptibility of resting memory CD4+ T cells through cell trafficking pathways engaged during the transmigration of T cells into tissues highlights the physiological relevance of these findings for HIV acquisition and opportunities for intervention.
Collapse
Affiliation(s)
- Catherine M. Card
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Bernard Abrenica
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Lyle R. McKinnon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Center for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
4
|
Drummer C, Saaoud F, Shao Y, Sun Y, Xu K, Lu Y, Ni D, Atar D, Jiang X, Wang H, Yang X. Trained Immunity and Reactivity of Macrophages and Endothelial Cells. Arterioscler Thromb Vasc Biol 2021; 41:1032-1046. [PMID: 33380171 PMCID: PMC7904591 DOI: 10.1161/atvbaha.120.315452] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022]
Abstract
Innate immune cells can develop exacerbated immunologic response and long-term inflammatory phenotype following brief exposure to endogenous or exogenous insults, which leads to an altered response towards a second challenge after the return to a nonactivated state. This phenomenon is known as trained immunity (TI). TI is not only important for host defense and vaccine response but also for chronic inflammations such as cardiovascular and metabolic diseases such as atherosclerosis. TI can occur in innate immune cells such as monocytes/macrophages, natural killer cells, endothelial cells (ECs), and nonimmune cells, such as fibroblast. In this brief review, we analyze the significance of TI in ECs, which are also considered as innate immune cells in addition to macrophages. TI can be induced by a variety of stimuli, including lipopolysaccharides, BCG (bacillus Calmette-Guerin), and oxLDL (oxidized low-density lipoprotein), which are defined as risk factors for cardiovascular and metabolic diseases. Furthermore, TI in ECs is functional for inflammation effectiveness and transition to chronic inflammation. Rewiring of cellular metabolism of the trained cells takes place during induction of TI, including increased glycolysis, glutaminolysis, increased accumulation of tricarboxylic acid cycle metabolites and acetyl-coenzyme A production, as well as increased mevalonate synthesis. Subsequently, this leads to epigenetic remodeling, resulting in important changes in chromatin architecture that enables increased gene transcription and enhanced proinflammatory immune response. However, TI pathways and inflammatory pathways are separated to ensure memory stays when inflammation undergoes resolution. Additionally, reactive oxygen species play context-dependent roles in TI. Therefore, TI plays significant roles in EC and macrophage pathology and chronic inflammation. However, further characterization of TI in ECs and macrophages would provide novel insights into cardiovascular disease pathogenesis and new therapeutic targets. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Charles Drummer
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yu Sun
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dong Ni
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Diana Atar
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
6
|
Schilthuis M, Verkaik S, Walhof M, Philipose A, Harlow O, Kamp D, Kim BR, Shen A. Lymphatic endothelial cells promote productive and latent HIV infection in resting CD4+ T cells. Virol J 2018; 15:152. [PMID: 30285810 PMCID: PMC6169068 DOI: 10.1186/s12985-018-1068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background An HIV cure has not yet been achieved because latent viral reservoirs persist, particularly in resting CD4+ T lymphocytes. In vitro, it is difficult to infect resting CD4+ T cells with HIV-1, but infections readily occur in vivo. Endothelial cells (EC) line the lymphatic vessels in the lymphoid tissues and regularly interact with resting CD4+ T cells in vivo. Others and we have shown that EC promoted productive and latent HIV infection of resting CD4+ T cells. However, the EC used in previous studies were from human umbilical cords (HUVEC), which are macrovascular; whereas EC residing in the lymphoid tissues are microvascular. Methods In this study, we investigated the effects of microvascular EC stimulation of resting CD4+ T cells in establishing viral infection and latency. Human resting and activated CD4+ T cells were cultured alone or with endothelial cells and infected with a pseudotyped virus. Infection levels, indicated by green fluorescent protein expression, were measured with flow cytometry and data was analyzed using Flowing Software and Excel. Results We confirmed that EC from lymphatic tissue (LEC) were able to promote HIV infection and latency formation in resting CD4+ T cells while keeping them in resting phenotype, and that IL-6 was involved in LEC stimulation of CD4+ T cells. However, there are some differences between stimulation by LEC and HUVEC. Unlike HUVEC stimulation, we demonstrated that LEC stimulation of resting memory T cells does not depend on major histocompatibility complex class II (MHC II) interactions with T cell receptors (TCR) and that CD2-CD58 interactions were not involved in LEC stimulation of resting T cells. LEC also secreted lower levels of IL-6 than HUVEC. We also found that LEC stimulation increases HIV infection rates in activated CD4+ T cells. Conclusions While differences in T cell stimulation between lymphatic EC and HUVEC were observed, we confirmed that similar to macrovascular EC stimulation, microvascular EC stimulation promotes direct HIV infection and latency formation in resting CD4+ T cells without T cell activation. LEC stimulation also increased infection rates in activated CD4+ T cells. Additionally, the present study established a physiologically more relevant model of EC interactions with resting CD4+ T cells and further highlighted the importance of investigating the roles of EC in HIV infection and latency in both resting and activated CD4+ T cells.
Collapse
Affiliation(s)
- Meghan Schilthuis
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Seth Verkaik
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Mackenzie Walhof
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Andrew Philipose
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Olivia Harlow
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Derrick Kamp
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Bo Ram Kim
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA
| | - Anding Shen
- Department of Biology, Calvin College, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546, USA.
| |
Collapse
|
7
|
Morris JH, Nguyen T, Nwadike A, Geels ML, Kamp DL, Kim BR, Boyer JD, Shen A. Soluble Factors Secreted by Endothelial Cells Allow for Productive and Latent HIV-1 Infection in Resting CD4 + T Cells. AIDS Res Hum Retroviruses 2017; 33:110-120. [PMID: 27599784 DOI: 10.1089/aid.2016.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro, it is difficult to infect resting CD4+ T cells with human immunodeficiency virus type 1 (HIV), but infections readily occur in vivo. Endothelial cells (ECs) interact with resting CD4+ T cells in vivo, and we found previously that EC stimulation leads to productive and latent HIV infection of resting CD4+ T cells. In this study, we further characterize the interactions between EC and resting T cells. We found that resting CD4+ T cells did not require direct contact with EC for productive and/or latent infection to occur, indicating the involvement of soluble factors. Among 30 cytokines tested in a multiplex enzyme-linked immunosorbent assay (ELISA), we found that expressions for IL-6, IL-8, and CCL2 were much higher in EC-stimulated resting T cells than resting T cells cultured alone. IL-6 was found to be the soluble factor responsible for inducing productive infection of resting T cells, although direct contact with EC had an added effect. However, none of the cytokines tested, IL-6, IL-8, or CCL2, induced additional latent infection in resting T cells, suggesting that unidentified cytokines were involved. Intracellular molecules MURR1, c-Jun N-terminal kinase (JNK), and glucose transporter-1 (GLUT1) were previously shown in blocking HIV infection of resting CD4+ T cells. We found that the concentrations of these proteins were not significantly different in resting T cells before and after stimulation by EC; therefore, they are not likely involved in EC stimulation of resting CD4+ T cells, and a new mechanism is yet to be identified.
Collapse
Affiliation(s)
| | - Tran Nguyen
- Department of Biology, Calvin College, Grand Rapids, Michigan
| | - Abuoma Nwadike
- Department of Biology, Calvin College, Grand Rapids, Michigan
| | | | - Derrick L. Kamp
- Department of Biology, Calvin College, Grand Rapids, Michigan
| | - Bo Ram Kim
- Department of Biology, Calvin College, Grand Rapids, Michigan
| | - Jean D. Boyer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anding Shen
- Department of Biology, Calvin College, Grand Rapids, Michigan
| |
Collapse
|
8
|
Endothelial cell stimulation overcomes restriction and promotes productive and latent HIV-1 infection of resting CD4+ T cells. J Virol 2013; 87:9768-79. [PMID: 23824795 DOI: 10.1128/jvi.01478-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) is able to suppress human immunodeficiency virus type 1 (HIV-1) to undetectable levels in the majority of patients, but eradication has not been achieved because latent viral reservoirs persist, particularly in resting CD4(+) T lymphocytes. It is generally understood that HIV-1 does not efficiently infect resting CD4(+) T cells, and latent infection in those cells may arise when infected CD4(+) T lymphoblasts return to resting state. In this study, we found that stimulation by endothelial cells can render resting CD4(+) T cells permissible for direct HIV infection, including both productive and latent infection. These stimulated T cells remain largely phenotypically unactivated and show a lower death rate than activated T cells, which promotes the survival of infected cells. The stimulation by endothelial cells does not involve interleukin 7 (IL-7), IL-15, CCL19, or CCL21. Endothelial cells line the lymphatic vessels in the lymphoid tissues and have frequent interactions with T cells in vivo. Our study proposes a new mechanism for infection of resting CD4(+) T cells in vivo and a new mechanism for latent infection in resting CD4(+) T cells.
Collapse
|
9
|
Zhu X, Guo Y, Yao S, Yan Q, Xue M, Hao T, Zhou F, Zhu J, Qin D, Lu C. Synergy between Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6 and HIV-1 Nef protein in promotion of angiogenesis and oncogenesis: role of the AKT signaling pathway. Oncogene 2013; 33:1986-96. [PMID: 23604117 DOI: 10.1038/onc.2013.136] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/04/2013] [Accepted: 02/28/2013] [Indexed: 12/16/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of Kaposi's sarcoma (KS), which is the most common AIDS-associated malignancy. KS is characterized by neovascularization and spindle cell proliferation. The interaction between HIV-1 and KSHV has a central role in promoting the aggressive manifestations of KS in AIDS patients; however, the pathogenesis underlying AIDS-related KS (AIDS-KS) remains unknown. Herein, we examined the potential of HIV-1 negative factor (Nef) to impact KSHV viral interleukin-6 (vIL-6)-induced angiogenesis and tumorigenesis. In vitro experiments showed that exogenous Nef penetrated vIL-6-expressing endothelial cells. Both internalized and ectopic expression of Nef in endothelial cells and fibroblasts synergized with vIL-6 to promote vascular tube formation and cell proliferation. Using a chicken chorioallantoic membrane (CAM) model, we demonstrated that Nef synergistically promotes vIL-6-induced angiogenesis and tumorigenesis. Animal experiments further showed that Nef facilitates vIL-6-induced angiogenesis and tumor formation in athymic nu/nu mice. Mechanistic studies indicated that Nef synergizes with vIL-6 to enhance angiogenesis and tumorigenesis by activating the AKT pathway in the CAM model, as well as nude mice. LY294002, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K), significantly impaired the ability of Nef to promote vIL-6-induced tumorigenesis in an allograft model of nude mice. Our data provide first-line evidence that Nef may contribute to the pathogenesis underlying AIDS-KS in synergy with vIL-6. These novel findings also suggest that targeting the PI3K/AKT signal may be a potentially effective therapeutic approach in AIDS-KS patients.
Collapse
Affiliation(s)
- X Zhu
- 1] State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China [2] Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, PR China [3] Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China [4] Department of Laboratory Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, PR China
| | - Y Guo
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - S Yao
- Medical School, Quzhou College of Technology, Quzhou, PR China
| | - Q Yan
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - M Xue
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - T Hao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - F Zhou
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - J Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - D Qin
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| | - C Lu
- 1] State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China [2] Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, PR China [3] Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
10
|
Saxena SK, Shrivastava G, Tiwari S, Swamy MA, Nair MP. Modulation of HIV pathogenesis and T-cell signaling by HIV-1 Nef. Future Virol 2012; 7:609-620. [PMID: 22844345 DOI: 10.2217/fvl.12.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HIV-1 Nef protein is an approximately 27-kDa myristoylated protein that is a virulence factor essential for efficient viral replication and infection in CD4(+) T cells. The functions of CD4(+) T cells are directly impeded after HIV infection. HIV-1 Nef plays a crucial role in manipulating host cellular machinery and in HIV pathogenesis by reducing the ability of infected lymphocytes to form immunological synapses by promoting virological synapses with APCs, and by affecting T-cell stimulation. This article reviews the current status of the efficient Nef-mediated spread of virus in the unreceptive environment of the immune system by altering CD4(+) T-lymphocyte signaling, intracellular trafficking, cell migration and apoptotic pathways.
Collapse
Affiliation(s)
- Shailendra K Saxena
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007 (AP), India
| | | | | | | | | |
Collapse
|
11
|
York MR. Novel insights on the role of the innate immune system in systemic sclerosis. Expert Rev Clin Immunol 2011; 7:481-9. [PMID: 21790291 DOI: 10.1586/eci.11.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Over the last several years the involvement of the innate immune system in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE) has become well established. As systemic sclerosis (SSc; scleroderma) shares clinical features and autoantibodies with SLE, investigation has recently focused on the role of innate immunity in SSc. This has been supported by recent genetic studies. However, unlike SLE and other related autoimmune diseases, SSc patients suffer from pathologic fibrosis of skin and internal organs. The fibrotic component of SSc shares several features with syndromes following environmental exposures to agents such as organic solvents, silica dust and bleomycin. Recent work in SSc and these related fibrotic diseases have identified several areas in which innate immunity can stimulate inflammation as well as fibrosis. This article will focus on the recent discoveries identifying a prominent role of cells of the innate immune system, pattern recognition receptors, and activation of dendritic cells in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Michael R York
- Section of Rheumatology, Boston University Medical Campus, 72 East Concord St, Evans 501, Boston, MA 02118, USA.
| |
Collapse
|
12
|
Fan Y, Liu C, Qin X, Wang Y, Han Y, Zhou Y. The role of ERK1/2 signaling pathway in Nef protein upregulation of the expression of the intercellular adhesion molecule 1 in endothelial cells. Angiology 2010; 61:669-78. [PMID: 20566577 DOI: 10.1177/0003319710364215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV)-infected patients have increased rates of atherosclerotic cardiovascular diseases because the highly active antiretroviral therapy (HAART) decreased the morbidity and mortality of the disease. Endothelial dysfunction is possibly the most plausible link between HIV infection and related expression of cell adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) on the endothelial cells. HIV-1 accessory protein negative regulate factor (Nef) has been shown to be very important for high virus replication and disease progression. Nef could upregulate the expression of ICAM-1 in the pathogenesis of HIV infection. Here, we provide evidence that the HIV-1 Nef can transcriptionally induce the expression of ICAM-1 in stable expressed Nef vascular endothelial cells. Nef-induced ICAM-1 upregulation requires the activation of the downstream kinase extracellular signal-regulated kinase (ERK). Flow cytometry (FCM) results showed that the percentage of ICAM-1 positive cells in Nef-expressed cells and control cells was (35.3% +/- 2.2%) and (12.5% +/- 0.8%), respectively (P < .01). Furthermore, inhibition of Nef activity by ERK mitogen-activated protein kinase (MAPK) inhibitor effectively blocked ICAM-1 upregulation, suggesting that ERK MAPK activation is an important initiating event in Nef-mediated ICAM-1 expression in Nef-expressed cells. These data demonstrate an important signaling event of Nef in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Yang Fan
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei Province, China
| | | | | | | | | | | |
Collapse
|
13
|
Haller C, Fackler OT. HIV-1 at the immunological and T-lymphocytic virological synapse. Biol Chem 2009; 389:1253-60. [PMID: 18713012 DOI: 10.1515/bc.2008.143] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell-cell transmission of human immunodeficiency virus type 1 (HIV-1) is considered the most effective mode of viral spread in T-lymphocyte cultures. Evidence has accumulated that HIV-1 assembles polarized synaptic-like structures, referred to as virological synapses, as specialized sites of viral transfer. Interestingly, it was recently also discovered that HIV-1 impairs the formation of the structurally similar immunological synapse, thereby modulating exogenous T-lymphocyte stimulation to yield an optimal activation state for productive HIV-1 infection. The careful dissection of these opposing effects will contribute to our understanding of retroviral spread and cellular signal transduction machineries.
Collapse
Affiliation(s)
- Claudia Haller
- Department of Virology, University of Heidelberg, INF 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
14
|
Abstract
The vascular pathology seen in severe pulmonary arterial hypertension (PAH) is remarkably similar despite the fact that it arises in diverse conditions including idiopathic cases, those associated with collagen vascular diseases, with abnormal blood flow, such as patients with Eisenmenger physiology, and with the use of anorexigen drugs. The pathogenesis of severe PAH is clearly complex, and probably results from the interaction of multiple modulating genes with environmental factors. HIV is evidently a risk factor for the development of PAH, and the increased prevalence of the disease in HIV-infected patients compared with the general population has been noted for several years. The mechanism by which infection leads to full-blown PAH is, however, unknown. Attempts to localize the virus in the vascular lesions or endothelial cells of affected patients have been unsuccessful, suggesting that a direct role of the virus is unlikely, and indicating that the underlying mechanism in pulmonary arterial hypertension associated with HIV (HIV-PAH) is related to the indirect action of infection, possibly through the action of pleiotropic viral proteins. One such candidate HIV protein is one of the first to be detected after invasion of the host cell, Nef. In this article we discuss recent studies on a potential role for Nef in HIV-PAH, with special reference to the knowledge gained from the SIV model of HIV infection.
Collapse
|
15
|
Kline ER, Sutliff RL. The roles of HIV-1 proteins and antiretroviral drug therapy in HIV-1-associated endothelial dysfunction. J Investig Med 2008; 56:752-69. [PMID: 18525451 PMCID: PMC2586126 DOI: 10.1097/jim.0b013e3181788d15] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the emergence of highly active antiretroviral therapy (HAART), human immunodeficiency virus-1 (HIV-1)-infected patients have demonstrated dramatic decreases in viral burden and opportunistic infections, and an overall increase in life expectancy. Despite these positive HAART-associated outcomes, it has become increasingly clear that HIV-1 patients have an enhanced risk of developing cardiovascular disease over time. Clinical studies are instrumental in our understanding of vascular dysfunction in the context of HIV-1 infection. However, most clinical studies often do not distinguish whether HIV-1 proteins, HAART, or a combination of these 2 factors cause cardiovascular complications. This review seeks to address the roles of both HIV-1 proteins and antiretroviral drugs in the development of endothelial dysfunction because endothelial dysfunction is the hallmark initial step of many cardiovascular diseases. We analyze recent in vitro and in vivo studies examining endothelial toxicity in response to HIV-1 proteins or in response to the various classes of antiretroviral drugs. Furthermore, we discuss the multiple mechanisms by which HIV-1 proteins and HAART injure the vascular endothelium in HIV-1 patients. By understanding the molecular mechanisms of HIV-1 protein- and antiretroviral-induced cardiovascular disease, we may ultimately improve the quality of life of HIV-1 patients through better drug design and the discovery of new pharmacological targets.
Collapse
Affiliation(s)
- Erik R Kline
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, Emory University/Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
| | | |
Collapse
|
16
|
Fackler OT, Alcover A, Schwartz O. Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 2007; 7:310-7. [PMID: 17380160 DOI: 10.1038/nri2041] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIDS is the result of a constant struggle between the lentivirus HIV and the immune system. Infection with HIV interferes directly with the function of CD4(+) T cells and manipulates the host immune response to the virus. Recent studies indicate that the viral protein Nef, a central player in HIV pathogenesis, impairs the ability of infected lymphocytes to form immunological synapses with antigen-presenting cells and affects T-cell-receptor-mediated stimulation. An integrative picture of the abnormal behaviour of HIV-infected lymphocytes is therefore emerging. We propose that modulating lymphocyte signalling, apoptosis and intracellular trafficking ensures efficient spread of the virus in the hostile environment of the immune system.
Collapse
Affiliation(s)
- Oliver T Fackler
- Oliver T. Fackler is at the Department of Virology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
17
|
Manes TD, Shiao SL, Dengler TJ, Pober JS. TCR signaling antagonizes rapid IP-10-mediated transendothelial migration of effector memory CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:3237-43. [PMID: 17312172 DOI: 10.4049/jimmunol.178.5.3237] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human microvascular endothelial cells (ECs) constitutively express MHC class II in peripheral tissues, the function of which remains unknown. In vitro assays have established that the recognition of EC MHC class II can affect cytokine expression, proliferation, and delayed transendothelial migration of allogeneic memory, but not naive, CD4+ T cells. Previously, we have shown that effector memory CD4+ T cells will rapidly transmigrate in response to the inflammatory chemokine IFN-gamma-inducible protein-10 (IP-10) in a process contingent upon the application of venular levels of shear stress. Using two models that provide polyclonal TCR signaling by ECs in this flow system, we show that TCR engagement antagonizes the rapid chemokine-dependent transmigration of memory CD4+ T cells. Inhibitor studies suggest that TCR signaling downstream of Src family tyrosine kinase(s) but upstream of calcineurin activation causes memory CD4+ T cell arrest on the EC surface, preventing the transendothelial migration response to IP-10.
Collapse
Affiliation(s)
- Thomas D Manes
- Department of Pathology, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Human immunodeficiency virus-1 (HIV-1) neuroinvasion occurs early (during period of initial viremia), leading to infection of a limited amount of susceptible cells with low CD4 expression. Protective cellular and humoral immunity eliminate and suppress viral replication relatively quickly due to peripheral immune responses and the low level of initial central nervous system (CNS) infection. Upregulation of the brain protective mechanisms against lymphocyte entry and survival (related to immune privilege) helps reduce viral load in the brain. The local immune compartment dictates local viral evolution as well as selection of cytotoxic lymphocytes and immunoglobulin G specificity. Such status can be sustained until peripheral immune anti-viral responses fail. Activation of microglia and astrocytes, due to local or peripheral triggers, increases chemokine production, enhances traffic of infected cells into the CNS, upregulates viral replication in resident brain macrophages, and significantly augments the spread of viral species. The combination of these factors leads to the development of HIV-1 encephalitis-associated neurocognitive decline and patient death. Understanding the immune-privileged state created by virus, the brain microenvironment, and the ability to enhance anti-viral immunity offer new therapeutic strategies for treatment of HIV-1 CNS infection.
Collapse
Affiliation(s)
- Yuri Persidsky
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA.
| | | |
Collapse
|
19
|
Haller C, Rauch S, Michel N, Hannemann S, Lehmann MJ, Keppler OT, Fackler OT. The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. J Biol Chem 2006; 281:19618-30. [PMID: 16687395 DOI: 10.1074/jbc.m513802200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Nef protein is a key determinant of human immunodeficiency virus (HIV) pathogenicity that, among other activities, sensitizes T-lymphocytes for optimal virus production. The initial events by which Nef modulates the T-cell receptor (TCR) cascade are poorly understood. TCR engagement triggers actin rearrangements that control receptor clustering for signal initiation and dynamic organization of signaling protein complexes to form an immunological synapse. Here we report that Nef potently interferes with cell spreading and formation of actin-rich circumferential rings in T-lymphocytes upon surface-supported TCR stimulation. These effects were conserved among Nef proteins from different lentiviruses and occurred in HIV-1-infected primary human T-lymphocytes. This novel Nef activity critically depended on its Src homology 3 domain binding motif and required efficient association with Pak2 activity. Notably, whereas overall signaling microcluster formation immediately following TCR engagement occurred normally in Nef-expressing cells, the viral protein inhibited the concomitant activation of the actin organizer N-Wasp. During the subsequent maturation phase of the stimulatory contact, Nef interfered with the translocation of N-Wasp to the cell periphery, the overall induction of tyrosine phosphorylation, and the selective recruitment of phosphorylated LAT to stimulatory contacts. Consistent with such a critical role of N-Wasp in this process, Nef also blocked morphological changes induced by the known N-Wasp regulators Rac1 and Cdc42. Together, our results demonstrate that Nef alters both the amount and composition of signaling microclusters. We propose modulation of actin dynamics as an important mechanism for Nef-induced alterations of TCR signaling.
Collapse
Affiliation(s)
- Claudia Haller
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Fackler OT, Moris A, Tibroni N, Giese SI, Glass B, Schwartz O, Kräusslich HG. Functional characterization of HIV-1 Nef mutants in the context of viral infection. Virology 2006; 351:322-39. [PMID: 16684552 DOI: 10.1016/j.virol.2006.03.044] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 12/19/2005] [Accepted: 03/28/2006] [Indexed: 11/27/2022]
Abstract
Nef is an important pathogenesis factor of HIV-1 with a multitude of effector functions. We have designed a broad panel of isogenic viruses encoding defined mutants of HIV-1(SF2) Nef and analyzed their biological activity in the context of productive HIV-1 infection. Analysis of subcellular localization, virion incorporation, downregulation of cell surface CD4 and MHC-I, enhancement of virion infectivity and facilitation of HIV replication in primary human T lymphocytes mostly confirmed the mapping of Nef determinants previously reported upon isolated expression of Nef. However, reduced activity in downregulation of CD4, infectivity enhancement and virion incorporation of a Nef variant (Delta12-39) lacking an amphipatic helix required for binding of a cellular kinase complex and the association of Nef with MHC-I/AP-1 suggested a novel role of this N-terminal motif. The SH3 binding motif of Nef was partially required for infectivity enhancement and replication but not for receptor downmodulation. In contrast to previous results obtained using other Nef alleles, non-myristoylated SF2-Nef was only partly defective when expressed during HIV infection and was present in HIV-1 particles. Importantly, incorporation of Nef into HIV-1 virions was not required for any of the tested Nef activities. Altogether, this study provides a broad characterization and mapping of multiple Nef activities in HIV-infected cells. The results emphasize that multiple activities govern Nef's effects on HIV replication and argue against a role of virion incorporation for Nef's activity as pathogenicity factor.
Collapse
Affiliation(s)
- Oliver T Fackler
- Department of Virology, University of Heidelberg, INF 324, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Keppler OT, Tibroni N, Venzke S, Rauch S, Fackler OT. Modulation of specific surface receptors and activation sensitization in primary resting CD4+ T lymphocytes by the Nef protein of HIV-1. J Leukoc Biol 2005; 79:616-27. [PMID: 16365153 DOI: 10.1189/jlb.0805461] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) pathogenicity factor Nef increases viral replication in vivo. In immortalized cell lines, Nef affects the cell surface levels of multiple receptors and signal transduction pathways. Resting CD4+ T lymphocytes are important targets for HIV-1 infection in vivo-they actively transcribe and express HIV-1 genes and contribute to the local viral burden and long-lived viral reservoirs in patients undergoing antiretroviral therapy. In vitro, this primary cell type has, however, thus far been highly refractory to experimental manipulation, and the biological activities exerted by HIV-1 Nef in these cells are largely unknown. Using nucleofection for gene delivery, we find that Nef induces a drastic and moderate down-regulation of CD4 and major histocompatibility complex type 1 (MHC-I), respectively, but does not alter surface levels of other receptors, the down-modulation of which has been reported in cell line studies. In contrast, Nef markedly up-regulated cell surface levels of the MHC-II invariant chain CD74. The effect of Nef on these three surface receptors was also detected upon HIV-1 infection of activated primary CD4+ T lymphocytes. Nef expression alone was insufficient to activate resting CD4+ T lymphocytes, but Nef modestly enhanced the responsiveness of cells to exogenous T cell activation. Consistent with such a signal transduction activity, a subpopulation of Nef localized to lipid raft clusters at the plasma membrane. This study establishes the analysis of Nef functions in these primary HIV target cells. Our data support the involvement of modulation of a defined set of cell surface receptors and sensitization to activation rather than an autonomous activation function in the role of Nef in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Oliver T Keppler
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
23
|
Choi J, Walker J, Talbert-Slagle K, Wright P, Pober JS, Alexander L. Endothelial cells promote human immunodeficiency virus replication in nondividing memory T cells via Nef-, Vpr-, and T-cell receptor-dependent activation of NFAT. J Virol 2005; 79:11194-204. [PMID: 16103171 PMCID: PMC1193601 DOI: 10.1128/jvi.79.17.11194-11204.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human endothelial cells (ECs) enhance human immunodeficiency virus (HIV) replication within CD4(+) memory T cells by 50,000-fold in a Nef-dependent manner. Here, we report that EC-mediated HIV type 1 replication is also dependent on an intact vpr gene. Moreover, we demonstrate that despite a requirement for engaging major histocompatibility complex (MHC) class II molecules and costimulators, EC-stimulated virus-producing cells (p24(high) T cells) do not proliferate, nor are they arrested in the cell cycle. Rather, they are minimally activated, sometimes expressing CD69 but not CD25, HLA-DR, VLA-1, or effector cytokines. Blocking antibodies to interleukin 2 (IL-2), IL-6, IL-7, or tumor necrosis factor do not inhibit viral replication. Cyclosporine effectively inhibits viral replication, as does disruption of the NFAT binding site in the viral long terminal repeat. Furthermore, in the presence of ECs, suboptimal T-cell receptor (TCR) stimulation with phytohemagglutinin L supports efficient viral replication, and suboptimal stimulation with toxic shock syndrome toxin 1 leads to viral replication selectively in the TCR-stimulated, Vbeta2-expressing T cells. Collectively, these data indicate that ECs provide signals that promote Nef- and Vpr-dependent HIV replication in memory T cells that have been minimally activated through their TCRs. Our studies suggest a mechanism for HIV replication in vivo within the reservoir of circulating memory CD4(+) T cells that persist despite antiretroviral therapy and further suggest that maintenance of immunological memory by MHC class II-expressing ECs via TCR signaling may contribute to HIV rebound following cessation of antiretroviral therapy.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Section of Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|