1
|
Boyer PL, Rehm CA, Sneller MC, Mican J, Caplan MR, Dewar R, Ferris AL, Clark P, Johnson A, Maldarelli F, Hughes SH. A Combination of Amino Acid Mutations Leads to Resistance to Multiple Nucleoside Analogs in Reverse Transcriptases from HIV-1 Subtypes B and C. Antimicrob Agents Chemother 2022; 66:e0150021. [PMID: 34723625 PMCID: PMC8765311 DOI: 10.1128/aac.01500-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Resistance to anti-HIV drugs has been a problem from the beginning of antiviral drug treatments. The recent expansion of combination antiretroviral therapy worldwide has led to an increase in resistance to antiretrovirals; understanding the mechanisms of resistance is increasingly important. In this study, we analyzed reverse transcriptase (RT) variants based on sequences derived from an individual who had low-level rebound viremia while undergoing therapy with abacavir, azidothymidine (AZT) (zidovudine), and (-)-l-2',3'-dideoxy-3'-thiacytidine (3TC) (lamivudine). The RT had mutations at positions 64, 67, 70, 184, and 219 and a threonine insertion after amino acid 69 in RT. The virus remained partially susceptible to the nucleoside RT inhibitor (NRTI) regimen. We show how these mutations affect the ability of NRTIs to inhibit DNA synthesis by RT. The presence of the inserted threonine reduced the susceptibility of the RT mutant to inhibition by tenofovir.
Collapse
Affiliation(s)
- Paul L. Boyer
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Catherine A. Rehm
- Clinical Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael C. Sneller
- Clinical and Molecular Retrovirology Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - JoAnn Mican
- Clinical Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Margaret R. Caplan
- Division of Infectious Disease, Department of Medicine, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Robin Dewar
- Division of Infectious Disease, Department of Medicine, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Andrea L. Ferris
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Patrick Clark
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Johnson
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Frank Maldarelli
- Clinical Retrovirology Section, National Cancer Institute, Frederick, Maryland, USA
| | - Stephen H. Hughes
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
2
|
Megens S, Vaira D, De Baets G, Dekeersmaeker N, Schrooten Y, Li G, Schymkowitz J, Rousseau F, Vandamme AM, Moutschen M, Van Laethem K. Horizontal gene transfer from human host to HIV-1 reverse transcriptase confers drug resistance and partly compensates for replication deficits. Virology 2014; 456-457:310-8. [DOI: 10.1016/j.virol.2014.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/24/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
|
3
|
Bujarski JJ. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:68. [PMID: 23533000 PMCID: PMC3607795 DOI: 10.3389/fpls.2013.00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/11/2013] [Indexed: 05/09/2023]
Abstract
RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA-RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.
Collapse
Affiliation(s)
- Jozef J. Bujarski
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois UniversityDeKalb, IL, USA
- Laboratory of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Jozef J. Bujarski, Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, Montgomery Hall, DeKalb, IL 60115, USA. e-mail:
| |
Collapse
|
4
|
López-Lopes GIS, Lança AM, de Paula Ferreira JL, Souza LO, de Macedo Brígido LF. Discrepancies of HIV-1 Reverse Transcriptase Resistance Interpretation of Insertions and Deletions between Two Genotypic Algorithms. Intervirology 2013; 56:217-23. [DOI: 10.1159/000348511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
|
5
|
Magiorkinis E, Paraskevis D, Detsika MG, Lu L, Magiorkinis G, Lazanas M, Imbrechts S, Van Laethem K, Vandamme AM, Pilot-Matias T, Molla A, Camacho RJ, Hatzakis A. Appearance of a single amino acid insertion at position 33 in HIV type 1 protease under a lopinavir-containing regimen, associated with reduced protease inhibitor susceptibility. AIDS Res Hum Retroviruses 2011; 27:1223-9. [PMID: 21417947 DOI: 10.1089/aid.2010.0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV drug resistance is a multifactorial phenomenon and constitutes a major concern as it results in therapy failure. The aim of this study was to assess the impact of an amino acid insertion identified at position 33 of the protease gene, derived from samples from three patients under lopinavir therapy, on viral fitness and protease inhibitor (PI) resistance. Successive samples were available from one of the patients for genotypic and phenotypic testing in order to investigate the role of this insertion. The patient had been pretreated with various antiretroviral drugs and showed poor virological response from the point of the acquisition of the mutation onward. The insertion was acquired in the context of a number of other PI mutations and was stable following acquisition. Phenotypic testing revealed reduced susceptibility to various PIs and a reduction of the replicative capacity (RC) of the virus. In the presence of the insertion alone, a decrease of the RC was observed, which seemed to be compensated by the presence of other mutations. The L33ins might have a potential role in PI resistance pathways but further investigation in a larger number of clinical samples is required in order to elucidate this resistance mechanism.
Collapse
Affiliation(s)
- Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Maria G. Detsika
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Liangjun Lu
- Antiviral Research, Abbott Global Pharmaceutical R&D, Abbott Park, Illinois
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | | | - Stijn Imbrechts
- Clinical and Epidemiological Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kristel Van Laethem
- Clinical and Epidemiological Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anne-Mieke Vandamme
- Clinical and Epidemiological Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tami Pilot-Matias
- Antiviral Research, Abbott Global Pharmaceutical R&D, Abbott Park, Illinois
| | | | - Ricardo J. Camacho
- Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
6
|
Viral fitness: relation to drug resistance mutations and mechanisms involved: nucleoside reverse transcriptase inhibitor mutations. Curr Opin HIV AIDS 2009; 2:81-7. [PMID: 19372871 DOI: 10.1097/coh.0b013e328051b4e8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Nucleoside and nucleotide reverse transcriptase inhibitors constitute the backbone of highly active antiretroviral therapy in the treatment of HIV-1 infection. One of the major obstacles in achieving the long-term efficacy of anti-HIV-1 therapy is the development of resistance. The advent of resistance mutations is usually accompanied by a change in viral replicative fitness. This review focuses on the most common nucleoside reverse transcriptase inhibitor-associated mutations and their effects on HIV-1 replicative fitness. RECENT FINDINGS Recent studies have explained the two main mechanisms of resistance to nucleoside reverse transcriptase inhibitors and their role in HIV-1 replicative fitness. The first involves mutations directly interfering with binding or incorporation and seems to impact replicative fitness more adversely than the second mechanism, which involves enhanced excision of the newly incorporated analogue. Further studies have helped explain the antagonistic effects between amino acid substitutions, K65R, L74V, M184V, and thymidine analogue mutations, showing how viral replicative fitness influences the evolution of thymidine analogue resistance pathways. SUMMARY Nucleoside reverse transcriptase inhibitor resistance mutations impact HIV-1 replicative fitness to a lesser extent than protease resistance mutations. The monitoring of viral replicative fitness may help in the management of HIV-1 infection in highly antiretroviral-experienced individuals.
Collapse
|
7
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
8
|
Abstract
Mutational analysis of the viral genome is frequently used to study the role of sequence or structural elements in HIV-1 replication. Many laboratories that use this approach have occasionally come across revertant viruses that overcome an introduced defect either by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Similarly, replication of a wild type virus under selective pressure, due to the presence of inhibitors or due to specific culture settings, may result in the appearance of evolved variants that replicate more efficiently under the applied conditions. We have developed in vitro HIV-1 evolution from an anecdotal event to a systematic research tool to study different aspects of the viral replication cycle. In this manuscript, we will briefly review the method of forced virus evolution to study HIV-1 biology and provide several examples that illustrate the power of this method, as it frequently yielded interesting and unexpected information about the mechanism of virus replication.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: a view from the clinic and ex vivo. Virus Res 2008; 134:104-23. [PMID: 18289713 DOI: 10.1016/j.virusres.2007.12.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/27/2007] [Accepted: 12/28/2007] [Indexed: 01/04/2023]
Abstract
Genetic diversity plays a key role in human immunodeficiency virus (HIV) adaptation, providing a mechanism to escape host immune responses and develop resistance to antiretroviral drugs. This process is driven by the high-mutation rate during DNA synthesis by reverse transcriptase (RT), by the large viral populations, by rapid viral turnover, and by the high-recombination rate. Drugs targeting HIV RT are included in all regimens of highly active antiretroviral therapy (HAART), which helps to reduce the morbidity and mortality of HIV-infected patients. However, the emergence of resistant viruses is a significant obstacle to effective long-term management of HIV infection and AIDS. The increasing complexity of antiretroviral regimens has favored selection of HIV variants harboring multiple drug resistance mutations. Evolution of drug resistance is characterized by severe fitness losses when the drug is not present, which can be partially overcome by compensatory mutations or other adaptive changes that restore replication capacity. Here, we review the impact of mutations conferring resistance to nucleoside and nonnucleoside RT inhibitors on in vitro and in vivo fitness, their involvement in pathogenesis, persistence upon withdrawal of treatment, and transmission. We describe the techniques used to estimate viral fitness, the molecular mechanisms that help to improve the viral fitness of drug-resistant variants, and the clinical implications of viral fitness data, by exploring the potential relationship between plasma viral load, drug resistance, and disease progression.
Collapse
|
10
|
Abstract
RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA. RNAi holds great promise as a novel nucleic acid-based therapeutic against a wide variety of diseases, including cancer, infectious diseases and genetic disorders. Antiviral RNAi strategies have received much attention and several compounds are currently being tested in clinical trials. Although induced RNAi is able to trigger profound and specific inhibition of virus replication, it is becoming clear that RNAi therapeutics are not as straightforward as we had initially hoped. Difficulties concerning toxicity and delivery to the right cells that earlier hampered the development of antisense-based therapeutics may also apply to RNAi. In addition, there are indications that viruses have evolved ways to escape from RNAi. Proper consideration of all of these issues will be necessary in the design of RNAi-based therapeutics for successful clinical intervention of human pathogenic viruses.
Collapse
Affiliation(s)
- Joost Haasnoot
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ The Netherlands
| | - Ellen M Westerhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ The Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ The Netherlands
| |
Collapse
|
11
|
Eggink D, Huigen MCDG, Boucher CAB, Götte M, Nijhuis M. Insertions in the β3–β4 loop of reverse transcriptase of human immunodeficiency virus type 1 and their mechanism of action, influence on drug susceptibility and viral replication capacity. Antiviral Res 2007; 75:93-103. [PMID: 17416429 DOI: 10.1016/j.antiviral.2007.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/14/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
Introduction of antiretroviral therapy combining protease and reverse transcriptase (RT) inhibitors has dramatically improved the quality of life and survival of patients infected with the human immunodeficiency virus (HIV). However, effective long-term therapy of HIV-infection has been severely hampered by the development of drug resistance. Resistance to antiretroviral drugs is generally conferred by specific amino acid substitutions in the target gene of the drug. Yet, occasionally gene insertions are being observed. The most commonly observed insertion is seen during substrate analogue RT inhibitor therapy and is selected in the beta3-beta4 loop of the RT enzyme. This flexible loop is located in the fingers subdomain of the enzyme and plays an important role in substrate binding. The acquisition of drug resistance related mutations or insertions might come at a price, which is reduced performance of the enzyme resulting in a diminished replication capacity of the virus. Various types of insertions have been described, and, in this review, we have summarized these data and discussed the mechanism of action of the RT inserts and their impact on both drug susceptibility and replication capacity.
Collapse
Affiliation(s)
- Dirk Eggink
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Harrigan PR, Mo T, Hirsch J, Brumme ZL, McKenna P, Bacheler L. A 21-base pair insertion/duplication at codon 69 of the HIV type 1 reverse transcriptase in a patient undergoing multiple nucleoside therapy. AIDS Res Hum Retroviruses 2007; 23:895-9. [PMID: 17678473 DOI: 10.1089/aid.2006.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe the selection of a previously unreported 21-base pair insertion following codon 69 of the HIV-1 reverse transcriptase (RT) from a patient undergoing multiple nucleoside analogue therapy. This insertion was a direct duplication of the preceding 21 bases of HIV-RT, and was selected in a background of NRTI-resistance mutations including substitutions at RT codons 41, 67, 184, 210, and 215. Longitudinal genotypic and phenotypic resistance tests performed before and after selection of the insertion suggested that the insertion conferred an additional decrease in susceptibility to some nucleoside analogues, most notably didanosine, stavudine, abacavir, and tenofovir. However, phenotypic analysis of an insertion-containing site-directed mutant constructed in an HIV-1 HXB2 background revealed no direct association between the 21-base pair insertion and decreased susceptibility to NRTIs, suggesting that the insert requires the context of the patients' virus in order to confer resistance. These observations may offer new insight into the relative contribution of HIV-RT codon 69 insertion mutations to antiretroviral resistance.
Collapse
|
13
|
Huigen MCDG, de Graaf L, Eggink D, Schuurman R, Müller V, Stamp A, Stammers DK, Boucher CAB, Nijhuis M. Evolution of a novel 5-amino-acid insertion in the beta3-beta4 loop of HIV-1 reverse transcriptase. Virology 2007; 364:395-406. [PMID: 17451772 DOI: 10.1016/j.virol.2007.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/27/2007] [Accepted: 03/17/2007] [Indexed: 11/30/2022]
Abstract
HIV-1 isolates harbouring an insertion in the beta3-beta4 loop of reverse transcriptase (RT) confer high-level resistance to nucleoside analogues. We have identified a novel 5-amino-acid insertion (KGSNR amino acids 66-70) in a patient on prolonged nucleoside combination therapy (didanosine and stavudine) and investigated which factors were responsible for its outgrowth. Remarkably, only small fold increases in drug resistance to nucleoside analogues were observed compared to wild type. The insertion variant displayed a reduced replicative capacity in the absence of inhibitor, but had a slight replicative advantage in the presence of zidovudine, didanosine or stavudine, resulting in the selection and persistence of this insertion in vivo. Mathematical analyses of longitudinal samples indicated a 2% in vivo fitness advantage for the insertion variant compared to the initial viral population. The novel RT insertion variant conferring low levels of resistance was able to evolve towards a high-level resistant replication-competent variant.
Collapse
Affiliation(s)
- Marleen C D G Huigen
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Takebe Y, Telesnitsky A. Evidence for the acquisition of multi-drug resistance in an HIV-1 clinical isolate via human sequence transduction. Virology 2006; 351:1-6. [PMID: 16777167 PMCID: PMC2213631 DOI: 10.1016/j.virol.2006.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/03/2006] [Accepted: 05/09/2006] [Indexed: 12/31/2022]
Abstract
Insertions in HIV-1 reverse transcriptase's fingers subdomain can enhance chain terminator excision and confer resistance to multiple nucleoside analogs. Inserts that resemble flanking sequences likely arise by local sequence duplication. However, a remarkable variety of non-repeat fingers insertions have been observed. Here, molecular epidemiology, sequence analyses and mechanistic modeling were employed to show that one Japanese isolate's RT fingers insert likely resulted from non-homologous recombination between virus and host sequences and the transductive copying of 37 nucleotides from human chromosome 17. These findings provide evidence that human sequence transduction can, at least rarely, contribute to genetic and phenotypic variation in pandemic HIV.
Collapse
Affiliation(s)
- Yutaka Takebe
- Laboratory of Molecular Virology and Epidemiology, AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| |
Collapse
|
15
|
Brann TW, Dewar RL, Jiang MK, Shah A, Nagashima K, Metcalf JA, Falloon J, Lane HC, Imamichi T. Functional correlation between a novel amino acid insertion at codon 19 in the protease of human immunodeficiency virus type 1 and polymorphism in the p1/p6 Gag cleavage site in drug resistance and replication fitness. J Virol 2006; 80:6136-45. [PMID: 16731952 PMCID: PMC1472590 DOI: 10.1128/jvi.02212-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 03/22/2006] [Indexed: 11/20/2022] Open
Abstract
Population-based sequence analysis revealed the presence of a variant of human immunodeficiency virus type 1 (HIV-1) containing an insertion of amino acid Ile in the protease gene at codon 19 (19I) and amino acid substitutions in the protease at codons 21 (E21D) and 22 (A22V) along with multiple mutations associated with drug resistance, M46I/P63L/A71V/I84V/I93L, in a patient who had failed protease inhibitor (PI) therapy. Longitudinal analysis revealed that the P63L/A71V/I93L changes were present prior to PI therapy. Polymorphisms in the Gag sequence were only seen in the p1/p6 cleavage site at the P1' position (Leu to Pro) and the P5' position (Pro to Leu). To characterize the role of these mutations in drug susceptibility and replication capacity, a chimeric HIV-1 strain containing the 19I/E21D/A22V mutations with the M46I/P63L/A71V/I84V/I93L and p1/p6 mutations was constructed. The chimera displayed high-level resistance to multiple PIs, but not to lopinavir, and grew to 30% of that of the wild type. To determine the relative contribution of each mutation to the phenotypic characteristic of the virus, a series of mutants was constructed using site-directed mutagenesis. A high level of resistance was only seen in mutants containing the 19I/A22V and p1/p6 mutations. The E21D mutation enhanced viral replication. These results suggest that the combination of the 19I/E21D/A22V mutations may emerge and lead to high-level resistance to multiple PIs. The combination of the 19I/A22V mutations may be associated with PI resistance; however, the drug resistance may be caused by the presence of a unique set of mutations in the p1/p6 mutations. The E21D mutation contributes to replication fitness rather than drug resistance.
Collapse
Affiliation(s)
- Terrence W Brann
- Laboratory of Human Retrovirology, Science Applications International Corporation-Frederick, Inc., Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Konstantinova P, de Haan P, Das AT, Berkhout B. Hairpin-induced tRNA-mediated (HITME) recombination in HIV-1. Nucleic Acids Res 2006; 34:2206-18. [PMID: 16670429 PMCID: PMC1456326 DOI: 10.1093/nar/gkl226] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombination due to template switching during reverse transcription is a major source of genetic variability in retroviruses. In the present study we forced a recombination event in human immunodeficiency virus type 1 (HIV-1) by electroporation of T cells with DNA from a molecular HIV-1 clone that has a 300 bp long hairpin structure in the Nef gene (HIV-lhNef). HIV-lhNef does not replicate, but replication-competent escape variants emerged in four independent cultures. The major part of the hairpin was deleted in all escape viruses. In three cases, the hairpin deletion was linked to patch insertion of tRNAasp, tRNAglu or tRNAtrp sequences. The tRNAs were inserted in the viral genome in the antisense orientation, indicating that tRNA-mediated recombination occurred during minus-strand DNA synthesis. We here propose a mechanistic model for this hairpin-induced tRNA-mediated (HITME) recombination. The transient role of the cellular tRNA molecule as enhancer of retroviral recombination is illustrated by the eventual removal of inserted tRNA sequences by a subsequent recombination/deletion event.
Collapse
Affiliation(s)
| | - Peter de Haan
- Viruvation B. V. Wassenaarseweg 722333 AL Leiden, The Netherlands
| | | | - Ben Berkhout
- To whom correspondence should be addressed. Tel: +31 20 566 4822; Fax: +31 20 691 6531;
| |
Collapse
|
17
|
Winters MA, Merigan TC. Insertions in the human immunodeficiency virus type 1 protease and reverse transcriptase genes: clinical impact and molecular mechanisms. Antimicrob Agents Chemother 2005; 49:2575-82. [PMID: 15980322 PMCID: PMC1168704 DOI: 10.1128/aac.49.7.2575-2582.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mark A Winters
- Division of Infectious Diseases and Geographic Medicine, Stanford University, 300 Pasteur Drive, Room S-146, Stanford, California 94305-5107, USA.
| | | |
Collapse
|