1
|
Ashraf MA, Shahid I, Brown JK, Yu N. An Integrative Computational Approach for Identifying Cotton Host Plant MicroRNAs with Potential to Abate CLCuKoV-Bur Infection. Viruses 2025; 17:399. [PMID: 40143327 PMCID: PMC11945813 DOI: 10.3390/v17030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bur) has a circular single-stranded ssDNA genome of 2759 nucleotides in length and belongs to the genus Begomovirus (family, Geminiviridae). CLCuKoV-Bur causes cotton leaf curl disease (CLCuD) and is transmitted by the whitefly Bemisis tabaci cryptic species. Monopartite begomoviruses encode five open reading frames (ORFs). CLCuKoV-Bur replicates through a dsDNA intermediate. Five open reading frames (ORFs) are organized in the small circular, single-stranded (ss)-DNA genome of CLCuKoV-Bur (2759 bases). RNA interference (RNAi) is a naturally occurring process that has revolutionized the targeting of gene regulation in eukaryotic organisms to combat virus infection. The aim of this study was to elucidate the potential binding attractions of cotton-genome-encoded microRNAs (Gossypium hirsutum-microRNAs, ghr-miRNAs) on CLCuKoV-Bur ssDNA-encoded mRNAs using online bioinformatics target prediction tools, RNA22, psRNATarget, RNAhybrid, and TAPIR. Using this suite of robust algorithms, the predicted repertoire of the cotton microRNA-binding landscape was determined for a CLCuKoV-Bur consensus genome sequence. Previously experimentally validated cotton (Gossypium hirsutum L.) miRNAs (n = 80) were selected from a public repository miRNA registry miRBase (v22) and hybridized in silico into the CLCuKoV-Bur genome (AM421522) coding and non-coding sequences. Of the 80 ghr-miRNAs interrogated, 18 ghr-miRNAs were identified by two to four algorithms evaluated. Among them, the ghr-miR399d (accession no. MIMAT0014350), located at coordinate 1747 in the CLCuKoV-Bur genome, was predicted by a consensus or "union" of all four algorithms and represents an optimal target for designing an artificial microRNA (amiRNA) silencing construct for in planta expression. Based on all robust predictions, an in silico ghr-miRNA-regulatory network was developed for CLCuKoV-Bur ORFs using Circos software version 0.6. These results represent the first predictions of ghr-miRNAs with the therapeutic potential for developing CLCuD resistance in upland cotton plants.
Collapse
Affiliation(s)
- Muhammad Aleem Ashraf
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Department of Biosciences and Technology, Emerson University, Multan 60000, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Naitong Yu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Li M, Huang P, Jia Z, Lang X, Wang L, Sun M, Ghanem H, Wu G, Qing L. The Role of a C-Terminal Seven-Amino Acid Motif in TbCSV C3 Protein and Its Interaction With NbPOLA2 in Enhancing Viral Replication. MOLECULAR PLANT PATHOLOGY 2025; 26:e70068. [PMID: 40025647 PMCID: PMC11872800 DOI: 10.1111/mpp.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
The C3 protein of tobacco curly shoot virus (TbCSV), a possible evolutionary intermediate between truly monopartite begomoviruses and those requiring satellite molecules for infectivity, has been identified as a viral replication enhancer (REn). However, the mechanisms underlying this enhancement are largely unknown. In this study, we generated two mutant infectious clones of TbCSV: one with a deletion of the 3' end region of the C3 gene that does not overlap with C2 (TbCSVdC3) and another in which this region was replaced by a phylogenetically unrelated iLOV gene sequence (TbCSVdC3-iLOV). Our findings highlight the crucial role of the 3' end region of C3 for viral DNA accumulation and further demonstrated that overexpression of TbCSV C3 protein in trans complements the functional deficiency of TbCSVdC3. Further analyses revealed the essential role of the C-terminal seven-amino acid motif from residues 123-129 of C3 in replication enhancement. Previous studies suggested that both intra- and intermolecular interactions of C3/AC3 proteins encoded by some other geminiviruses are vital for their capacity to enhance replication. Interestingly, among the tested potential interactors, NbPOLA2, a subunit of DNA polymerase α, was confirmed to interact with C3 in yeast and in planta. Our findings indicated that NbPOLA2 positively regulates TbCSV replication and infection and that the seven-amino acid motif (residues 123-129) in C3 is required for recruiting NbPOLA2 to facilitate TbCSV replication by mediating the viral double-stranded DNA (dsDNA) replication intermediate synthesis. These findings contribute to our understanding of the mechanisms through which the C3 protein enhances TbCSV replication.
Collapse
Affiliation(s)
- Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)Southwest UniversityChongqingChina
| | - Puxin Huang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Zhou Jia
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Xinyuan Lang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Lyuxin Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Miao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- College of Biology and Food EngineeringChongqing Three Gorges UniversityChongqingChina
| | - Hussein Ghanem
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)Southwest UniversityChongqingChina
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant ProtectionSouthwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)Southwest UniversityChongqingChina
- National Citrus Engineering Research CenterSouthwest UniversityChongqingChina
| |
Collapse
|
3
|
Shen X, Gill U, Arens M, Yan Z, Bai Y, Hutton SF, Wolters AMA. The tomato gene Ty-6, encoding DNA polymerase delta subunit 1, confers broad resistance to Geminiviruses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:22. [PMID: 39775891 PMCID: PMC11711579 DOI: 10.1007/s00122-024-04803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE The tomato Ty-6 gene conferring resistance against begomoviruses has been cloned and shown to be a variant of DNA polymerase delta subunit 1. Ty-6 is a major resistance gene of tomato that provides resistance against monopartite and bipartite begomoviruses. The locus was previously mapped on chromosome 10, and in this study, we fine-mapped Ty-6 to a region of 47 kb, including four annotated candidate genes. Via whole-genome resequencing of Ty-6 breeding lines and several susceptible breeding lines, the polymorphisms in gene sequences were discovered and gene-associated markers were developed for marker-assistant breeding. Further, virus-induced gene silencing and candidate gene overexpressing in susceptible tomatoes revealed that Ty-6-mediated resistance is controlled by Solyc10g081250, encoding the DNA polymerase delta subunit 1, SlPOLD1. The single nucleotide polymorphism of Ty-6 results in an amino acid change that might influence the fidelity of virus DNA replication.
Collapse
Affiliation(s)
- Xuexue Shen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
- KWS, Wageningen, The Netherlands
| | - Upinder Gill
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
- North Dakota State University, Fargo, ND, USA
| | - Marjon Arens
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Zhe Yan
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Samuel F Hutton
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Anne-Marie A Wolters
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Yin ZN, Han PY, Han TT, Huang Y, Yang JJ, Zhang MS, Fang M, Zhong K, Zhang J, Lu QY. V2 Protein Enhances the Replication of Genomic DNA of Mulberry Crinkle Leaf Virus. Int J Mol Sci 2024; 25:10521. [PMID: 39408850 PMCID: PMC11476850 DOI: 10.3390/ijms251910521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/20/2024] Open
Abstract
Mulberry crinkle leaf virus (MCLV), identified in mulberry plants (Morus alba L.), is a member of the genus Mulcrilevirus in the family Geminiviridae. The functions of the V2 protein encoded by MCLV remain unclear. Here, Agrobacterium-mediated infectious clones of a wild-type MCLV vII (MCLVWT) and two V2 mutant MCLV vIIs, including MCLVmV2 (with a mutation of the start codon of the V2 ORF) and MCLVdV2 (5'-end partial deletion of the V2 ORF sequence), were constructed to investigate the roles of V2 both in planta and at the cellular level. Although all three constructs (pCA-1.1MCLVWT, pCA-MCLVmV2, and pCA-MCLVdV2) were able to infect both natural host mulberry plants and experimental tomato plants systematically, the replication of the MCLVmV2 and MCLVdV2 genomes in these hosts was significantly reduced compared to that of MCLVWT. Similarly, the accumulation of MCLVmV2 and MCLVdV2 in protoplasts of Nicotiana benthamiana plants was significantly lower than that of MCLVWT either 24 h or 48 h post-transfection. A complementation experiment further confirmed that the decreased accumulation of MCLV in the protoplasts was due to the absence of V2 expression. These results revealed that MCLV-encoded V2 greatly enhances the level of MCLV DNA accumulation and is designated the replication enhancer protein of MCLV.
Collapse
Affiliation(s)
- Zhen-Ni Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Pei-Yu Han
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Tao-Tao Han
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Ying Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Jing-Jing Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Meng-Si Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
| | - Miao Fang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Kui Zhong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jian Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Quan-You Lu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Z.-N.Y.); (P.-Y.H.); (T.-T.H.); (Y.H.); (J.-J.Y.); (M.-S.Z.); (M.F.); (K.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
5
|
Kamal H, Zafar MM, Razzaq A, Parvaiz A, Ercisli S, Qiao F, Jiang X. Functional role of geminivirus encoded proteins in the host: Past and present. Biotechnol J 2024; 19:e2300736. [PMID: 38900041 DOI: 10.1002/biot.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
During plant-pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host-pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
6
|
Jain H, Kaur R, Sain SK, Siwach P. Development, Design, and Application of Efficient siRNAs Against Cotton Leaf Curl Virus-Betasatellite Complex to Mediate Resistance Against Cotton Leaf Curl Disease. Indian J Microbiol 2024; 64:558-571. [PMID: 39011016 PMCID: PMC11246389 DOI: 10.1007/s12088-024-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/01/2024] [Indexed: 07/17/2024] Open
Abstract
Cotton leaf curl disease (CLCuD), caused by the Cotton leaf curl virus, is one of the most irrepressible diseases in cotton due to high recombination in the virus. RNA interference (RNAi) is widely used as a biotechnological approach for sequence-specific gene silencing guided by small interfering RNAs (siRNAs) to generate resistance against viruses. The success of RNAi depends upon the fact that the target site of the designed siRNA must be conserved even if the genome undergoes recombination. Thus, the present study designs the most efficient siRNA against the conserved sites of the Cotton leaf curl Multan virus (CLCuMuV) and the Cotton leaf curl Multan betasatellite (CLCuMB). From an initial prediction of 9 and 7 siRNAs against CLCuMuV and CLCuMB, respectively, the final selection was made for 2 and 1 siRNA based on parameters such as no off-targets, good GC content, high validity score, and targeting coding region. The target sites of siRNA were observed to lie in the AC3 and an overlapping region of AC2-AC1 of CLCuMuV and βC1 of CLCuMB; all target sites showed a highly conserved nature in recombination analysis. Docking the designed siRNAs with the Argonaute-2 protein of Gossypium hirsutum showed stable binding. Finally, BLASTn of siRNA-target positions in genomes of other BGVs indicated the suitability of designed siRNAs against a broad range of BGVs. The designed siRNAs of the present study could help gain complete control over the virus, though experimental validation is highly required to suggest predicted siRNAs for CLCuD resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01191-z.
Collapse
Affiliation(s)
- Heena Jain
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125055 India
| | - Ramandeep Kaur
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125055 India
| | - Satish Kumar Sain
- Central Institute of Cotton Research, Regional Station, Sirsa, Haryana 125055 India
| | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana 125055 India
| |
Collapse
|
7
|
Cao X, Tang L, Song J. Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications. ACS Synth Biol 2024; 13:1038-1058. [PMID: 38501391 DOI: 10.1021/acssynbio.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of nucleic acid therapeutics has witnessed a significant surge in recent times, as evidenced by the increasing number of approved genetic drugs. However, current platform technologies containing plasmids, lipid nanoparticle-mRNAs, and adeno-associated virus vectors encounter various limitations and challenges. Thus, we are devoted to finding a novel nucleic acid vector and have directed our efforts toward investigating circular single-stranded DNA (CssDNA), an ancient form of nucleic acid. CssDNAs are ubiquitous, but generally ignored. Accumulating evidence suggests that CssDNAs possess exceptional properties as nucleic acid vectors, exhibiting great potential for clinical applications in genetic disorders, gene editing, and immune cell therapy. Here, we comprehensively review the discovery and biological effects of CssDNAs as well as their applications in the field of biomedical research for the first time. Undoubtedly, as an ancient form of DNA, CssDNA holds immense potential and promises novel insights for biomedical research.
Collapse
Affiliation(s)
- Xisen Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
8
|
Jammes M, Golyaev V, Fuentes A, Laboureau N, Urbino C, Plissonneau C, Peterschmitt M, Pooggin MM. Transcriptome and small RNAome profiling uncovers how a recombinant begomovirus evades RDRγ-mediated silencing of viral genes and outcompetes its parental virus in mixed infection. PLoS Pathog 2024; 20:e1011941. [PMID: 38215155 PMCID: PMC10810479 DOI: 10.1371/journal.ppat.1011941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) causes severe disease of cultivated tomatoes. Geminiviruses replicate circular single-stranded genomic DNA via rolling-circle and recombination-dependent mechanisms, frequently generating recombinants in mixed infections. Circular double-stranded intermediates of replication also serve as templates for Pol II bidirectional transcription. IS76, a recombinant derivative of TYLCV with a short sequence in the bidirectional promoter/origin-of-replication region acquired from a related begomovirus, outcompetes TYLCV in mixed infection and breaks disease resistance in tomato Ty-1 cultivars. Ty-1 encodes a γ-clade RNA-dependent RNA polymerase (RDRγ) implicated in Dicer-like (DCL)-mediated biogenesis of small interfering (si)RNAs directing gene silencing. Here, we profiled transcriptome and small RNAome of Ty-1 resistant and control susceptible plants infected with TYLCV, IS76 or their combination at early and late infection stages. We found that RDRγ boosts production rates of 21, 22 and 24 nt siRNAs from entire genomes of both viruses and modulates DCL activities in favour of 22 and 24 nt siRNAs. Compared to parental TYLCV, IS76 undergoes faster transition to the infection stage favouring rightward transcription of silencing suppressor and coat protein genes, thereby evading RDRγ activity and facilitating its DNA accumulation in both single and mixed infections. In coinfected Ty-1 plants, IS76 efficiently competes for host replication and transcription machineries, thereby impairing TYLCV replication and transcription and forcing its elimination associated with further increased siRNA production. RDRγ is constitutively overexpressed in Ty-1 plants, which correlates with begomovirus resistance, while siRNA-generating DCLs (DCL2b/d, DCL3, DCL4) and genes implicated in siRNA amplification (α-clade RDR1) and function (Argonaute2) are upregulated to similar levels in TYLCV- and IS76-infected susceptible plants. Collectively, IS76 recombination facilitates replication and promotes expression of silencing suppressor and coat proteins, which allows the recombinant virus to evade the negative impact of RDRγ-boosted production of viral siRNAs directing transcriptional and posttranscriptional silencing.
Collapse
Affiliation(s)
- Margaux Jammes
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Nathalie Laboureau
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Cica Urbino
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Michel Peterschmitt
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| |
Collapse
|
9
|
Jain H, Singh I, Chahal S, Kaur R, Siwach P. Phylogenetic and recombination analysis of Begomoviruses associated with Cotton leaf curl disease and in silico analysis of viral-host protein interactions. Microb Pathog 2024; 186:106504. [PMID: 38122873 DOI: 10.1016/j.micpath.2023.106504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cotton leaf curl disease (CLCuD), caused by numerous begomoviruses (BGVs), is a highly disastrous disease in cotton crops worldwide. To date, several efforts have shown limited success in controlling this disease. CLCuD-associated BGVs (CABs) are known for their high rate of intra and interspecific recombinations, which raises an urgent need to find an efficient and conserved target region to combat disease. In the present study, phylogenetic analysis of selected 11 CABs, along with associated alphasatellites, and betasatellites revealed a close evolutionary relationship among them. Recombination analysis of 1374 isolates of CABs revealed 54 recombination events for the major players of CLCuD in cotton and the Cotton leaf curl Multan virus (CLCuMuV) as the most recombinant CAB. Recombination breakpoints were frequent in all regions except C2 and C3. C3-encoded protein, known as viral replication enhancer (REn), promotes viral replication by enhancing the activity of replicase (Rep) protein. Both proteins were found to contain significantly conserved domains and motifs. The identified motifs were found crucial for their interaction with host protein PCNA (Proliferating cell nuclear antigen), facilitating viral replication. Interruption at the REn-PCNA and Rep-PCNA interactions by targeting the identified conserved motifs is proposed as a prospect to halt viral replication, after suitable experimental validation.
Collapse
Affiliation(s)
- Heena Jain
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Inderjeet Singh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Shiwani Chahal
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Ramandeep Kaur
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India.
| |
Collapse
|
10
|
Shakir S, Mubin M, Nahid N, Serfraz S, Qureshi MA, Lee TK, Liaqat I, Lee S, Nawaz-ul-Rehman MS. REPercussions: how geminiviruses recruit host factors for replication. Front Microbiol 2023; 14:1224221. [PMID: 37799604 PMCID: PMC10548238 DOI: 10.3389/fmicb.2023.1224221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics Lab, Gembloux Agro-Bio Tech, University of Liѐge, Gembloux, Belgium
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saad Serfraz
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
11
|
Namgial T, Singh AK, Singh NP, Francis A, Chattopadhyay D, Voloudakis A, Chakraborty S. Differential expression of genes during recovery of Nicotiana tabacum from tomato leaf curl Gujarat virus infection. PLANTA 2023; 258:37. [PMID: 37405593 PMCID: PMC10322791 DOI: 10.1007/s00425-023-04182-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023]
Abstract
MAIN CONCLUSION Nicotiana tabacum exhibits recovery response towards tomato leaf curl Gujarat virus. Transcriptome analysis revealed the differential expression of defense-related genes. Genes encoding for cysteine protease inhibitor, hormonal- and stress-related to DNA repair mechanism are found to be involved in the recovery process. Elucidating the role of host factors in response to viral infection is crucial in understanding the plant host-virus interaction. Begomovirus, a genus in the family Geminiviridae, is reported throughout the globe and is known to cause serious crop diseases. Tomato leaf curl Gujarat virus (ToLCGV) infection in Nicotiana tabacum resulted in initial symptom expression followed by a quick recovery in the systemic leaves. Transcriptome analysis using next-generation sequencing (NGS) revealed a large number of differentially expressed genes both in symptomatic as well as recovered leaves when compared to mock-inoculated plants. The virus infected N. tabacum results in alteration of various metabolic pathways, phytohormone signaling pathway, defense related protein, protease inhibitor, and DNA repair pathway. RT-qPCR results indicated that Germin-like protein subfamily T member 2 (NtGLPST), Cysteine protease inhibitor 1-like (NtCPI), Thaumatin-like protein (NtTLP), Kirola-like (NtKL), and Ethylene-responsive transcription factor ERF109-like (NtERTFL) were down-regulated in symptomatic leaves when compared to recovered leaves of ToLCGV-infected plants. In contrast, the Auxin-responsive protein SAUR71-like (NtARPSL) was found to be differentially down-regulated in recovered leaves when compared to symptomatic leaves and the mock-inoculated plants. Lastly, Histone 2X protein like (NtHH2L) gene was found to be down-regulated, whereas Uncharacterized (NtUNCD) was up-regulated in both symptomatic as well as recovered leaves compared to the mock-inoculated plants. Taken together, the present study suggests potential roles of the differentially expressed genes that might govern tobacco's susceptibility and/or recovery response towards ToLCGV infection.
Collapse
Affiliation(s)
- T Namgial
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - A K Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - N P Singh
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Francis
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - D Chattopadhyay
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - A Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece.
| | - S Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Nigam D, Muthukrishnan E, Flores-López LF, Nigam M, Wamaitha MJ. Comparative Genome Analysis of Old World and New World TYLCV Reveals a Biasness toward Highly Variable Amino Acids in Coat Protein. PLANTS (BASEL, SWITZERLAND) 2023; 12:1995. [PMID: 37653912 PMCID: PMC10223811 DOI: 10.3390/plants12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Begomoviruses, belonging to the family Geminiviridae and the genus Begomovirus, are DNA viruses that are transmitted by whitefly Bemisia tabaci (Gennadius) in a circulative persistent manner. They can easily adapt to new hosts and environments due to their wide host range and global distribution. However, the factors responsible for their adaptability and coevolutionary forces are yet to be explored. Among BGVs, TYLCV exhibits the broadest range of hosts. In this study, we have identified variable and coevolving amino acid sites in the proteins of Tomato yellow leaf curl virus (TYLCV) isolates from Old World (African, Indian, Japanese, and Oceania) and New World (Central and Southern America). We focused on mutations in the coat protein (CP), as it is highly variable and interacts with both vectors and host plants. Our observations indicate that some mutations were accumulating in Old World TYLCV isolates due to positive selection, with the S149N mutation being of particular interest. This mutation is associated with TYLCV isolates that have spread in Europe and Asia and is dominant in 78% of TYLCV isolates. On the other hand, the S149T mutation is restricted to isolates from Saudi Arabia. We further explored the implications of these amino acid changes through structural modeling. The results presented in this study suggest that certain hypervariable regions in the genome of TYLCV are conserved and may be important for adapting to different host environments. These regions could contribute to the mutational robustness of the virus, allowing it to persist in different host populations.
Collapse
Affiliation(s)
- Deepti Nigam
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University (TTU), Lubbock, TX 79409, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | | | - Luis Fernando Flores-López
- Departamento de Biotecnología y Bioquímica, Centro de Investigacióny de Estudios Avanzados de IPN (CINVESTAV) Unidad Irapuato, Irapuato 368224, Mexico
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Mwathi Jane Wamaitha
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi P.O. Box 14733-00800, Kenya
| |
Collapse
|
13
|
Wang L, Tan H, Medina-Puche L, Wu M, Garnelo Gomez B, Gao M, Shi C, Jimenez-Gongora T, Fan P, Ding X, Zhang D, Ding Y, Rosas-Díaz T, Liu Y, Aguilar E, Fu X, Lozano-Durán R. Combinatorial interactions between viral proteins expand the potential functional landscape of the tomato yellow leaf curl virus proteome. PLoS Pathog 2022; 18:e1010909. [PMID: 36256684 PMCID: PMC9633003 DOI: 10.1371/journal.ppat.1010909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/03/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Viruses manipulate the cells they infect in order to replicate and spread. Due to strict size restrictions, viral genomes have reduced genetic space; how the action of the limited number of viral proteins results in the cell reprogramming observed during the infection is a long-standing question. Here, we explore the hypothesis that combinatorial interactions may expand the functional landscape of the viral proteome. We show that the proteins encoded by a plant-infecting DNA virus, the geminivirus tomato yellow leaf curl virus (TYLCV), physically associate with one another in an intricate network, as detected by a number of protein-protein interaction techniques. Importantly, our results indicate that intra-viral protein-protein interactions can modify the subcellular localization of the proteins involved. Using one particular pairwise interaction, that between the virus-encoded C2 and CP proteins, as proof-of-concept, we demonstrate that the combination of viral proteins leads to novel transcriptional effects on the host cell. Taken together, our results underscore the importance of studying viral protein function in the context of the infection. We propose a model in which viral proteins might have evolved to extensively interact with other elements within the viral proteome, enlarging the potential functional landscape available to the pathogen. Viruses are obligate intracellular parasites that depend on the molecular machinery of their host cell to complete their life cycle. For this purpose, viruses co-opt host processes, modulating or redirecting them. Most viruses have small genomes, and hence limited coding capacity. During the viral invasion, virus-encoded proteins will be produced in large amounts and coexist in the infected cell, which enables physical or functional interactions among viral proteins, potentially expanding the virus-host functional interface by increasing the number of potential targets in the host cell and/or synergistically modulating the cellular environment. Examples of interactions between viral proteins have been recently documented for both animal and plant viruses; however, the hypothesis that viral proteins might have a combinatorial effect, which would lead to the acquisition of novel functions, lacks systematic experimental validation. Here, we use the geminivirus tomato yellow leaf curl virus (TYLCV), a plant-infecting virus with reduced proteome and causing devastating diseases in crops, to test the idea that combinatorial interactions between viral proteins exist and might underlie an expansion of the functional landscape of the viral proteome. Our results indicate that viral proteins prevalently interact with one another in the context of the infection, which can result in the acquisition of novel functions.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Laura Medina-Puche
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Borja Garnelo Gomez
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Man Gao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chaonan Shi
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Tamara Jimenez-Gongora
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Pengfei Fan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yi Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tábata Rosas-Díaz
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yujing Liu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Emmanuel Aguilar
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, Málaga, Spain
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
- * E-mail:
| |
Collapse
|
14
|
Guevara-Rivera EA, Rodríguez-Negrete EA, Aréchiga-Carvajal ET, Leyva-López NE, Méndez-Lozano J. From Metagenomics to Discovery of New Viral Species: Galium Leaf Distortion Virus, a Monopartite Begomovirus Endemic in Mexico. Front Microbiol 2022; 13:843035. [PMID: 35547137 PMCID: PMC9083202 DOI: 10.3389/fmicb.2022.843035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Begomoviruses (Family Geminiviridae) are a major group of emerging plant viruses worldwide. The knowledge of begomoviruses is mostly restricted to crop plant systems. Nevertheless, it has been described that non-cultivated plants are important reservoirs and vessels of viral evolution that leads to the emergence of new diseases. High-throughput sequencing (HTS) has provided a powerful tool for speeding up the understanding of molecular ecology and epidemiology of plant virome and for discovery of new viral species. In this study, by performing earlier metagenomics library data mining, followed by geminivirus-related signature single plant searching and RCA-based full-length viral genome cloning, and based on phylogenetic analysis, genomes of two isolates of a novel monopartite begomovirus species tentatively named Galium leaf distortion virus (GLDV), which infects non-cultivated endemic plant Galium mexicanum, were identified in Colima, Mexico. Analysis of the genetic structure of both isolates (GLDV-1 and GLDV-2) revealed that the GLDV genome displays a DNA-A-like structure shared with the new world (NW) bipartite begomoviruses. Nonetheless, phylogenetic analysis using representative members of the main begomovirus American clades for tree construction grouped both GLDV isolates in a clade of the monopartite NW begomovirus, Tomato leaf deformation virus (ToLDeV). A comparative analysis of viral replication regulatory elements showed that the GLDV-1 isolate possesses an array and sequence conservation of iterons typical of NW begomovirus infecting the Solanaceae and Fabaceae families. Interestingly, GLDV-2 showed iteron sequences described only in monopartite begomovirus from OW belonging to a sweepovirus clade that infects plants of the Convolvulaceae family. In addition, the rep iteron related-domain (IRD) of both isolates display FRVQ or FRIS amino acid sequences corresponding to NW and sweepobegomovirus clades for GMV-1 and GMV-2, respectively. Finally, the lack of the GLDV DNA-B segment (tested by molecular detection and biological assays using GLDV-1/2 infectious clones) confirmed the monopartite nature of GLDV. This is the first time that a monopartite begomovirus is described in Mexican ecosystems, and “in silico” geometagenomics analysis indicates that it is restricted to a specific region. These data revealed additional complexity in monopartite begomovirus genetics and geographic distribution and highlighted the importance of metagenomic approaches in understanding global virome ecology and evolution.
Collapse
Affiliation(s)
- Enrique A Guevara-Rivera
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| | - Edgar A Rodríguez-Negrete
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| | - Elva T Aréchiga-Carvajal
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología-Unidad de Manipulación Genética, San Nicolás de los Garza, Mexico
| | - Norma E Leyva-López
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| |
Collapse
|
15
|
Chang H, Lee C, Chang C, Jan F. FKBP-type peptidyl-prolyl cis-trans isomerase interacts with the movement protein of tomato leaf curl New Delhi virus and impacts viral replication in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:561-575. [PMID: 34984809 PMCID: PMC8916215 DOI: 10.1111/mpp.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Begomoviruses belonging to the family Geminiviridae are plant-infecting DNA viruses. Begomoviral movement protein (MP) has been reported to be required for virus movement, host range determination, and symptom development. In the present study, the FK506-binding protein (FKBP)-type peptidyl-prolyl cis-trans isomerase (NbFKPPIase) of Nicotiana benthamiana was identified by a yeast two-hybrid screening system using the MP of tomato leaf curl New Delhi virus (ToLCNDV) oriental melon (OM) isolate (MPOM ) as bait. Transient silencing of the gene encoding NbFKPPIase increased replication of three test begomoviruses, and transient overexpression decreased viral replication, indicating that NbFKPPIase plays a role in defence against begomoviruses. However, infection of N. benthamiana by ToLCNDV-OM or overexpression of the gene encoding MPOM drastically reduced the expression of the gene encoding NbFKPPIase. Fluorescence resonance energy transfer analysis revealed that MPOM interacted with NbFKPPIase in the periphery of cells. Expression of the gene encoding NbFKPPIase was induced by salicylic acid but not by methyl jasmonate or ethylene. Moreover, the expression of the gene encoding NbFKPPIase was down-regulated in response to 6-benzylaminopurine and up-regulated in response to gibberellin or indole-3-acetic acid, suggesting a role of NbFKPPIase in plant development. Transcriptome analysis and comparison of N. benthamiana transient silencing and overexpression of the gene encoding MPOM led to the identification of several differentially expressed genes whose functions are probably associated with cell cycle regulation. Our results indicate that begomoviruses could suppress NbFKPPIase-mediated defence and biological functions by transcriptional inhibition and physical interaction between MP and NbFKPPIase to facilitate infection.
Collapse
Affiliation(s)
- Ho‐Hsiung Chang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Chia‐Hwa Lee
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichung and TaipeiTaiwan
| | - Chung‐Jan Chang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Department of Plant PathologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Fuh‐Jyh Jan
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichung and TaipeiTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
16
|
Devendran R, Namgial T, Reddy KK, Kumar M, Zarreen F, Chakraborty S. Insights into the multifunctional roles of geminivirus-encoded proteins in pathogenesis. Arch Virol 2022; 167:307-326. [PMID: 35079902 DOI: 10.1007/s00705-021-05338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
Geminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabolism for their survival. To compensate for the small size of their genome, geminiviruses encode multifunctional proteins. In addition, geminiviruses associate themselves with satellite DNA molecules which also encode proteins that support the virus in establishing successful infection. Geminiviral proteins recruit multiple host factors, suppress the host defense, and manipulate host metabolism to establish infection. We have updated the knowledge accumulated about the proteins of geminiviruses and their satellites in the context of pathogenesis in a single review. We also discuss their interactions with host factors to provide a mechanistic understanding of the infection process.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tsewang Namgial
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kishore Kumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
17
|
Selective REcruitmeNt of plant DNA polymerases by geminivirus. Trends Genet 2021; 38:211-213. [PMID: 34949465 DOI: 10.1016/j.tig.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022]
Abstract
Geminiviruses reprogram host machineries to ensure their own propagation. They do not encode any DNA polymerase. Furthermore, the absence of direct evidence about the precise role of any host-encoded DNA polymerase has made geminivirus replication an enigma. Wu et al. recently resolved this puzzle by revealing that geminiviruses utilize plant DNA polymerase α and δ to drive their replication.
Collapse
|
18
|
Ali NF, Paracha RZ, Tahir M. In silico evaluation of molecular virus-virus interactions taking place between Cotton leaf curl Kokhran virus- Burewala strain and Tomato leaf curl New Delhi virus. PeerJ 2021; 9:e12018. [PMID: 34721952 PMCID: PMC8532979 DOI: 10.7717/peerj.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background Cotton leaf curl disease (CLCuD) is a disease of cotton caused by begomoviruses, leading to a drastic loss in the annual yield of the crop. Pakistan has suffered two epidemics of this disease leading to the loss of billions in annual exports. The speculation that a third epidemic of CLCuD may result as consequence of the frequent occurrence of Tomato leaf curl New Delhi virus (ToLCNDV) and Cotton leaf curl Kokhran Virus-Burewala Strain (CLCuKoV-Bu) in CLCuD infected samples, demand that the interactions taking between the two viruses be properly evaluated. This study is designed to assess virus-virus interactions at the molecular level and determine the type of co-infection taking place. Methods Based on the amino acid sequences of the gene products of both CLCuKoV-Bu and ToLCNDV, protein structures were generated using different software, i.e., MODELLER, I-TASSER, QUARKS, LOMETS and RAPTORX. A consensus model for each protein was selected after model quality assessment using ERRAT, QMEANDisCo, PROCHECK Z-Score and Ramachandran plot analysis. The active and passive residues in the protein structures were identified using the CPORT server. Protein–Protein Docking was done using the HADDOCK webserver, and 169 Protein–Protein Interaction (PPIs) were performed between the proteins of the two viruses. The docked complexes were submitted to the PRODIGY server to identify the interacting residues between the complexes. The strongest interactions were determined based on the HADDOCK Score, Desolvation energy, Van der Waals Energy, Restraint Violation Energy, Electrostatic Energy, Buried Surface Area and Restraint Violation Energy, Binding Affinity and Dissociation constant (Kd). A total of 50 ns Molecular Dynamic simulations were performed on complexes that exhibited the strongest affinity in order to validate the stability of the complexes, and to remove any steric hindrances that may exist within the structures. Results Our results indicate significant interactions taking place between the proteins of the two viruses. Out of all the interactions, the strongest were observed between the Replication Initiation protein (Rep) of CLCuKoV-Bu with the Movement protein (MP), Nuclear Shuttle Protein (NSP) of ToLCNDV (DNA-B), while the weakest were seen between the Replication Enhancer protein (REn) of CLCuKoV-Bu with the REn protein of ToLCNDV. The residues identified to be taking a part in interaction belonged to domains having a pivotal role in the viral life cycle and pathogenicity. It maybe deduced that the two viruses exhibit antagonistic behavior towards each other, and the type of infection may be categorised as a type of Super Infection Exclusion (SIE) or homologous interference. However, further experimentation, in the form of transient expression analysis, is needed to confirm the nature of these interactions and increase our understanding of the direct interactions taking place between two viruses.
Collapse
Affiliation(s)
- Nida Fatima Ali
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Federal, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology, Islamabad, Federal, Pakistan
| | - Muhammad Tahir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Federal, Pakistan
| |
Collapse
|
19
|
Roy B, Chakraborty P, Ghosh A. How many begomovirus copies are acquired and inoculated by its vector, whitefly (Bemisia tabaci) during feeding? PLoS One 2021; 16:e0258933. [PMID: 34699546 PMCID: PMC8547624 DOI: 10.1371/journal.pone.0258933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Begomoviruses are transmitted by whitefly (Bemisia tabaci Gennadius, Hemiptera: Aleyrodidae) in a persistent-circulative way. Once B. tabaci becomes viruliferous, it remains so throughout its life span. Not much is known about the copies of begomoviruses ingested and/or released by B. tabaci during the process of feeding. The present study reports the absolute quantification of two different begomoviruses viz. tomato leaf curl New Delhi virus (ToLCNDV, bipartite) and chilli leaf curl virus (ChiLCV, monopartite) at different exposure of active acquisition and inoculation feeding using a detached leaf assay. A million copies of both the begomoviruses were acquired by a single B. tabaci with only 5 min of active feeding and virus copy number increased in a logarithmic model with feeding exposure. Whereas, a single B. tabaci could inoculate 8.21E+09 and 4.19E+11 copies of ToLCNDV and ChiLCV, respectively in detached leaves by 5 min of active feeding. Virus copies in inoculated leaves increased with an increase in feeding duration. Comparative dynamics of these two begomoviruses indicated that B. tabaci adult acquired around 14-fold higher copies of ChiLCV than ToLCNDV 24 hrs post feeding. Whereas, the rate of inoculation of ToLCNDV by individual B. tabaci was significantly higher than ChiLCV. The study provides a better understanding of begomovirus acquisition and inoculation dynamics by individual B. tabaci and would facilitate research on virus-vector epidemiology and screening host resistance.
Collapse
Affiliation(s)
- Buddhadeb Roy
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prosenjit Chakraborty
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
20
|
Li P, Su F, Meng Q, Yu H, Wu G, Li M, Qing L. The C5 protein encoded by Ageratum leaf curl Sichuan virus is a virulence factor and contributes to the virus infection. MOLECULAR PLANT PATHOLOGY 2021; 22:1149-1158. [PMID: 34219358 PMCID: PMC8359000 DOI: 10.1111/mpp.13103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 05/21/2023]
Abstract
Earlier reports have indicated that begomoviruses encode four proteins (AC1/C1, AC2/C2, AC3/C3, and AC4/C4 proteins) using complementary-sense DNA as the template. In recent years, several reports have shown that some begomoviruses also encode an AC5/C5 protein from the complementary DNA strand, and these AC5/C5 proteins play different roles in virus infections. Here, we provide evidence showing that Ageratum leaf curl Sichuan virus (ALCScV), a monopartite begomovirus, also encodes a C5 protein that is important for disease symptom formation and can affect viral replication. Infection of Nicotiana benthamiana plants with a potato virus X (PVX)-based vector carrying the ALCScV C5 gene resulted in more severe disease symptoms and higher virus accumulation levels. ALCScV C5 protein can be found in the cytoplasm and the nucleus. Furthermore, this protein is also a suppressor of posttranscriptional gene silencing. Mutational analysis showed that knockout of C5 gene expression significantly reduced ALCScV-induced disease symptoms and virus accumulation, while expression of the C5 gene using the PVX-based vector enhanced ALCScV accumulation in coinfected N. benthamiana plants.
Collapse
Affiliation(s)
- Pengbai Li
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Feng Su
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Qiyuan Meng
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Huabin Yu
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease BiologyCollege of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
21
|
Aimone CD, Lavington E, Hoyer JS, Deppong DO, Mickelson-Young L, Jacobson A, Kennedy GG, Carbone I, Hanley-Bowdoin L, Duffy S. Population diversity of cassava mosaic begomoviruses increases over the course of serial vegetative propagation. J Gen Virol 2021; 102:001622. [PMID: 34310272 PMCID: PMC8491896 DOI: 10.1099/jgv.0.001622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.
Collapse
Affiliation(s)
- Catherine D. Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Erik Lavington
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - David O. Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - George G. Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
22
|
Wu M, Wei H, Tan H, Pan S, Liu Q, Bejarano ER, Lozano-Durán R. Plant DNA polymerases α and δ mediate replication of geminiviruses. Nat Commun 2021; 12:2780. [PMID: 33986276 PMCID: PMC8119979 DOI: 10.1038/s41467-021-23013-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Geminiviruses are causal agents of devastating diseases in crops. Geminiviruses have circular single-stranded (ss) DNA genomes that are replicated in the nucleus of the infected plant cell through double-stranded (ds) DNA intermediates by the plant DNA replication machinery. Which host DNA polymerase mediates geminiviral multiplication, however, has so far remained elusive. Here, we show that subunits of the nuclear replicative DNA polymerases α and δ physically interact with the geminivirus-encoded replication enhancer protein, C3, and that these polymerases are required for viral replication. Our results suggest that, while DNA polymerase α is essential to generate the viral dsDNA intermediate, DNA polymerase δ mediates the synthesis of new copies of the geminiviral ssDNA genome, and that the virus-encoded C3 may act selectively, recruiting DNA polymerase δ over ε to favour productive replication.
Collapse
Affiliation(s)
- Mengshi Wu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hua Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shaojun Pan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qi Liu
- Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, Málaga, Spain
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
23
|
Sun K, Liang Y, Zhong X, Hu X, Zhang P, Yu X. Nightshade Curly Top Virus: A Possible New Virus of the Genus Topocuvirus Infecting Solanum nigrum in China. PLANT DISEASE 2021; 105:1006-1012. [PMID: 33026306 DOI: 10.1094/pdis-03-20-0572-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Virus-like symptoms, including leaf deformation and curling, were observed on nightshade (Solanum nigrum) in Zhejiang Province, China. To identify possible pathogenic viruses or viroids, a symptomatic sample was subjected to deep sequencing of small interfering RNAs. Assembly of the resulting sequences led to identification of a novel geminivirus, provisionally designated nightshade curly top virus (NCTV). The complete genomic DNA sequence is 2,867 nucleotides and encodes seven open reading frames. NCTV shares 77.1% overall nucleotide sequence identity, 86.3% coat protein amino acid identity, and 78.9% replication-associated protein amino acid sequence identity with Tomato pseudo-curly top virus, a member of the genus Topocuvirus. PCR screening of nightshade field isolates indicated that NCTV is widely distributed in Zhejiang. Agrobacterium-mediated inoculation revealed that NCTV is highly infectious to Nicotiana benthamiana, S. nigrum, S. lycopersicum, and S. tuberosum. Based on pairwise comparisons and phylogenetic analyses, NCTV is proposed as a provisional member of the genus Topocuvirus.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang Province, People's Republic of China
| | - Yan Liang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang Province, People's Republic of China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, People's Republic of China
| | - Xuenan Hu
- Guangzhou Customs Technology Center, Guangzhou 510623, People's Republic of China
| | - Pengjun Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang Province, People's Republic of China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang Province, People's Republic of China
| |
Collapse
|
24
|
Shakir S, Jander G, Nahid N, Mubin M, Younus A, Nawaz-Ul-Rehman MS. Interaction of eukaryotic proliferating cell nuclear antigen (PCNA) with the replication-associated protein (Rep) of cotton leaf curl Multan virus and pedilanthus leaf curl virus. 3 Biotech 2021; 11:14. [PMID: 33442513 DOI: 10.1007/s13205-020-02499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/19/2020] [Indexed: 11/28/2022] Open
Abstract
The replication-associated (Rep) proteins of pathogenic begomoviruses, including cotton leaf curl Multan virus (CLCuMuV) and pedilanthus leaf curl virus (PeLCV), interact with the DNA replication machinery of their eukaryotic hosts. The analysis of Rep protein sequences showed that there is 13-28% sequence variation among CLCuMuV and PeLCV isolates, with phylogenetic clusters that can separated at least in part based on the country of origin of the respective viruses. To identify specific host factors involved in the virus replication cycle, we conducted yeast two-hybrid assays to detect possible interactions between the CLCuMuV and PeLCV Rep proteins and 30 protein components of the Saccharomyces cerevisiae DNA replication machinery. This showed that the proliferating cell nuclear antigen (PCNA) protein of S. cerevisiae interacts with Rep proteins from both CLCuMuV and PeLCV. We used the yeast PCNA sequence in BLAST comparisons to identify two PCNA orthologs each in Gossypium hirsutum (cotton), Arabidopsis thaliana (Arabidopsis), and Nicotiana benthamiana (tobacco). Sequence comparisons showed 38-40% identity between the yeast and plant PCNA proteins, and > 91% identity among the plant PCNA proteins, which clustered together in one phylogenetic group. The expression of the six plant PCNA proteins in the yeast two-hybrid system confirmed interactions with the CLCuMuV and PeLCV Rep proteins. Our results demonstrate that the interaction of begomovirus Rep proteins with eukaryotic PCNA proteins is strongly conserved, despite significant evolutionary variation in the protein sequences of both of the interacting partners.
Collapse
Affiliation(s)
- Sara Shakir
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
- Present Address: Plant Genetics, Lab, Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Georg Jander
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Ayesha Younus
- Laser Matter Interaction and Nano-Sciences Lab, Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shah Nawaz-Ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| |
Collapse
|
25
|
Zarreen F, Chakraborty S. Epigenetic regulation of geminivirus pathogenesis: a case of relentless recalibration of defence responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6890-6906. [PMID: 32869846 DOI: 10.1093/jxb/eraa406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Geminiviruses constitute one of the largest families of plant viruses and they infect many economically important crops. The proteins encoded by the single-stranded DNA genome of these viruses interact with a wide range of host proteins to cause global dysregulation of cellular processes and help establish infection in the host. Geminiviruses have evolved numerous mechanisms to exploit host epigenetic processes to ensure the replication and survival of the viral genome. Here, we review our current knowledge of diverse epigenetic processes that have been implicated in the regulation of geminivirus pathogenesis, including DNA methylation, histone post-transcriptional modification, chromatin remodelling, and nucleosome repositioning. In addition, we discuss the currently limited evidence of host epigenetic defence responses that are aimed at counteracting geminivirus infection, and the potential for exploiting these responses for the generation of resistance against geminiviruses in crop species.
Collapse
Affiliation(s)
- Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
Qiu Y, Zhang S, Yu H, Xuan Z, Yang L, Zhan B, Murilo Zerbini F, Cao M. Identification and Characterization of Two Novel Geminiviruses Associated with Paper Mulberry ( Broussonetia papyrifera) Leaf Curl Disease. PLANT DISEASE 2020; 104:3010-3018. [PMID: 32881645 DOI: 10.1094/pdis-12-19-2597-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Paper mulberry (Broussonetia papyrifera) is a perennial woody plant used as source material for Cai Lun paper making, in traditional Chinese medicine, and as livestock feed. To identify the presence of viruses in paper mulberry plants affected by a disease with leaf curl symptoms, high-throughput sequencing of total RNA was performed. Analysis of transcriptome libraries allowed the reconstruction of two geminivirus-like genomes. Rolling-circle amplification and PCR with back-to-back primers confirmed the presence of two geminiviruses with monopartite genomes in these plants, with the names paper mulberry leaf curl virus 1 and 2 (PMLCV-1 and PMLCV-2) proposed. The genomes of PMLCV-1 (3,056 nt) and PMLCV-2 (3,757 to 3,763 nt) encode six proteins, with the V4 protein of PMLCV-1 and the V3 proteins of both viruses having low similarities to any known protein in databases. Alternative splicing of an intron, akin to that of mastre-, becurto-, capula-, and grabloviruses, was identified by small RNA (sRNA)-seq and RNA-seq reads mapping to PMLCV-1 and PMLCV-2 antisense transcripts. Phylogenetic analyses and pairwise comparisons showed that PMLCV-1 and PMLCV-2 are most closely related to, but distinct from, two unassigned geminiviruses, citrus chlorotic dwarf associated virus and mulberry mosaic dwarf associated virus, suggesting that they are two new members of the family Geminiviridae. Field investigation confirmed the close association of the two viruses with leaf curl symptoms in paper mulberry plants and that coinfection can aggravate the symptoms.
Collapse
Affiliation(s)
- Yuanjian Qiu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Yu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhiyou Xuan
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Liu Yang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, Academy of Agricultural Sciences, Beijing 100193, China
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
27
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Sun M, Jiang K, Li C, Du J, Li M, Ghanem H, Wu G, Qing L. Tobacco curly shoot virus C3 protein enhances viral replication and gene expression in Nicotiana benthamiana plants. Virus Res 2020; 281:197939. [PMID: 32198077 DOI: 10.1016/j.virusres.2020.197939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 11/24/2022]
Abstract
Geminiviruses are single-stranded DNA viruses that cause devastating diseases in many crops worldwide. The replication enhancer proteins (REn), encoded by the C3 (AC3, and AL3) ORFs of geminiviruses, have critical roles in viral DNA accumulation and symptom development in infected plants. In the current study, we have constructed an infectious clone of the Tobacco curly shoot virus (TbCSV) C3 mutant, TbCSVΔC3, that contains two start codon mutations that abrogated C3 ORF expression, but did not alter the amino acid sequence of the C2 ORF. As predicted, the absence of the C3 protein reduced TbCSV DNA accumulation, and over-expression of the C3 protein enhanced TbCSV DNA accumulation in infected leaves of Nicotiana benthamiana. The C3 mutation reduced the expression levels of both virion- and complementary-sense TbCSV genes whereas over-expression of the C3 protein increased TbCSV gene expression. Furthermore, the expression of the wild-type and site-directed mutants of C3 proteins using the potato virus X (PVX) system showed that Y93A mutation reduced the replication enhancement activity of the C3 protein in N. benthamiana. All the available evidence demonstrates that the C3 protein is tightly coupled with TbCSV DNA accumulation. However, the TbCSVΔC3 mutant was nearly as infectious in N. benthamiana as TbCSVWT and only had slightly delayed and attenuated symptom expression. Our findings demonstrate that TbCSV C3 protein enhances viral replication and gene expression, but has only moderate effects on symptom development in N. benthamiana.
Collapse
Affiliation(s)
- Miao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Kairong Jiang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Chunji Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Jiang Du
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Hussein Ghanem
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
29
|
Superinfection by PHYVV Alters the Recovery Process in PepGMV-Infected Pepper Plants. Viruses 2020; 12:v12030286. [PMID: 32151060 PMCID: PMC7150747 DOI: 10.3390/v12030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/02/2023] Open
Abstract
Geminiviruses are important plant pathogens that affect crops around the world. In some geminivirus-host interactions, infected plants show recovery, a phenomenon characterized by symptom disappearance in newly emerging leaves. In pepper-Pepper golden mosaic virus (PepGMV) interaction, the host recovery process involves a silencing mechanism that includes both post-transcriptional (PTGS) and transcriptional (TGS) gene silencing pathways. Under field conditions, PepGMV is frequently found in mixed infections with Pepper huasteco yellow vein virus (PHYVV), another bipartite begomovirus. Mixed infected plants generally show a synergetic phenomenon and do not present recovery. Little is known about the molecular mechanism of this interaction. In the present study, we explored the effect of superinfection by PHYVV on a PepGMV-infected pepper plant showing recovery. Superinfection with PHYVV led to (a) the appearance of severe symptoms, (b) an increase of the levels of PepGMV DNA accumulation, (c) a decrease of the relative methylation levels of PepGMV DNA, and (d) an increase of chromatin activation marks present in viral minichromosomes. Finally, using heterologous expression and silencing suppression reporter systems, we found that PHYVV REn presents TGS silencing suppressor activity, whereas similar experiments suggest that Rep might be involved in suppressing PTGS.
Collapse
|
30
|
Li P, Jing C, Ren H, Jia Z, Ghanem H, Wu G, Li M, Qing L. Analysis of Pathogenicity and Virulence Factors of Ageratum leaf curl Sichuan virus. FRONTIERS IN PLANT SCIENCE 2020; 11:527787. [PMID: 33042171 PMCID: PMC7527423 DOI: 10.3389/fpls.2020.527787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
Ageratum leaf curl Sichuan virus (ALCScV) is a novel monopartite begomovirus, which was identified from Ageratum conyzoides plants in Sichuan Province, China. In this study, we showed that ALCScV can induce typical dwarf and downward leaf-curling symptoms in Ageratum conyzoides, Helianthus annuus, and Nicotiana benthamiana plants and that the noncognate betasatellite can enhance disease symptoms and increase viral accumulation. Expression of the ALCScV-encoded V2, C1, and C4 proteins through a Potato virus X (PVX) vector caused severe symptoms in N. benthamiana. Further study revealed no symptoms in N. benthamiana plants inoculated with infectious ALCScV clones lacking the C4 protein and that the relative viral DNA accumulation levels significantly decreased when compared with ALCScV-inoculated plants. Thus, our mutational analyses demonstrated that C4 is a pathogenicity determinant that plays key roles in symptom formation and virus accumulation. Furthermore, we also demonstrated that the second glycine of C4 was critical for ALCScV pathogenicity.
Collapse
|
31
|
Maio F, Arroyo-Mateos M, Bobay BG, Bejarano ER, Prins M, van den Burg HA. A Lysine Residue Essential for Geminivirus Replication Also Controls Nuclear Localization of the Tomato Yellow Leaf Curl Virus Rep Protein. J Virol 2019; 93:e01910-18. [PMID: 30842320 PMCID: PMC6498046 DOI: 10.1128/jvi.01910-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
Geminiviruses are single-stranded DNA (ssDNA) viruses that infect a wide range of plants. To promote viral replication, geminiviruses manipulate the host cell cycle. The viral protein Rep is essential to reprogram the cell cycle and then initiate viral DNA replication by interacting with a plethora of nuclear host factors. Even though many protein domains of Rep have been characterized, little is known about its nuclear targeting. Here, we show that one conserved lysine in the N-terminal part of Rep is pivotal for nuclear localization of the Rep protein from Tomato yellow leaf curl virus (TYLCV), with two other lysines also contributing to its nuclear import. Previous work had identified that these residues are essential for Rep from Tomato golden mosaic virus (TGMV) to interact with the E2 SUMO-conjugating enzyme (SCE1). We here show that mutating these lysines leads to nuclear exclusion of TYLCV Rep without compromising its interaction with SCE1. Moreover, the ability of TYLCV Rep to promote viral DNA replication also depends on this highly conserved lysine independently of its role in nuclear import of Rep. Our data thus reveal that this lysine potentially has a broad role in geminivirus replication, but its role in nuclear import and SCE1 binding differs depending on the Rep protein examined.IMPORTANCE Nuclear activity of the replication initiator protein (Rep) of geminiviruses is essential for viral replication. We now define that one highly conserved lysine is important for nuclear import of Rep from three different begomoviruses. To our knowledge, this is the first time that nuclear localization has been mapped for any geminiviral Rep protein. Our data add another key function to this lysine residue, besides its roles in viral DNA replication and interaction with host factors, such as the SUMO E2-conjugating enzyme.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Benjamin G Bobay
- Duke University NMR Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Keygene N.V., Wageningen, the Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Mondal D, Mandal S, Shil S, Sahana N, Pandit GK, Choudhury A. Genome wide molecular evolution analysis of begomoviruses reveals unique diversification pattern in coat protein gene of Old World and New World viruses. Virusdisease 2019; 30:74-83. [PMID: 31143834 DOI: 10.1007/s13337-019-00524-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/15/2019] [Indexed: 11/30/2022] Open
Abstract
Begomoviruses (Family-Geminiviridae) are plant infecting single stranded DNA viruses known to evolve very fast. Here, we have analysed the DNA-A sequences of 302 begomoviruses reported as 'type isolates' from different countries following the list of International Committee on Taxonomy of Viruses till 2017. Phylogenetic analysis was performed which revealed two major evolutionarily distinct groups namely Old World (OW) and New World (NW) viruses. Our work present evidence that cp gene has varied degree of diversification among the viruses reported from NW and OW. The NW viruses are more conserved in their cp gene sequences than that of OW viruses irrespective of host plant families. Further analysis reveals that cp gene differs in its recombination pattern among OW and NW viruses whereas rep gene is highly recombination prone in both OW and NW viruses. The sequence conservation in cp gene in NW viruses is a result of meagre recombination and subsequent low substitution rate in comparison to OW viruses. Our results demonstrated that the cp gene in NW viruses is less likely to possess nuclear localisation sequences than OW cp gene. Further we present evidence that the NW-cp is under the influence of strong purifying selection. We propose that the precoat protein (pcp) gene present exclusively in the 5' of cp gene in OW viruses is highly diversified and strong positive selection working on pcp gene might be attributing largely to the diversity of OW-cp gene.
Collapse
Affiliation(s)
- Debayan Mondal
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Somnath Mandal
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Sandip Shil
- Regional Research Centre, ICAR-CPCRI, Mohitnagar, Jalpaiguri, West Bengal 735102 India
| | - Nandita Sahana
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Goutam Kumar Pandit
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Ashok Choudhury
- 3Soil Microbiology Laboratory, Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| |
Collapse
|
33
|
Arroyo-Mateos M, Sabarit B, Maio F, Sánchez-Durán MA, Rosas-Díaz T, Prins M, Ruiz-Albert J, Luna AP, van den Burg HA, Bejarano ER. Geminivirus Replication Protein Impairs SUMO Conjugation of Proliferating Cellular Nuclear Antigen at Two Acceptor Sites. J Virol 2018. [PMID: 29950424 DOI: 10.1101/305789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Geminiviruses are DNA viruses that replicate in nuclei of infected plant cells using the plant DNA replication machinery, including PCNA (proliferating cellular nuclear antigen), a cofactor that orchestrates genome duplication and maintenance by recruiting crucial players to replication forks. These viruses encode a multifunctional protein, Rep, which is essential for viral replication, induces the accumulation of the host replication machinery, and interacts with several host proteins, including PCNA and the SUMO E2 conjugation enzyme (SCE1). Posttranslational modification of PCNA by ubiquitin or SUMO plays an essential role in the switching of PCNA between interacting partners during DNA metabolism processes (e.g., replication, recombination, and repair, etc.). In yeast, PCNA sumoylation has been associated with DNA repair involving homologous recombination (HR). Previously, we reported that ectopic Rep expression results in very specific changes in the sumoylation pattern of plant cells. In this work, we show, using a reconstituted sumoylation system in Escherichia coli, that tomato PCNA is sumoylated at two residues, K254 and K164, and that coexpression of the geminivirus protein Rep suppresses sumoylation at these lysines. Finally, we confirm that PCNA is sumoylated in planta and that Rep also interferes with PCNA sumoylation in plant cells.IMPORTANCE SUMO adducts have a key role in regulating the activity of animal and yeast PCNA on DNA repair and replication. Our work demonstrates for the first time that sumoylation of plant PCNA occurs in plant cells and that a plant virus interferes with this modification. This work marks the importance of sumoylation in allowing viral infection and replication in plants. Moreover, it constitutes a prime example of how viral proteins interfere with posttranslational modifications of selected host factors to create a proper environment for infection.
Collapse
Affiliation(s)
- Manuel Arroyo-Mateos
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Blanca Sabarit
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Miguel A Sánchez-Durán
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Tabata Rosas-Díaz
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- Keygene NV, Wageningen, The Netherlands
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Ana P Luna
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| |
Collapse
|
34
|
Shen W, Bobay BG, Greeley LA, Reyes MI, Rajabu CA, Blackburn RK, Dallas MB, Goshe MB, Ascencio-Ibáñez JT, Hanley-Bowdoin L. Sucrose Nonfermenting 1-Related Protein Kinase 1 Phosphorylates a Geminivirus Rep Protein to Impair Viral Replication and Infection. PLANT PHYSIOLOGY 2018; 178:372-389. [PMID: 30006378 PMCID: PMC6130039 DOI: 10.1104/pp.18.00268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/29/2018] [Indexed: 05/17/2023]
Abstract
Geminiviruses are single-stranded DNA viruses that infect a wide variety of plants and cause severe crop losses worldwide. The geminivirus replication initiator protein (Rep) binds to the viral replication origin and catalyzes DNA cleavage and ligation to initiate rolling circle replication. In this study, we found that the Tomato golden mosaic virus (TGMV) Rep is phosphorylated at serine-97 by sucrose nonfermenting 1-related protein kinase 1 (SnRK1), a master regulator of plant energy homeostasis and metabolism. Phosphorylation of Rep or the phosphomimic S97D mutation impaired Rep binding to viral DNA. A TGMV DNA-A replicon containing the Rep S97D mutation replicated less efficiently in tobacco (Nicotiana tabacum) protoplasts than in wild-type or Rep phosphorylation-deficient replicons. The TGMV Rep-S97D mutant also was less infectious than the wild-type virus in Nicotiana benthamiana and was unable to infect tomato (Solanum lycopersicum). Nearly all geminivirus Rep proteins have a serine residue at the position equivalent to TGMV Rep serine-97. SnRK1 phosphorylated the equivalent serines in the Rep proteins of Tomato mottle virus and Tomato yellow leaf curl virus and reduced DNA binding, suggesting that SnRK1 plays a key role in combating geminivirus infection. These results established that SnRK1 phosphorylates Rep and interferes with geminivirus replication and infection, underscoring the emerging role for SnRK1 in the host defense response against plant pathogens.
Collapse
Affiliation(s)
- Wei Shen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
| | - Benjamin G Bobay
- Duke University NMR Center, Duke University Medical Center, Duke University, Durham, North Carolina 27708
| | - Laura A Greeley
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Maria I Reyes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
| | - Cyprian A Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, 00200 Nairobi, Kenya
| | - R Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Mary Beth Dallas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
| | - Michael B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Jose T Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695-7651
| |
Collapse
|
35
|
Geminivirus Replication Protein Impairs SUMO Conjugation of Proliferating Cellular Nuclear Antigen at Two Acceptor Sites. J Virol 2018; 92:JVI.00611-18. [PMID: 29950424 DOI: 10.1128/jvi.00611-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023] Open
Abstract
Geminiviruses are DNA viruses that replicate in nuclei of infected plant cells using the plant DNA replication machinery, including PCNA (proliferating cellular nuclear antigen), a cofactor that orchestrates genome duplication and maintenance by recruiting crucial players to replication forks. These viruses encode a multifunctional protein, Rep, which is essential for viral replication, induces the accumulation of the host replication machinery, and interacts with several host proteins, including PCNA and the SUMO E2 conjugation enzyme (SCE1). Posttranslational modification of PCNA by ubiquitin or SUMO plays an essential role in the switching of PCNA between interacting partners during DNA metabolism processes (e.g., replication, recombination, and repair, etc.). In yeast, PCNA sumoylation has been associated with DNA repair involving homologous recombination (HR). Previously, we reported that ectopic Rep expression results in very specific changes in the sumoylation pattern of plant cells. In this work, we show, using a reconstituted sumoylation system in Escherichia coli, that tomato PCNA is sumoylated at two residues, K254 and K164, and that coexpression of the geminivirus protein Rep suppresses sumoylation at these lysines. Finally, we confirm that PCNA is sumoylated in planta and that Rep also interferes with PCNA sumoylation in plant cells.IMPORTANCE SUMO adducts have a key role in regulating the activity of animal and yeast PCNA on DNA repair and replication. Our work demonstrates for the first time that sumoylation of plant PCNA occurs in plant cells and that a plant virus interferes with this modification. This work marks the importance of sumoylation in allowing viral infection and replication in plants. Moreover, it constitutes a prime example of how viral proteins interfere with posttranslational modifications of selected host factors to create a proper environment for infection.
Collapse
|
36
|
Rajabu CA, Kennedy GG, Ndunguru J, Ateka EM, Tairo F, Hanley-Bowdoin L, Ascencio-Ibáñez JT. Lanai: A small, fast growing tomato variety is an excellent model system for studying geminiviruses. J Virol Methods 2018. [PMID: 29530481 PMCID: PMC5904752 DOI: 10.1016/j.jviromet.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Florida Lanai is a tomato variety suitable for virus-host interaction studies. Florida-Lanai was infected by geminiviruses delivered by different methods. Florida-Lanai shows distinct measurable symptoms for different geminiviruses. Florida-Lanai has a small size, rapid growth and is easy to maintain. Florida-Lanai is an excellent choice for comparing geminivirus infections.
Geminiviruses are devastating single-stranded DNA viruses that infect a wide variety of crops in tropical and subtropical areas of the world. Tomato, which is a host for more than 100 geminiviruses, is one of the most affected crops. Developing plant models to study geminivirus-host interaction is important for the design of virus management strategies. In this study, “Florida Lanai” tomato was broadly characterized using three begomoviruses (Tomato yellow leaf curl virus, TYLCV; Tomato mottle virus, ToMoV; Tomato golden mosaic virus, TGMV) and a curtovirus (Beet curly top virus, BCTV). Infection rates of 100% were achieved by agroinoculation of TYLCV, ToMoV or BCTV. Mechanical inoculation of ToMoV or TGMV using a microsprayer as well as whitefly transmission of TYLCV or ToMoV also resulted in 100% infection frequencies. Symptoms appeared as early as four days post inoculation when agroinoculation or bombardment was used. Symptoms were distinct for each virus and a range of features, including plant height, flower number, fruit number, fruit weight and ploidy, was characterized. Due to its small size, rapid growth, ease of characterization and maintenance, and distinct responses to different geminiviruses, “Florida Lanai” is an excellent choice for comparing geminivirus infection in a common host.
Collapse
Affiliation(s)
- C A Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, 27695, USA; Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - G G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC, 27695, USA
| | - J Ndunguru
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - E M Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - F Tairo
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - L Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC, 27695, USA
| | - J T Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Polk Hall 132, Box 7622, NCSU Campus, Raleigh NC, 27695, USA.
| |
Collapse
|
37
|
Iqbal Z, Shafiq M, Ali I, Mansoor S, Briddon RW. Maintenance of Cotton Leaf Curl Multan Betasatellite by Tomato Leaf Curl New Delhi Virus-Analysis by Mutation. FRONTIERS IN PLANT SCIENCE 2017; 8:2208. [PMID: 29312431 PMCID: PMC5744040 DOI: 10.3389/fpls.2017.02208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Viruses of the genus Begomovirus (family Geminiviridae) are economically important phytopathogens that are transmitted plant-to-plant by the whitefly Bemisia tabaci. Most Old World (OW) begomoviruses are monopartite and many of these interact with symptoms and host range determining betasatellites. Tomato leaf curl New Delhi virus (ToLCNDV) is one of only a few OW begomoviruses with a bipartite genome (components known as DNA A and DNA B). Four genes [AV2, coat protein (CP), transcriptional-activator protein (TrAP), and AC4] of ToLCNDV were mutated and the effects of the mutations on infectivity, symptoms and the ability to maintain Cotton leaf curl Multan betasatellite (CLCuMuB) were investigated. Infectivity and virus/betasatellite DNA titer were assessed by Southern blot hybridization, PCR, and quantitative PCR. The results showed TrAP of ToLCNDV to be essential for maintenance of CLCuMuB and AV2 to be important only in the presence of the DNA B. AC4 was found to be important for the maintenance of CLCuMuB in the presence of, but indispensable in the absence of, the DNA B. Rather than being required for maintenance, the CP was shown to possibly interfere with maintenance of the betasatellite. The findings show that the interaction between a bipartite begomovirus and a betasatellite is more complex than just trans-replication. Clearly, multiple levels of interactions are present and such associations can cause additional significant losses to crops although the interaction may not be stable.
Collapse
Affiliation(s)
- Zafar Iqbal
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Shafiq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Pakistan
| | - Irfan Ali
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
38
|
Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race. Viruses 2017; 9:E256. [PMID: 28914771 PMCID: PMC5618022 DOI: 10.3390/v9090256] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.
Collapse
Affiliation(s)
- Shunmugiah V Ramesh
- ICAR-Indian Institute of Soybean Research, Indian Council of Agricultural Research, Indore 452001, India.
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Pranav P Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Shelly Praveen
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
39
|
Krenz B, Schießl I, Greiner E, Krapp S. Analyses of pea necrotic yellow dwarf virus-encoded proteins. Virus Genes 2017; 53:454-463. [PMID: 28238159 DOI: 10.1007/s11262-017-1439-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
Pea necrotic yellow dwarf virus (PNYDV) is a multipartite, circular, single-stranded DNA plant virus. PNYDV encodes eight proteins and the function of three of which remains unknown-U1, U2, and U4. PNYDV proteins cellular localization was analyzed by GFP tagging and bimolecular fluorescence complementation (BiFC) studies. The interactions of all eight PNYDV proteins were tested pairwise in planta (36 combinations in total). Seven interactions were identified and two (M-Rep with CP and MP with U4) were characterized further. MP and U4 complexes appeared as vesicle-like spots and were localized at the nuclear envelope and cell periphery. These vesicle-like spots were associated with the endoplasmatic reticulum. In addition, a nuclear localization signal (NLS) was mapped for U1, and a mutated U1 with NLS disrupted localized at plasmodesmata and therefore might also have a role in movement. Taken together, this study provides evidence for previously undescribed nanovirus protein-protein interactions and their cellular localization with novel findings not only for those proteins with unknown function, but also for characterized proteins such as the CP.
Collapse
Affiliation(s)
- Björn Krenz
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Ingrid Schießl
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Eva Greiner
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Susanna Krapp
- Lehrstuhl für Biochemie, Department Biologie, Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
40
|
Lima ATM, Silva JCF, Silva FN, Castillo-Urquiza GP, Silva FF, Seah YM, Mizubuti ESG, Duffy S, Zerbini FM. The diversification of begomovirus populations is predominantly driven by mutational dynamics. Virus Evol 2017; 3:vex005. [PMID: 28458915 PMCID: PMC5399926 DOI: 10.1093/ve/vex005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Begomoviruses (single-stranded DNA plant viruses) are responsible for serious agricultural threats. Begomovirus populations exhibit a high degree of within-host genetic variation and evolve as quickly as RNA viruses. Although the recombination-prone nature of begomoviruses has been extensively demonstrated, the relative contribution of recombination and mutation to the genetic variation of begomovirus populations has not been assessed. We estimated the genetic variability of begomovirus datasets from around the world. An uneven distribution of genetic variation across the length of the cp and rep genes due to recombination was evident from our analyses. To estimate the relative contributions of recombination and mutation to the genetic variability of begomoviruses, we mapped all substitutions over maximum likelihood trees and counted the number of substitutions on branches which were associated with recombination (ηr) and mutation (ημ). In addition, we also estimated the per generation relative rates of both evolutionary mechanisms (r/μ) to express how frequently begomovirus genomes are affected by recombination relative to mutation. We observed that the composition of genetic variation in all begomovirus datasets was dominated by mutation. Additionally, the low correlation between the estimates indicated that the relative contributions of recombination and mutation are not necessarily a function of their relative rates. Our results show that, although a considerable fraction of the genetic variation levels could be assigned to recombination, it was always lower than that due to mutation, indicating that the diversification of begomovirus populations is predominantly driven by mutational dynamics.
Collapse
Affiliation(s)
- Alison T M Lima
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - José C F Silva
- National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Fábio N Silva
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Gloria P Castillo-Urquiza
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Fabyano F Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Yee M Seah
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil.,National Research Institute for Plant-Pest Interactions (INCT-IPP), Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
41
|
Analysis of the Mild strain of tomato yellow leaf curl virus, which overcomes Ty-2 gene-mediated resistance in tomato line H24. Arch Virol 2016; 161:2207-17. [PMID: 27231006 DOI: 10.1007/s00705-016-2898-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
Abstract
In tomato line H24, an isolate of the Mild (Mld) strain of tomato yellow leaf curl virus (TYLCV-Mld [JR:Kis]) overcomes Ty-2 gene-mediated resistance and causes typical symptoms of tomato yellow leaf curl disease (TYLCD). No systemic infection with visible symptoms or accumulation of viral DNA in the upper leaves was observed in H24 challenged with another isolate, TYLCV-IL (TYLCV-IL [JR:Osaka]), confirming that H24 is resistant to the IL strain. To elucidate the genomic regions that cause the breakdown of the Ty-2 gene-mediated resistance, we constructed a series of chimeras by swapping genes between the two strains. A chimeric virus that had the overlapping C4/Rep region of the Mld strain in the context of the IL strain genome, caused severe TYLCD in H24 plants, suggesting that the overlapping C4/Rep region of the Mld strain is associated with the ability of this strain to overcome Ty-2 gene-mediated resistance.
Collapse
|
42
|
Iqbal Z, Sattar MN, Shafiq M. CRISPR/Cas9: A Tool to Circumscribe Cotton Leaf Curl Disease. FRONTIERS IN PLANT SCIENCE 2016; 7:475. [PMID: 27148303 PMCID: PMC4828465 DOI: 10.3389/fpls.2016.00475] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
The begomoviruses (family Geminiviridae) associated with cotton leaf curl disease (CLCuD) pose a major threat to cotton productivity in South-East Asia including Pakistan and India. These viruses have single-stranded, circular DNA genome, of ∼2800 nt in size, encapsidated in twinned icosa-hedera, transmitted by ubiquitous whitefly and are associated with satellite molecules referred to as alpha- and betasatellite. To circumvent the proliferation of these viruses numerous techniques, ranging from conventional breeding to molecular approaches have been applied. Such devised strategies worked perfectly well for a short time period and then viruses relapse due to various reasons including multiple infections, where related viruses synergistically interact with each other, virus proliferation and evolution. Another shortcoming is, until now, that all molecular biology approaches are devised to control only helper begomoviruses but not to control associated satellites. Despite the fact that satellites could add various functions to helper begomoviruses, they remain ignored. Such conditions necessitate a very comprehensive technique that can offer best controlling strategy not only against helper begomoviruses but also their associated DNA-satellites. In the current scenario clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9) has proved to be versatile technique that has very recently been deployed successfully to control different geminiviruses. The CRISPR/Cas9 system has been proved to be a comprehensive technique to control different geminiviruses, however, like previously used techniques, only a single virus is targeted and hitherto it has not been deployed to control begomovirus complexes associated with DNA-satellites. Here in this article, we proposed an inimitable, unique, and broad spectrum controlling method based on multiplexed CRISPR/Cas9 system where a cassette of sgRNA is designed to target not only the whole CLCuD-associated begomovirus complex but also the associated satellite molecules.
Collapse
Affiliation(s)
- Zafar Iqbal
- Institute of Biochemistry and Biotechnology, Quaid-i-Azam Campus, University of the PunjabLahore, Pakistan
| | - Muhammad N. Sattar
- Department of Environment and Natural Resources, Faculty of Agriculture and Food Science, King Faisal UniversityAl-Hasa, Saudi Arabia
| | - Muhammad Shafiq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| |
Collapse
|
43
|
Fuentes A, Carlos N, Ruiz Y, Callard D, Sánchez Y, Ochagavía ME, Seguin J, Malpica-López N, Hohn T, Lecca MR, Pérez R, Doreste V, Rehrauer H, Farinelli L, Pujol M, Pooggin MM. Field Trial and Molecular Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow Leaf Curl Geminivirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:197-209. [PMID: 26713353 DOI: 10.1094/mpmi-08-15-0181-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) is a widely used approach to generate virus-resistant transgenic crops. However, issues of agricultural importance like the long-term durability of RNAi-mediated resistance under field conditions and the potential side effects provoked in the plant by the stable RNAi expression remain poorly investigated. Here, we performed field trials and molecular characterization studies of two homozygous transgenic tomato lines, with different selection markers, expressing an intron-hairpin RNA cognate to the Tomato yellow leaf curl virus (TYLCV) C1 gene. The tested F6 and F4 progenies of the respective kanamycin- and basta-resistant plants exhibited unchanged field resistance to TYLCV and stably expressed the transgene-derived short interfering RNA (siRNAs) to represent 6 to 8% of the total plant small RNAs. This value outnumbered the average percentage of viral siRNAs in the nontransformed plants exposed to TYLCV-infested whiteflies. As a result of the RNAi transgene expression, a common set of up- and downregulated genes was revealed in the transcriptome profile of the plants selected from either of the two transgenic events. A previously unidentified geminivirus causing no symptoms of viral disease was detected in some of the transgenic plants. The novel virus acquired V1 and V2 genes from TYLCV and C1, C2, C3, and C4 genes from a distantly related geminivirus and, thereby, it could evade the repressive sequence-specific action of transgene-derived siRNAs. Our findings shed light on the mechanisms of siRNA-directed antiviral silencing in transgenic plants and highlight the applicability limitations of this technology as it may alter the transcriptional pattern of nontarget genes.
Collapse
Affiliation(s)
- Alejandro Fuentes
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Natacha Carlos
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Yoslaine Ruiz
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Danay Callard
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Yadira Sánchez
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - María Elena Ochagavía
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Jonathan Seguin
- 2 University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, 4056 Basel, Switzerland
- 3 FASTERIS SA, Ch. Du Pont-du-Centenaire 109, 1228 Plan-les-Ouates, Switzerland; and
| | - Nachelli Malpica-López
- 2 University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Thomas Hohn
- 2 University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, 4056 Basel, Switzerland
| | - Maria Rita Lecca
- 4 Functional Genomics Center ETH Zurich, University of Zurich, Winterthurerstrasse 190/Y32 H80, 8057 Zurich, Switzerland
| | - Rosabel Pérez
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Vivian Doreste
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Hubert Rehrauer
- 4 Functional Genomics Center ETH Zurich, University of Zurich, Winterthurerstrasse 190/Y32 H80, 8057 Zurich, Switzerland
| | - Laurent Farinelli
- 3 FASTERIS SA, Ch. Du Pont-du-Centenaire 109, 1228 Plan-les-Ouates, Switzerland; and
| | - Merardo Pujol
- 1 Center for Genetic Engineering and Biotechnology, calle 31 entre 158 y 190, Cubanacan Playa, Apdo 6162, Habana 10600, Cuba
| | - Mikhail M Pooggin
- 2 University of Basel, Department of Environmental Sciences, Botany, Hebelstrasse 1, 4056 Basel, Switzerland
| |
Collapse
|
44
|
Moshe A, Gorovits R, Liu Y, Czosnek H. Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. MOLECULAR PLANT PATHOLOGY 2016; 17:247-60. [PMID: 25962748 PMCID: PMC6638530 DOI: 10.1111/mpp.12275] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To ensure a successful long-term infection cycle, begomoviruses must restrain their destructive effect on host cells and prevent drastic plant responses, at least in the early stages of infection. The monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) does not induce a hypersensitive response and cell death on whitefly-mediated infection of virus-susceptible tomato plants until diseased tomatoes become senescent. The way in which begomoviruses evade plant defences and interfere with cell death pathways is still poorly understood. We show that the chaperone HSP90 (heat shock protein 90) and its co-chaperone SGT1 (suppressor of the G2 allele of Skp1) are involved in the establishment of TYLCV infection. Inactivation of HSP90, as well as silencing of the Hsp90 and Sgt1 genes, leads to the accumulation of damaged ubiquitinated proteins and to a cell death phenotype. These effects are relieved under TYLCV infection. HSP90-dependent inactivation of 26S proteasome degradation and the transcriptional activation of the heat shock transcription factors HsfA2 and HsfB1 and of the downstream genes Hsp17 and Apx1/2 are suppressed in TYLCV-infected tomatoes. Following suppression of the plant stress response, TYLCV can replicate and accumulate in a permissive environment.
Collapse
Affiliation(s)
- Adi Moshe
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
45
|
Krenz B, Deuschle K, Deigner T, Unseld S, Kepp G, Wege C, Kleinow T, Jeske H. Early function of the Abutilon mosaic virus AC2 gene as a replication brake. J Virol 2015; 89:3683-99. [PMID: 25589661 PMCID: PMC4403429 DOI: 10.1128/jvi.03491-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The C2/AC2 genes of monopartite/bipartite geminiviruses of the genera Begomovirus and Curtovirus encode important pathogenicity factors with multiple functions described so far. A novel function of Abutilon mosaic virus (AbMV) AC2 as a replication brake is described, utilizing transgenic plants with dimeric inserts of DNA B or with a reporter construct to express green fluorescent protein (GFP). Their replicational release upon AbMV superinfection or the individual and combined expression of epitope-tagged AbMV AC1, AC2, and AC3 was studied. In addition, the effects were compared in the presence and in the absence of an unrelated tombusvirus suppressor of silencing (P19). The results show that AC2 suppresses replication reproducibly in all assays and that AC3 counteracts this effect. Examination of the topoisomer distribution of supercoiled DNA, which indicates changes in the viral minichromosome structure, did not support any influence of AC2 on transcriptional gene silencing and DNA methylation. The geminiviral AC2 protein has been detected here for the first time in plants. The experiments revealed an extremely low level of AC2, which was slightly increased if constructs with an intron and a hemagglutinin (HA) tag in addition to P19 expression were used. AbMV AC2 properties are discussed with reference to those of other geminiviruses with respect to charge, modification, and size in order to delimit possible reasons for the different behaviors. IMPORTANCE The (A)C2 genes encode a key pathogenicity factor of begomoviruses and curtoviruses in the plant virus family Geminiviridae. This factor has been implicated in the resistance breaking observed in agricultural cotton production. AC2 is a multifunctional protein involved in transcriptional control, gene silencing, and regulation of basal biosynthesis. Here, a new function of Abutilon mosaic virus AC2 in replication control is added as a feature of this protein in viral multiplication, providing a novel finding on geminiviral molecular biology.
Collapse
Affiliation(s)
- Björn Krenz
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Kathrin Deuschle
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Tobias Deigner
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Sigrid Unseld
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Gabi Kepp
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Christina Wege
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Tatjana Kleinow
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Holger Jeske
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
46
|
Tahir M, Amin I, Haider MS, Mansoor S, Briddon RW. Ageratum enation virus-a begomovirus of weeds with the potential to infect crops. Viruses 2015; 7:647-65. [PMID: 25674770 PMCID: PMC4353908 DOI: 10.3390/v7020647] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/21/2015] [Indexed: 01/21/2023] Open
Abstract
Samples of two Ageratum conyzoides, one Sonchus oleraceus and one turnip (Brassica rapa var. rapa) exhibiting virus-like symptoms were collected from Pakistan and Nepal. Full-length begomovirus clones were obtained from the four plant samples and betasatellite clones from three of these. The begomovirus sequences were shown to be isolates of Ageratum enation virus (AEV) with greater than 89.1% nucleotide sequence identity to the 26 AEV sequences available in the databases. The three betasatellite sequences were shown to be isolates of Ageratum yellow leaf curl betasatellite (AYLCB) with greater than 90% identity to the 18 AYLCB sequences available in the databases. The AEV sequences were shown to fall into two distinct strains, for which the names Nepal (consisting of isolates from Nepal, India, and Pakistan-including the isolates identified here) and India (isolates occurring only in India) strains are proposed. For the clones obtained from two AEV isolates, with their AYLCB, infectivity was shown by Agrobacterium-mediated inoculation to Nicotiana benthamiana, N. tabacum, Solanum lycopersicon and A. conyzoides. N. benthamiana plants infected with AEV alone or betasatellite alone showed no symptoms. N. benthamiana plants infected with AEV with its associated betasatellite showed leaf curl symptoms. The findings show that AEV is predominantly a virus of weeds that has the capacity to infect crops. AYLCB appears to be the common partner betasatellite of AEV and is associated with diseases with a range of very different symptoms in the same plant species. The inability to satisfy Koch's postulates with the cloned components of isolate SOL in A. conyzoides suggests that the etiology may be more complex than a single virus with a single betasatellite.
Collapse
Affiliation(s)
- Muhammad Tahir
- Plant Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan.
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad 38000, Pakistan.
| | - Muhammad Saleem Haider
- School of Biological Sciences, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad 38000, Pakistan.
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad 38000, Pakistan.
| |
Collapse
|
47
|
Insights into the functional characteristics of geminivirus rolling-circle replication initiator protein and its interaction with host factors affecting viral DNA replication. Arch Virol 2014; 160:375-87. [PMID: 25449306 DOI: 10.1007/s00705-014-2297-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Geminiviruses are DNA viruses that infect several economically important crops, resulting in a reduction in their overall yield. These plant viruses have circular, single-stranded DNA genomes that replicate mainly by a rolling-circle mechanism. Geminivirus infection results in crosstalk between viral and cellular factors to complete the viral life cycle or counteract the infection as part of defense mechanisms of host plants. The geminiviral replication initiator protein Rep is the only essential viral factor required for replication. It is multifunctional and is known to interact with a number of host factors to modulate the cellular environment or to function as a part of the replication machinery. This review provides a holistic view of the research related to the viral Rep protein and various host factors involved in geminiviral DNA replication. Studies on the promiscuous nature of geminiviral satellite DNAs are also reviewed.
Collapse
|
48
|
Shen W, Dallas MB, Goshe MB, Hanley-Bowdoin L. SnRK1 phosphorylation of AL2 delays Cabbage leaf curl virus infection in Arabidopsis. J Virol 2014. [PMID: 24990996 DOI: 10.1128/jvi.00671-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
UNLABELLED Geminivirus AL2/C2 proteins play key roles in establishing infection and causing disease in their plant hosts. They are involved in viral gene expression, counter host defenses by suppressing transcriptional gene silencing, and interfere with the host signaling involved in pathogen resistance. We report here that begomovirus and curtovirus AL2/C2 proteins interact strongly with host geminivirus Rep-interacting kinases (GRIKs), which are upstream activating kinases of the protein kinase SnRK1, a global regulator of energy and nutrient levels in plants. We used an in vitro kinase system to show that GRIK-activated SnRK1 phosphorylates recombinant AL2/C2 proteins from several begomoviruses and to map the SnRK1 phosphorylation site to serine-109 in the AL2 proteins of two New World begomoviruses: Cabbage Leaf Curl Virus (CaLCuV) and Tomato mottle virus. A CaLCuV AL2 S109D phosphomimic mutation did not alter viral DNA levels in protoplast replication assays. In contrast, the phosphomimic mutant was delayed for symptom development and viral DNA accumulation during infection of Arabidopsis thaliana, demonstrating that SnRK1 contributes to host defenses against CaLCuV. Our observation that serine-109 is not conserved in all AL2/C2 proteins that are SnRK1 substrates in vitro suggested that phosphorylation of viral proteins by plant kinases contributes to the evolution of geminivirus-host interactions. IMPORTANCE Geminiviruses are single-stranded DNA viruses that cause serious diseases in many crops. Dicot-infecting geminiviruses carry genes that encode multifunctional AL2/C2 proteins that are essential for infection. However, it is not clear how AL2/C2 proteins are regulated. Here, we show that the host protein kinase SnRK1, a central regulator of energy balance and nutrient metabolism in plants, phosphorylates serine-109 in AL2 proteins of three subgroups of New World begomoviruses, resulting in a delay in viral DNA accumulation and symptom appearance. Our results support SnRK1's antiviral role and reveal a novel mechanism underlying this function. Phylogenetic analysis suggested that AL2 S109 evolved as begomoviruses migrated from the Old World to the New World and may have provided a selective advantage as begomoviruses adapted to a different environment and different plant hosts. This study provides new insights into the interaction of viral pathogens with their plant hosts at the level of viral protein modification by the host.
Collapse
Affiliation(s)
- Wei Shen
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Mary Beth Dallas
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Linda Hanley-Bowdoin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
49
|
SnRK1 phosphorylation of AL2 delays Cabbage leaf curl virus infection in Arabidopsis. J Virol 2014; 88:10598-612. [PMID: 24990996 DOI: 10.1128/jvi.00761-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Geminivirus AL2/C2 proteins play key roles in establishing infection and causing disease in their plant hosts. They are involved in viral gene expression, counter host defenses by suppressing transcriptional gene silencing, and interfere with the host signaling involved in pathogen resistance. We report here that begomovirus and curtovirus AL2/C2 proteins interact strongly with host geminivirus Rep-interacting kinases (GRIKs), which are upstream activating kinases of the protein kinase SnRK1, a global regulator of energy and nutrient levels in plants. We used an in vitro kinase system to show that GRIK-activated SnRK1 phosphorylates recombinant AL2/C2 proteins from several begomoviruses and to map the SnRK1 phosphorylation site to serine-109 in the AL2 proteins of two New World begomoviruses: Cabbage Leaf Curl Virus (CaLCuV) and Tomato mottle virus. A CaLCuV AL2 S109D phosphomimic mutation did not alter viral DNA levels in protoplast replication assays. In contrast, the phosphomimic mutant was delayed for symptom development and viral DNA accumulation during infection of Arabidopsis thaliana, demonstrating that SnRK1 contributes to host defenses against CaLCuV. Our observation that serine-109 is not conserved in all AL2/C2 proteins that are SnRK1 substrates in vitro suggested that phosphorylation of viral proteins by plant kinases contributes to the evolution of geminivirus-host interactions. IMPORTANCE Geminiviruses are single-stranded DNA viruses that cause serious diseases in many crops. Dicot-infecting geminiviruses carry genes that encode multifunctional AL2/C2 proteins that are essential for infection. However, it is not clear how AL2/C2 proteins are regulated. Here, we show that the host protein kinase SnRK1, a central regulator of energy balance and nutrient metabolism in plants, phosphorylates serine-109 in AL2 proteins of three subgroups of New World begomoviruses, resulting in a delay in viral DNA accumulation and symptom appearance. Our results support SnRK1's antiviral role and reveal a novel mechanism underlying this function. Phylogenetic analysis suggested that AL2 S109 evolved as begomoviruses migrated from the Old World to the New World and may have provided a selective advantage as begomoviruses adapted to a different environment and different plant hosts. This study provides new insights into the interaction of viral pathogens with their plant hosts at the level of viral protein modification by the host.
Collapse
|
50
|
Ali-Shtayeh MS, Jamous RM, Mallah OB, Abu-Zeitoun SY. Molecular characterization of watermelon chlorotic stunt virus (WmCSV) from Palestine. Viruses 2014; 6:2444-62. [PMID: 24956181 PMCID: PMC4074936 DOI: 10.3390/v6062444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 11/16/2022] Open
Abstract
The incidence of watermelon chlorotic stunt disease and molecular characterization of the Palestinian isolate of Watermelon chlorotic stunt virus (WmCSV-[PAL]) are described in this study. Symptomatic leaf samples obtained from watermelon Citrullus lanatus (Thunb.), and cucumber (Cucumis sativus L.) plants were tested for WmCSV-[PAL] infection by polymerase chain reaction (PCR) and Rolling Circle Amplification (RCA). Disease incidence ranged between 25%-98% in watermelon fields in the studied area, 77% of leaf samples collected from Jenin were found to be mixed infected with WmCSV-[PAL] and SLCV. The full-length DNA-A and DNA-B genomes of WmCSV-[PAL] were amplified and sequenced, and the sequences were deposited in the GenBank. Sequence analysis of virus genomes showed that DNA-A and DNA-B had 97.6%-99.42% and 93.16%-98.26% nucleotide identity with other virus isolates in the region, respectively. Sequence analysis also revealed that the Palestinian isolate of WmCSV shared the highest nucleotide identity with an isolate from Israel suggesting that the virus was introduced to Palestine from Israel.
Collapse
Affiliation(s)
- Mohammed S Ali-Shtayeh
- Biodiversity and Biotechnology Research Unit, Biodiversity and Environmental Research Center-BERC, Til, Nablus 970, Palestine.
| | - Rana M Jamous
- Biodiversity and Biotechnology Research Unit, Biodiversity and Environmental Research Center-BERC, Til, Nablus 970, Palestine.
| | - Omar B Mallah
- Biodiversity and Biotechnology Research Unit, Biodiversity and Environmental Research Center-BERC, Til, Nablus 970, Palestine.
| | - Salam Y Abu-Zeitoun
- Biodiversity and Biotechnology Research Unit, Biodiversity and Environmental Research Center-BERC, Til, Nablus 970, Palestine.
| |
Collapse
|