1
|
Strauch CJ, Sprotte N, Peña Lozano E, Boutant E, Amari K, Ostendorp S, Ostendorp A, Kehr J, Niehl A. Studies on the Japanese soil-borne wheat mosaic virus movement protein highlight its ability to bind plant RNA. Virol J 2025; 22:134. [PMID: 40336096 PMCID: PMC12060307 DOI: 10.1186/s12985-025-02757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Plant viral movement protein (MP) function is decisive for virus cell-to-cell movement. Often, MPs also induce membrane alterations, which are believed to play a role for the establishment of viral replication compartments. Despite these central roles in virus infection, knowledge of the underlying molecular mechanisms by which MPs cause changes in plasmodesmata (PD) size exclusion limit and contribute to the formation of viral replication compartments remain far from being complete. METHODS To further identify host processes subverted by viral MPs, we here characterized the MP of Japanese soil-borne wheat mosaic virus (JSBWMV). We used confocal fluorescence microscopy to study the subcellular localization of MPJSBWMV and to address its functionality in promoting virus cell-to-cell movement. Using the biochemical and biophysical methods co-immunoprecipitation, fluorescence lifetime imaging, microscale thermophoresis and RNA immunoprecipitation we investigate the capacity of MPJSBWMV to multimerize and to bind viral and cellular RNAs. RESULTS MPJSBWMV localized to PD, promoted cell-to-cell movement by complementing a movement-deficient unrelated virus, formed multimers in-vivo and bound to viral RNA with high affinity. Using RNA immunoprecipitation, we identified host RNAs associated with the viral MP. Within the MP-RNA complexes we found RNAs encoding proteins with key functions in membrane modification, signaling, protein folding, and degradation. We propose that binding of MP to these RNAs during infection and regulation of their spatio-temporal translation may represent a mechanism for MPs to achieve PD and host control during replication and movement. CONCLUSION This study provides new insight into the complex interactions between viral MPs and host cellular processes.
Collapse
Affiliation(s)
- Claudia Janina Strauch
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany
| | - Nico Sprotte
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany
| | - Estefania Peña Lozano
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Emmanuel Boutant
- Laboratory of Bioimaging and Pathologies, CNRS UMR 7021, Faculty of Pharmacy, University of Strasbourg, 74 Route du Rhin - CS 60024, F-67400, Illkirch, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, ESBS, University of Strasbourg, Bld Sébastien Brant, F-67412, Illkirch, Strasbourg, France
| | - Khalid Amari
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Steffen Ostendorp
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Anna Ostendorp
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Julia Kehr
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Annette Niehl
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104, Brunswick, Germany.
| |
Collapse
|
2
|
Huang YW, Sun CI, Hu CC, Tsai CH, Meng M, Lin NS, Hsu YH. NbPsbO1 Interacts Specifically with the Bamboo Mosaic Virus (BaMV) Subgenomic RNA (sgRNA) Promoter and Is Required for Efficient BaMV sgRNA Transcription. J Virol 2021; 95:e0083121. [PMID: 34379502 PMCID: PMC8475527 DOI: 10.1128/jvi.00831-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022] Open
Abstract
Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.
Collapse
Affiliation(s)
- Ying Wen Huang
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chu I Sun
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
| | - Chung Chi Hu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
| | - Na Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yau Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
4
|
Li F, Wang A. RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends Microbiol 2019; 27:792-805. [PMID: 31213342 DOI: 10.1016/j.tim.2019.05.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022]
Abstract
RNA silencing is a fundamental, evolutionarily conserved mechanism that regulates gene expression in eukaryotes. It also functions as a primary immune defense in microbes, such as viruses in plants. In addition to RNA silencing, RNA decay and RNA quality-control pathways are also two ancestral forms of intrinsic antiviral immunity, and the three RNA-targeted pathways may operate cooperatively for their antiviral function. Plant viruses encode viral suppressors of RNA silencing (VSRs) to suppress RNA silencing and facilitate virus infection. In response, plants may activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression. In this review, we summarize current knowledge of RNA silencing, RNA decay, and RNA quality control in antiviral defense, and highlight the mechanisms by which viruses compromise RNA-targeted immunity for their infection and survival in plants.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada; Department of Biology, Western University, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
5
|
Lumb JH, Li Q, Popov LM, Ding S, Keith MT, Merrill BD, Greenberg HB, Li JB, Carette JE. DDX6 Represses Aberrant Activation of Interferon-Stimulated Genes. Cell Rep 2018; 20:819-831. [PMID: 28746868 DOI: 10.1016/j.celrep.2017.06.085] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022] Open
Abstract
The innate immune system tightly regulates activation of interferon-stimulated genes (ISGs) to avoid inappropriate expression. Pathological ISG activation resulting from aberrant nucleic acid metabolism has been implicated in autoimmune disease; however, the mechanisms governing ISG suppression are unknown. Through a genome-wide genetic screen, we identified DEAD-box helicase 6 (DDX6) as a suppressor of ISGs. Genetic ablation of DDX6 induced global upregulation of ISGs and other immune genes. ISG upregulation proved cell intrinsic, imposing an antiviral state and making cells refractory to divergent families of RNA viruses. Epistatic analysis revealed that ISG activation could not be overcome by deletion of canonical RNA sensors. However, DDX6 deficiency was suppressed by disrupting LSM1, a core component of mRNA degradation machinery, suggesting that dysregulation of RNA processing underlies ISG activation in the DDX6 mutant. DDX6 is distinct among DExD/H helicases that regulate the antiviral response in its singular ability to negatively regulate immunity.
Collapse
Affiliation(s)
- Jennifer H Lumb
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lauren M Popov
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Siyuan Ding
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Marie T Keith
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Bryan D Merrill
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Harry B Greenberg
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Biegel JM, Henderson E, Cox EM, Bonenfant G, Netzband R, Kahn S, Eager R, Pager CT. Cellular DEAD-box RNA helicase DDX6 modulates interaction of miR-122 with the 5' untranslated region of hepatitis C virus RNA. Virology 2017; 507:231-241. [PMID: 28456022 DOI: 10.1016/j.virol.2017.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) subverts the cellular DEAD-box RNA helicase DDX6 to promote virus infection. Using polysome gradient analysis and the subgenomic HCV Renilla reporter replicon genome, we determined that DDX6 does not affect HCV translation. Rather expression of the subgenomic HCV Renilla luciferase reporter at late times, as well as labeling of newly synthesized viral RNA with 4-thiouridine showed that DDX6 modulates replication. Because DDX6 is an effector protein of the microRNA pathway, we also investigated its role in miR-122-directed HCV gene expression. Similar to sequestering miR-122, depletion of DDX6 modulated HCV RNA stability. Interestingly, miR-122-HCV RNA interaction assays with mutant HCV genomes sites and compensatory exogenous miR-122 showed that DDX6 affects the function of miR-122 at one particular binding site. We propose that DDX6 facilitates the miR-122 interaction with HCV 5' UTR, which is necessary for stabilizing the viral genome and the switch between translation and replication.
Collapse
Affiliation(s)
- Jason M Biegel
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Eric Henderson
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Erica M Cox
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gaston Bonenfant
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rachel Netzband
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Samantha Kahn
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rachel Eager
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T Pager
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
| |
Collapse
|
7
|
Jungfleisch J, Blasco-Moreno B, Díez J. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses. Viruses 2016; 8:v8120340. [PMID: 28009841 PMCID: PMC5192400 DOI: 10.3390/v8120340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Bernat Blasco-Moreno
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Juana Díez
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
8
|
Jungfleisch J, Nedialkova DD, Dotu I, Sloan KE, Martinez-Bosch N, Brüning L, Raineri E, Navarro P, Bohnsack MT, Leidel SA, Díez J. A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 2016; 27:95-106. [PMID: 27821408 PMCID: PMC5204348 DOI: 10.1101/gr.209015.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
The impact of RNA structures in coding sequences (CDS) within mRNAs is poorly understood. Here, we identify a novel and highly conserved mechanism of translational control involving RNA structures within coding sequences and the DEAD-box helicase Dhh1. Using yeast genetics and genome-wide ribosome profiling analyses, we show that this mechanism, initially derived from studies of the Brome Mosaic virus RNA genome, extends to yeast and human mRNAs highly enriched in membrane and secreted proteins. All Dhh1-dependent mRNAs, viral and cellular, share key common features. First, they contain long and highly structured CDSs, including a region located around nucleotide 70 after the translation initiation site; second, they are directly bound by Dhh1 with a specific binding distribution; and third, complementary experimental approaches suggest that they are activated by Dhh1 at the translation initiation step. Our results show that ribosome translocation is not the only unwinding force of CDS and uncover a novel layer of translational control that involves RNA helicases and RNA folding within CDS providing novel opportunities for regulation of membrane and secretome proteins.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Danny D Nedialkova
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Ivan Dotu
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Katherine E Sloan
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Neus Martinez-Bosch
- Program of Cancer Research, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Lukas Brüning
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Emanuele Raineri
- Statistical Genomics, Centro Nacional de Analisis Genomica, 08028 Barcelona, Spain
| | - Pilar Navarro
- Program of Cancer Research, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Markus T Bohnsack
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, 37073 Göttingen, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Juana Díez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
9
|
Hyodo K, Okuno T. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr Opin Virol 2016; 17:11-18. [DOI: 10.1016/j.coviro.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023]
|
10
|
Jungfleisch J, Chowdhury A, Alves-Rodrigues I, Tharun S, Díez J. The Lsm1-7-Pat1 complex promotes viral RNA translation and replication by differential mechanisms. RNA (NEW YORK, N.Y.) 2015; 21:1469-79. [PMID: 26092942 PMCID: PMC4509936 DOI: 10.1261/rna.052209.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 05/20/2023]
Abstract
The Lsm1-7-Pat1 complex binds to the 3' end of cellular mRNAs and promotes 3' end protection and 5'-3' decay. Interestingly, this complex also specifically binds to cis-acting regulatory sequences of viral positive-strand RNA genomes promoting their translation and subsequent recruitment from translation to replication. Yet, how the Lsm1-7-Pat1 complex regulates these two processes remains elusive. Here, we show that Lsm1-7-Pat1 complex acts differentially in these processes. By using a collection of well-characterized lsm1 mutant alleles and a system that allows the replication of Brome mosaic virus (BMV) in yeast we show that the Lsm1-7-Pat1 complex integrity is essential for both, translation and recruitment. However, the intrinsic RNA-binding ability of the complex is only required for translation. Consistent with an RNA-binding-independent function of the Lsm1-7-Pat1 complex on BMV RNA recruitment, we show that the BMV 1a protein, the sole viral protein required for recruitment, interacts with this complex in an RNA-independent manner. Together, these results support a model wherein Lsm1-7-Pat1 complex binds consecutively to BMV RNA regulatory sequences and the 1a protein to promote viral RNA translation and later recruitment out of the host translation machinery to the viral replication complexes.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Isabel Alves-Rodrigues
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Juana Díez
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
11
|
Narabayashi T, Kaido M, Okuno T, Mise K. Base-paired structure in the 5' untranslated region is required for the efficient amplification of negative-strand RNA3 in the bromovirus melandrium yellow fleck virus. Virus Res 2014; 188:162-9. [PMID: 24769254 DOI: 10.1016/j.virusres.2014.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022]
Abstract
Melandrium yellow fleck virus belongs to the genus Bromovirus, which is a group of tripartite plant RNA viruses. This virus has an approximately 200-nucleotide direct repeat sequence in the 5' untranslated region (UTR) of RNA3 that encodes the 3a movement protein. In the present study, protoplast assays suggested that the duplicated region contains amplification-enhancing elements. Deletion analyses of the 5' UTR of RNA3 showed that mutations in the short base-paired region, which is located dozens of bases upstream of the initiation codon of the 3a gene, greatly reduced the accumulation of RNA3. Disruption and restoration of the base-paired structure caused the accumulation of RNA3 to be decreased and restored, respectively. In vitro translation/replication assays demonstrated that the base-paired structure is important for the efficient amplification of negative-stand RNA3. A similar base-paired structure in RNA3 of another bromovirus, brome mosaic virus (BMV), also facilitated the efficient amplification of BMV RNA3, but only in combination with melandrium yellow fleck virus (MYFV) replicase and not with BMV replicase, thereby suggesting specific interactions between base-paired structures and MYFV replicase.
Collapse
Affiliation(s)
- Taiki Narabayashi
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
12
|
Cheng SF, Huang YP, Chen LH, Hsu YH, Tsai CH. Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. PLANT PHYSIOLOGY 2013; 163:1598-608. [PMID: 24154620 PMCID: PMC3846135 DOI: 10.1104/pp.113.229666] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 05/18/2023]
Abstract
The Bamboo mosaic virus (BaMV) is a positive-sense, single-stranded RNA virus. Previously, we identified that the chloroplast phosphoglycerate kinase (chl-PGK) from Nicotiana benthamiana is one of the viral RNA binding proteins involved in the BaMV infection cycle. Because chl-PGK is transported to the chloroplast, we hypothesized that chl-PGK might be involved in viral RNA localization in the chloroplasts. To test this hypothesis, we constructed two green fluorescent protein (GFP)-fused mislocalized PGK mutants, the transit peptide deletion mutant (NO TRANSIT PEPTIDE [NOTP]-PGK-GFP) and the nucleus location mutant (nuclear location signal [NLS]-PGK-GFP). Using confocal microscopy, we demonstrated that NOTP-PGK-GFP and NLS-PGK-GFP are localized in the cytoplasm and nucleus, respectively, in N. benthamiana plants. When NOTP-PGK-GFP and NLS-PGK-GFP are transiently expressed, we observed a reduction in BaMV coat protein accumulation to 47% and 27% that of the wild-type PGK-GFP, respectively. To localize viral RNA in infected cells, we employed the interaction of NLS-GFP-MS2 (phage MS2 coat protein) with the modified BaMV RNA containing the MS2 coat protein binding sequence. Using confocal microscopy, we observed that BaMV viral RNA localizes to chloroplasts. Furthermore, elongation factor1a fused with the transit peptide derived from chl-PGK or with a Rubisco small subunit can partially restore BaMV accumulation in NbPGK1-knockdown plants by helping BaMV target chloroplasts.
Collapse
Affiliation(s)
| | | | - Li-Hung Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan (S.-F.C., Y.-P.H., L.-H.C., Y.-H.H., C.-H.T.); and
- Graduate Institute of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan (Y.-H.H., C.-H.T.)
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan (S.-F.C., Y.-P.H., L.-H.C., Y.-H.H., C.-H.T.); and
- Graduate Institute of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan (Y.-H.H., C.-H.T.)
| | | |
Collapse
|
13
|
Blackham SL, McGarvey MJ. A host cell RNA-binding protein, Staufen1, has a role in hepatitis C virus replication before virus assembly. J Gen Virol 2013; 94:2429-2436. [DOI: 10.1099/vir.0.051383-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Staufen1 is a dsRNA-binding protein involved in the regulation of translation and the trafficking and degradation of cellular RNAs. Staufen1 has also been shown to stimulate translation of human immunodeficiency virus type 1 (HIV-1) RNA, regulate HIV-1 and influenza A virus assembly, and there is also indication that it can interact with hepatitis C virus (HCV) RNA. To investigate the role of Staufen1 in the HCV replication cycle, the effects of small interfering RNA knockout of Staufen1 on HCV strain JFH-1 replication and the intracellular distribution of the Staufen1 protein during HCV infection were examined. Silencing Staufen1 in HCV-infected Huh7 cells reduced virus secretion by around 70 %, intracellular HCV RNA levels by around 40 %, and core and NS3 proteins by around 95 and 45 %, respectively. Staufen1 appeared to be predominantly localized in the endoplasmic reticulum at the nuclear periphery in both uninfected and HCV-infected Huh7 cells. However, Staufen1 showed significant co-localization with NS3 and dsRNA, indicating that it may bind to replicating HCV RNA that is associated with the non-structural proteins. Staufen1 and HCV core protein localized very closely to one another during infection, but did not appear to overlap, indicating that Staufen1 may not bind to core protein or localize to the core-coated lipid droplets, suggesting that it may not be directly involved in HCV virus assembly. These findings indicate that Staufen1 is an important factor in HCV replication and that it might play a role early in the HCV replication cycle, e.g. in translation, replication or trafficking of the HCV genome, rather than in virion morphogenesis.
Collapse
|
14
|
Huys A, Thibault PA, Wilson JA. Modulation of hepatitis C virus RNA accumulation and translation by DDX6 and miR-122 are mediated by separate mechanisms. PLoS One 2013; 8:e67437. [PMID: 23826300 PMCID: PMC3691176 DOI: 10.1371/journal.pone.0067437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/17/2013] [Indexed: 01/27/2023] Open
Abstract
DDX6 and other P-body proteins are required for efficient replication of Hepatitis C Virus (HCV) by unknown mechanisms. DDX6 has been implicated in miRNA induced gene silencing, and since efficient HCV replication and translation relies on the cellular microRNA, miR-122, we hypothesized that DDX6 had a role in the mechanism of action of miR-122. However, by using multiple HCV translation and replication assays we have found this is not the case. DDX6 silencing decreased HCV replication and translation, but did not affect the ability of miR-122 to stimulate HCV translation or promote HCV RNA accumulation. In addition, the negative effect of DDX6 silencing on HCV replication and translation was not dependent on miR-122 association with the HCV genome. Thus, DDX6 does not have a role in the activity of miR-122, and it appears that DDX6 and miR-122 modulate HCV through distinct pathways. This effect was seen in both Huh7.5 cells and in Hep3B cells, indicating that the effects are not cell type specific. Since infections by other viruses in the Flaviviridae family, including Dengue and West Nile Virus, also disrupt P-bodies and are regulated by DDX6, we speculate that DDX6 may have a common function that support the replication of several Flaviviruses.
Collapse
Affiliation(s)
- Adam Huys
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Patricia A. Thibault
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Joyce A. Wilson
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
15
|
The cellular decapping activators LSm1, Pat1, and Dhh1 control the ratio of subgenomic to genomic Flock House virus RNAs. J Virol 2013; 87:6192-200. [PMID: 23536653 DOI: 10.1128/jvi.03327-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Positive-strand RNA viruses depend on recruited host factors to control critical replication steps. Previously, it was shown that replication of evolutionarily diverse positive-strand RNA viruses, such as hepatitis C virus and brome mosaic virus, depends on host decapping activators LSm1-7, Pat1, and Dhh1 (J. Diez et al., Proc. Natl. Acad. Sci. U. S. A. 97:3913-3918, 2000; A. Mas et al., J. Virol. 80:246 -251, 2006; N. Scheller et al., Proc. Natl. Acad. Sci. U. S. A. 106:13517-13522, 2009). By using a system that allows the replication of the insect Flock House virus (FHV) in yeast, here we show that LSm1-7, Pat1, and Dhh1 control the ratio of subgenomic RNA3 to genomic RNA1 production, a key feature in the FHV life cycle mediated by a long-distance base pairing within RNA1. Depletion of LSM1, PAT1, or DHH1 dramatically increased RNA3 accumulation during replication. This was not caused by differences between RNA1 and RNA3 steady-state levels in the absence of replication. Importantly, coimmunoprecipitation assays indicated that LSm1-7, Pat1, and Dhh1 interact with the FHV RNA genome and the viral polymerase. By using a strategy that allows dissecting different stages of the replication process, we found that LSm1-7, Pat1, and Dhh1 did not affect the early replication steps of RNA1 recruitment to the replication complex or RNA1 synthesis. Furthermore, their function on RNA3/RNA1 ratios was independent of the membrane compartment, where replication occurs and requires ATPase activity of the Dhh1 helicase. Together, these results support that LSm1-7, Pat1, and Dhh1 control RNA3 synthesis. Their described function in mediating cellular mRNP rearrangements suggests a parallel role in mediating key viral RNP transitions, such as the one required to maintain the balance between the alternative FHV RNA1 conformations that control RNA3 synthesis.
Collapse
|
16
|
Narayanan K, Makino S. Interplay between viruses and host mRNA degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:732-41. [PMID: 23274304 PMCID: PMC3632658 DOI: 10.1016/j.bbagrm.2012.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 12/17/2022]
Abstract
Messenger RNA degradation is a fundamental cellular process that plays a critical role in regulating gene expression by controlling both the quality and the abundance of mRNAs in cells. Naturally, viruses must successfully interface with the robust cellular RNA degradation machinery to achieve an optimal balance between viral and cellular gene expression and establish a productive infection in the host. In the past several years, studies have discovered many elegant strategies that viruses have evolved to circumvent the cellular RNA degradation machinery, ranging from disarming the RNA decay pathways and co-opting the factors governing cellular mRNA stability to promoting host mRNA degradation that facilitates selective viral gene expression and alters the dynamics of host–pathogen interaction. This review summarizes the current knowledge of the multifaceted interaction between viruses and cellular mRNA degradation machinery to provide an insight into the regulatory mechanisms that influence gene expression in viral infections. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA.
| | | |
Collapse
|
17
|
Unusual roles of host metabolic enzymes and housekeeping proteins in plant virus replication. Curr Opin Virol 2012; 2:676-82. [DOI: 10.1016/j.coviro.2012.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 09/20/2012] [Accepted: 10/01/2012] [Indexed: 11/20/2022]
|
18
|
Mine A, Hyodo K, Tajima Y, Kusumanegara K, Taniguchi T, Kaido M, Mise K, Taniguchi H, Okuno T. Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus. J Virol 2012; 86:12091-104. [PMID: 22933272 PMCID: PMC3486462 DOI: 10.1128/jvi.01659-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/21/2012] [Indexed: 02/06/2023] Open
Abstract
Assembly of viral replicase complexes of eukaryotic positive-strand RNA viruses is a regulated process: multiple viral and host components must be assembled on intracellular membranes and ordered into quaternary complexes capable of synthesizing viral RNAs. However, the molecular mechanisms underlying this process are poorly understood. In this study, we used a model virus, Red clover necrotic mosaic virus (RCNMV), whose replicase complex can be detected readily as the 480-kDa functional protein complex. We found that host heat shock proteins Hsp70 and Hsp90 are required for RCNMV RNA replication and that they interact with p27, a virus-encoded component of the 480-kDa replicase complex, on the endoplasmic reticulum membrane. Using a cell-free viral translation/replication system in combination with specific inhibitors of Hsp70 and Hsp90, we found that inhibition of p27-Hsp70 interaction inhibits the formation of the 480-kDa complex but instead induces the accumulation of large complexes that are nonfunctional in viral RNA synthesis. In contrast, inhibition of p27-Hsp90 interaction did not induce such large complexes but rendered p27 incapable of binding to a specific viral RNA element, which is a critical step for the assembly of the 480-kDa replicase complex and viral RNA replication. Together, our results suggest that Hsp70 and Hsp90 regulate different steps in the assembly of the RCNMV replicase complex.
Collapse
Affiliation(s)
- Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kiwamu Hyodo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuri Tajima
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kusumawaty Kusumanegara
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takako Taniguchi
- Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Phalora PK, Sherer NM, Wolinsky SM, Swanson CM, Malim MH. HIV-1 replication and APOBEC3 antiviral activity are not regulated by P bodies. J Virol 2012; 86:11712-24. [PMID: 22915799 PMCID: PMC3486339 DOI: 10.1128/jvi.00595-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/10/2012] [Indexed: 12/12/2022] Open
Abstract
The APOBEC3 cytidine deaminases play a critical role in host-mediated defense against exogenous viruses, most notably, human immunodeficiency virus type-1 (HIV-1) and endogenous transposable elements. APOBEC3G and APOBEC3F interact with numerous proteins that regulate cellular RNA metabolism, including components of the RNA-induced silencing complex (RISC), and colocalize with a subset of these proteins to mRNA processing bodies (P bodies), which are sites of mRNA translational repression and decay. We sought to determine the role of P bodies and associated proteins in HIV-1 replication and APOBEC3 antiviral activity. While we established a positive correlation between APOBEC3 protein incorporation into virions and localization to P bodies, depletion of the P-body components DDX6 or Lsm1 did not affect HIV-1 replication, APOBEC3 packaging into virions or APOBEC3 protein mediated inhibition of HIV-1 infectivity. In addition, neither HIV-1 genomic RNA nor Gag colocalized with P-body proteins. However, simultaneous depletion of multiple Argonaute family members, the effector proteins of RISC, could modestly increase viral infectivity. Because some APOBEC3 proteins interact with several Argonaute proteins, we also tested whether they could modulate microRNA (miRNA) activity. We found no evidence for the specific regulation of miRNA function by the APOBEC3 proteins, though more general effects on transfected gene expression were observed. In sum, our results indicate that P bodies and certain associated proteins do not regulate HIV-1 replication or APOBEC3 protein antiviral activity. Localization to P bodies may therefore provide a means of sequestering APOBEC3 enzymatic activity away from cellular DNA or may be linked to as yet unidentified cellular functions.
Collapse
Affiliation(s)
- Prabhjeet K. Phalora
- Department of Infectious Diseases, Kings College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Nathan M. Sherer
- Department of Infectious Diseases, Kings College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chad M. Swanson
- Department of Infectious Diseases, Kings College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, Kings College London School of Medicine, Guy's Hospital, London, United Kingdom
| |
Collapse
|
20
|
Hepatitis C virus infection alters P-body composition but is independent of P-body granules. J Virol 2012; 86:8740-9. [PMID: 22674998 DOI: 10.1128/jvi.07167-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Processing bodies (P-bodies) are highly dynamic cytoplasmic granules conserved among eukaryotes. They are present under normal growth conditions and contain translationally repressed mRNAs together with proteins from the mRNA decay and microRNA (miRNA) machineries. We have previously shown that the core P-body components PatL1, LSm1, and DDX6 (Rck/p54) are required for hepatitis C virus (HCV) RNA replication; however, how HCV infection affects P-body granules and whether P-body granules per se influence the HCV life cycle remain unresolved issues. Here we show that HCV infection alters P-body composition by specifically changing the localization pattern of P-body components that are required for HCV replication. This effect was not related to an altered expression level of these components and could be reversed by inhibiting HCV replication with a polymerase inhibitor. Similar observations were obtained with a subgenomic replicon that supports only HCV translation and replication, indicating that these early steps of the HCV life cycle trigger the P-body alterations. Finally, P-body disruption by Rap55 depletion did not affect viral titers or HCV protein levels, demonstrating that the localization of PatL1, LSm1, and DDX6 in P-bodies is not required for their function on HCV. Thus, the HCV-induced changes on P-bodies are mechanistically linked to the function of specific P-body components in HCV RNA translation and replication; however, the formation of P-body granules is not required for HCV infection.
Collapse
|
21
|
Diez J, Martinez JP, Mestres J, Sasse F, Frank R, Meyerhans A. Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 2012; 11:52. [PMID: 22545867 PMCID: PMC3420326 DOI: 10.1186/1475-2859-11-52] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 04/30/2012] [Indexed: 12/19/2022] Open
Abstract
Myxobacteria are amongst the top producers of natural products. The diversity and unique structural properties of their secondary metabolites is what make these social microbes highly attractive for drug discovery. Screening of products derived from these bacteria has revealed a puzzling amount of hits against infectious and non-infectious human diseases. Preying mainly on other bacteria and fungi, why would these ancient hunters manufacture compounds beneficial for us? The answer may be the targeting of shared processes and structural features conserved throughout evolution.
Collapse
Affiliation(s)
- Juana Diez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Most of the studies on cell proliferation examine the control of gene expression by specific transcription factors that act on transcriptional initiation. In the last few years, it became evident that mRNA stability/turnover provides an important mechanism for post-transcriptional control of gene expression. In eukaryotes, mRNAs are mainly degraded after deadenylation by decapping and exosome pathways. Mechanisms of mRNA surveillance comprise deadenylation-independent pathways such as NMD (nonsense-mediated decay), when mRNAs harbour a PTC (premature termination codon), NSD (non-stop decay, when mRNAs lack a termination codon, and NGD (no-go decay), when mRNA translation elongation stalls. Many proteins involved in these processes are conserved from bacteria to yeast and humans. Recent papers showed the involvement of proteins deputed to decapping in controlling cell proliferation, virus replication and cell death. In this paper, we will review the newest findings in this field.
Collapse
|
23
|
Ward AM, Bidet K, Yinglin A, Ler SG, Hogue K, Blackstock W, Gunaratne J, Garcia-Blanco MA. Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3' UTR structures. RNA Biol 2011; 8:1173-86. [PMID: 21957497 DOI: 10.4161/rna.8.6.17836] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dengue virus (DENV) is a rapidly re-emerging flavivirus that causes dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), diseases for which there are no available therapies or vaccines. The DENV-2 positive-strand RNA genome contains 5' and 3' untranslated regions (UTRs) that have been shown to form secondary structures required for virus replication and interaction with host cell proteins. In order to comprehensively identify host cell factors that bind the DENV-2 UTRs, we performed RNA chromatography, using the DENV-2 5' and 3' UTRs as "bait", combined with quantitative mass spectrometry. We identified several proteins, including DDX6, G3BP1, G3BP2, Caprin1, and USP10, implicated in P body (PB) and stress granule (SG) function, and not previously known to bind DENV RNAs. Indirect immunofluorescence microscopy showed these proteins to colocalize with the DENV replication complex. Moreover, DDX6 knockdown resulted in reduced amounts of infectious particles and viral RNA in tissue culture supernatants following DENV infection. DDX6 interacted with DENV RNA in vivo during infection and in vitro this interaction was mediated by the DB1 and DB2 structures in the 3' UTR, possibly by formation of a pseudoknot structure. Additional experiments demonstrate that, in contrast to DDX6, the SG proteins G3BP1, G3BP2, Caprin1 and USP10 bind to the variable region (VR) in the 3' UTR. These results suggest that the DENV-2 3' UTR is a site for assembly of PB and SG proteins and, for DDX6, assembly on the 3' UTR is required for DENV replication.
Collapse
Affiliation(s)
- Alex Michael Ward
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wrapping membranes around plant virus infection. Curr Opin Virol 2011; 1:388-95. [PMID: 22440840 DOI: 10.1016/j.coviro.2011.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 12/22/2022]
Abstract
Positive strand RNA viruses cause membrane modifications which are microenvironments or larger intracellular compartments, also called 'viroplasms'. These compartments serve to concentrate virus and host factors needed to produce new genomes. Forming these replication sites often involves virus induced membrane synthesis, changes in fatty acid metabolism, and viral recruitment of cellular factors to subcellular domains. Interacting viral and host factors builds the physical scaffold for replication complexes. Such virus induced changes are a visible cytopathology that has been used by plant and mammalian virologists to describe virus disease. This article describes key examples of membrane modifications that are essential for plant virus replication and intercellular transport.
Collapse
|
25
|
Gancarz BL, Hao L, He Q, Newton MA, Ahlquist P. Systematic identification of novel, essential host genes affecting bromovirus RNA replication. PLoS One 2011; 6:e23988. [PMID: 21915247 PMCID: PMC3161824 DOI: 10.1371/journal.pone.0023988] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/28/2011] [Indexed: 11/18/2022] Open
Abstract
Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV) is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2aPol levels were significantly increased in strains depleted for a heat shock protein (HSF1) or proteasome components (PRE1 and RPT6), suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2aPol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.
Collapse
Affiliation(s)
- Brandi L. Gancarz
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Linhui Hao
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Qiuling He
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Michael A. Newton
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
26
|
Cancio-Lonches C, Yocupicio-Monroy M, Sandoval-Jaime C, Galvan-Mendoza I, Ureña L, Vashist S, Goodfellow I, Salas-Benito J, Gutiérrez-Escolano AL. Nucleolin interacts with the feline calicivirus 3' untranslated region and the protease-polymerase NS6 and NS7 proteins, playing a role in virus replication. J Virol 2011; 85:8056-68. [PMID: 21680514 PMCID: PMC3147956 DOI: 10.1128/jvi.01878-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 05/29/2011] [Indexed: 12/19/2022] Open
Abstract
Cellular proteins play many important roles during the life cycle of all viruses. Specifically, host cell nucleic acid-binding proteins interact with viral components of positive-stranded RNA viruses and regulate viral translation, as well as RNA replication. Here, we report that nucleolin, a ubiquitous multifunctional nucleolar shuttling phosphoprotein, interacts with the Norwalk virus and feline calicivirus (FCV) genomic 3' untranslated regions (UTRs). Nucleolin can also form a complex in vitro with recombinant Norwalk virus NS6 and -7 (NS6/7) and can be copurified with the analogous protein from feline calicivirus (p76 or NS6/7) from infected feline kidney cells. Nucleolin RNA levels or protein were not modified during FCV infection; however, as a consequence of the infection, nucleolin was seen to relocalize from the nucleoli to the nucleoplasm, as well as to the perinuclear area where it colocalizes with the feline calicivirus NS6/7 protein. In addition, antibodies to nucleolin were able to precipitate viral RNA from feline calicivirus-infected cells, indicating a direct or indirect association of nucleolin with the viral RNA during virus replication. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a reduction of the cytopathic effect and virus yield in CrFK cells. Taken together, these results demonstrate that nucleolin is a nucleolar component that interacts with viral RNA and NS6/7 and is required for feline calicivirus replication.
Collapse
Affiliation(s)
- Clotilde Cancio-Lonches
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, México
- Departamento de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Distrito Federal, México
| | - Martha Yocupicio-Monroy
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Distrito Federal, México
| | - Carlos Sandoval-Jaime
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, México
| | - Iván Galvan-Mendoza
- Laboratorios Centrales, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, México
| | - Luis Ureña
- Section of Virology, Faculty of Medicine, Imperial College of London, St. Mary's Campus, Norkfolk Place, London W2 1PG, United Kingdom
| | - Surender Vashist
- Section of Virology, Faculty of Medicine, Imperial College of London, St. Mary's Campus, Norkfolk Place, London W2 1PG, United Kingdom
| | - Ian Goodfellow
- Section of Virology, Faculty of Medicine, Imperial College of London, St. Mary's Campus, Norkfolk Place, London W2 1PG, United Kingdom
| | - Juan Salas-Benito
- Departamento de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, IPN, Distrito Federal, México
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Distrito Federal, México
| |
Collapse
|
27
|
Drummond SP, Hildyard J, Firczuk H, Reamtong O, Li N, Kannambath S, Claydon AJ, Beynon RJ, Eyers CE, McCarthy JEG. Diauxic shift-dependent relocalization of decapping activators Dhh1 and Pat1 to polysomal complexes. Nucleic Acids Res 2011; 39:7764-74. [PMID: 21712243 PMCID: PMC3177209 DOI: 10.1093/nar/gkr474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dhh1 and Pat1 in yeast are mRNA decapping activators/translational repressors thought to play key roles in the transition of mRNAs from translation to degradation. However, little is known about the physical and functional relationships between these proteins and the translation machinery. We describe a previously unknown type of diauxic shift-dependent modulation of the intracellular locations of Dhh1 and Pat1. Like the formation of P bodies, this phenomenon changes the spatial relationship between components involved in translation and mRNA degradation. We report significant spatial separation of Dhh1 and Pat1 from ribosomes in exponentially growing cells. Moreover, biochemical analyses reveal that these proteins are excluded from polysomal complexes in exponentially growing cells, indicating that they may not be associated with active states of the translation machinery. In contrast, under diauxic growth shift conditions, Dhh1 and Pat1 are found to co-localize with polysomal complexes. This work suggests that Dhh1 and Pat1 functions are modulated by a re-localization mechanism that involves eIF4A. Pull-down experiments reveal that the intracellular binding partners of Dhh1 and Pat1 change as cells undergo the diauxic growth shift. This reveals a new dimension to the relationship between translation activity and interactions between mRNA, the translation machinery and decapping activator proteins.
Collapse
Affiliation(s)
- Sheona P Drummond
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
mRNA-processing bodies (P bodies) are cytoplasmic foci that contain translationally repressed mRNA. Since they are important for the retrotransposition of Ty elements and brome mosaic virus in yeast cells, we assessed the role of P bodies in the movement of endogenous intracisternal A particles (IAPs) in mammalian cells. In contrast to the case for these other systems, their disruption via knockdown of RCK or eukaryotic initiation factor E transporter (eIF4E-T) increased IAP retrotransposition as well as levels of IAP transcripts, Gag proteins, and reverse transcription products. This increase was not mediated by impairing the microRNA pathway. Rather, the removal of P bodies shifted IAP mRNA from nonpolysomal to polysomal fractions. Although IAP mRNA localized to P bodies, Gag was targeted to the endoplasmic reticulum (ER), from which IAP buds. Thus, by sequestering IAP mRNA away from Gag, P bodies inhibit rather than promote IAP retrotransposition.
Collapse
|
29
|
Pat1 proteins: a life in translation, translation repression and mRNA decay. Biochem Soc Trans 2011; 38:1602-7. [PMID: 21118134 DOI: 10.1042/bst0381602] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pat1 proteins are conserved across eukaryotes. Vertebrates have evolved two Pat1 proteins paralogues, whereas invertebrates and yeast only possess one such protein. Despite their lack of known domains or motifs, Pat1 proteins are involved in several key post-transcriptional mechanisms of gene expression control. In yeast, Pat1p interacts with translating mRNPs (messenger ribonucleoproteins), and is responsible for translational repression and decapping activation, ultimately leading to mRNP degradation. Drosophila HPat and human Pat1b (PatL1) proteins also have conserved roles in the 5'→3' mRNA decay pathway. Consistent with their functions in silencing gene expression, Pat1 proteins localize to P-bodies (processing bodies) in yeast, Drosophila, Caenorhabditis elegans and human cells. Altogether, Pat1 proteins may act as scaffold proteins allowing the sequential binding of repression and decay factors on mRNPs, eventually leading to their degradation. In the present mini-review, we present the current knowledge on Pat1 proteins in the context of their multiple functions in post-transcriptional control.
Collapse
|
30
|
Abstract
Plus-strand +RNA viruses co-opt host RNA-binding proteins (RBPs) to perform many functions during viral replication. A few host RBPs have been identified that affect the recruitment of viral +RNAs for replication. Other subverted host RBPs help the assembly of the membrane-bound replicase complexes, regulate the activity of the replicase and control minus- or plus-strand RNA synthesis. The host RBPs also affect the stability of viral RNAs, which have to escape cellular RNA degradation pathways. While many host RBPs seem to have specialized functions, others participate in multiple events during infection. Several conserved RBPs, such as eEF1A, hnRNP proteins and Lsm 1-7 complex, are co-opted by evolutionarily diverse +RNA viruses, underscoring some common themes in virus-host interactions. On the other hand, viruses also hijack unique RBPs, suggesting that +RNA viruses could utilize different RBPs to perform similar functions. Moreover, different +RNA viruses have adapted unique strategies for co-opting unique RBPs. Altogether, a deeper understanding of the functions of the host RBPs subverted for viral replication will help development of novel antiviral strategies and give new insights into host RNA biology.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
31
|
Eulalio A, Fröhlich KS, Mano M, Giacca M, Vogel J. A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly. PLoS One 2011; 6:e17296. [PMID: 21390246 PMCID: PMC3046968 DOI: 10.1371/journal.pone.0017296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/28/2011] [Indexed: 01/11/2023] Open
Abstract
P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.
Collapse
Affiliation(s)
- Ana Eulalio
- RNA Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (JV); (AE)
| | - Kathrin S. Fröhlich
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jörg Vogel
- RNA Biology Group, Max Planck Institute for Infection Biology, Berlin, Germany
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
- * E-mail: (JV); (AE)
| |
Collapse
|
32
|
Xu J, Chua NH. Processing bodies and plant development. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:88-93. [PMID: 21075046 PMCID: PMC3042721 DOI: 10.1016/j.pbi.2010.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 05/22/2023]
Abstract
Processing bodies (P-bodies) contain RNA-protein complexes linked to cytoplasmic RNA decay pathways including mRNA decapping, nonsense-mediated decay (NMD) and small RNA-mediated decay. Plants deficient in P-body components display severe developmental perturbations, suggesting that these cytoplasmic bodies play important roles in regulating gene expression during plant development. Here, we summarize recent progress in the genetic dissection of P-body components and their roles in translational repression and mRNA decapping.
Collapse
Affiliation(s)
- Jun Xu
- Laboratory of Plant Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
33
|
Gaglia MM, Glaunsinger BA. Viruses and the cellular RNA decay machinery. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:47-59. [PMID: 21956906 PMCID: PMC7169783 DOI: 10.1002/wrna.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to control cellular and viral gene expression, either globally or selectively, is central to a successful viral infection, and it is also crucial for the host to respond and eradicate pathogens. In eukaryotes, regulation of message stability contributes significantly to the control of gene expression and plays a prominent role in the normal physiology of a cell as well as in its response to environmental and pathogenic stresses. Not surprisingly, emerging evidence indicates that there are significant interactions between the eukaryotic RNA turnover machinery and a wide variety of viruses. Interestingly, in many cases viruses have evolved mechanisms not only to evade eradication by these pathways, but also to manipulate them for enhanced viral replication and gene expression. Given our incomplete understanding of how many of these pathways are normally regulated, viruses should be powerful tools to help deconstruct the complex networks and events governing eukaryotic RNA stability. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under:
RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Plant and Microbiology, University of California, Berkeley, CA 94720‐3102, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbiology, University of California, Berkeley, CA 94720‐3102, USA
| |
Collapse
|
34
|
Galão RP, Chari A, Alves-Rodrigues I, Lobão D, Mas A, Kambach C, Fischer U, Díez J. LSm1-7 complexes bind to specific sites in viral RNA genomes and regulate their translation and replication. RNA (NEW YORK, N.Y.) 2010; 16:817-27. [PMID: 20181739 PMCID: PMC2844628 DOI: 10.1261/rna.1712910] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 01/07/2010] [Indexed: 05/18/2023]
Abstract
LSm1-7 complexes promote cellular mRNA degradation, in addition to translation and replication of positive-strand RNA viruses such as the Brome mosaic virus (BMV). Yet, how LSm1-7 complexes act on their targets remains elusive. Here, we report that reconstituted recombinant LSm1-7 complexes directly bind to two distinct RNA-target sequences in the BMV genome, a tRNA-like structure at the 3'-untranslated region and two internal A-rich single-stranded regions. Importantly, in vivo analysis shows that these sequences regulate the translation and replication of the BMV genome. Furthermore, both RNA-target sequences resemble those found for Hfq, the LSm counterpart in bacteria, suggesting conservation through evolution. Our results provide the first evidence that LSm1-7 complexes interact directly with viral RNA genomes and open new perspectives in the understanding of LSm1-7 functions.
Collapse
Affiliation(s)
- Rui Pedro Galão
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proc Natl Acad Sci U S A 2009; 106:13517-22. [PMID: 19628699 DOI: 10.1073/pnas.0906413106] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inevitably, viruses depend on host factors for their multiplication. Here, we show that hepatitis C virus (HCV) RNA translation and replication depends on Rck/p54, LSm1, and PatL1, which regulate the fate of cellular mRNAs from translation to degradation in the 5'-3'-deadenylation-dependent mRNA decay pathway. The requirement of these proteins for efficient HCV RNA translation was linked to the 5' and 3' untranslated regions (UTRs) of the viral genome. Furthermore, LSm1-7 complexes specifically interacted with essential cis-acting HCV RNA elements located in the UTRs. These results bridge HCV life cycle requirements and highly conserved host proteins of cellular mRNA decay. The previously described role of these proteins in the replication of 2 other positive-strand RNA viruses, the plant brome mosaic virus and the bacteriophage Qss, pinpoint a weak spot that may be exploited to generate broad-spectrum antiviral drugs.
Collapse
|
36
|
Metabolite profiling studies in Saccharomyces cerevisiae: an assisting tool to prioritize host targets for antiviral drug screening. Microb Cell Fact 2009; 8:12. [PMID: 19183481 PMCID: PMC2658664 DOI: 10.1186/1475-2859-8-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 01/30/2009] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The cellular proteins Pat1p, Lsm1p, and Dhh1p are required for the replication of some positive-strand viruses and therefore are potential targets for new antiviral drugs. To prioritize host targets for antiviral drug screening a comparative metabolome analysis in Saccharomyces cerevisiae reference strain BY4742 Matalpha his3Delta1 leu2Delta0 lys2Delta0 ura3Delta0 and deletion strains pat1Delta, lsm1Delta and dhh1Delta was performed. RESULTS GC/MS analysis permitted the quantification of 47 polar metabolites and the identification of 41 of them. Metabolites with significant variation between the strains were identified using partial least squares to latent structures discriminate analysis (PLS-DA). The analysis revealed least differences of pat1Delta to the reference strain as characterized by Euclidian distance of normalized peak areas. The growth rate and specific production rates of ethanol and glycerol were also most similar with this strain. CONCLUSION From these results we hypothesize that the human analog of yeast Pat1p is most likely the best drug target candidate.
Collapse
|
37
|
Seo JK, Kwon SJ, Choi HS, Kim KH. Evidence for alternate states of Cucumber mosaic virus replicase assembly in positive- and negative-strand RNA synthesis. Virology 2009; 383:248-60. [PMID: 19022467 DOI: 10.1016/j.virol.2008.10.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/30/2008] [Accepted: 10/21/2008] [Indexed: 01/22/2023]
Abstract
Cucumber mosaic virus (CMV) encodes two viral replication proteins, 1a and 2a. Accumulating evidence implies that different aspects of 1a-2a interaction in replication complex assembly are involved in the regulation of virus replication. To further investigate CMV replicase assembly and to dissect the involvement of replicase activities in negative- and positive-strand synthesis, we transiently expressed CMV RNAs and/or proteins in Nicotiana benthamiana leaves using a DNA or RNA-mediated expression system. Surprisingly, we found that, even in the absence of 1a, 2a is capable of synthesizing positive-strand RNAs, while 1a and 2a are both required for negative-strand synthesis. We also report evidence that 1a capping activities function independently of 2a. Moreover, using 1a mutants, we show that capping activities of 1a are crucial for viral translation but not for RNA transcription. These results support the concept that two or more alternate states of replicase assembly are involved in CMV replication.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
38
|
Nagy PD, Pogany J. Host Factors Promoting Viral RNA Replication. VIRAL GENOME REPLICATION 2009. [PMCID: PMC7120932 DOI: 10.1007/b135974_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plus-stranded RNA viruses, the largest group among eukaryotic viruses, are capable of reprogramming host cells by subverting host proteins and membranes, by co-opting and modulating protein and ribonucleoprotein complexes, and by altering cellular pathways during infection. To achieve robust replication, plus-stranded RNA viruses interact with numerous cellular molecules via protein–protein, RNA–protein, and protein–lipid interactions using molecular mimicry and other means. These interactions lead to the transformation of the host cells into viral “factories" that can produce 10,000–1,000,000 progeny RNAs per infected cell. This chapter presents the progress that was made largely in the last 15 years in understanding virus–host interactions during RNA virus replication. The most commonly employed approaches to identify host factors that affect plus-stranded RNA virus replication are described. In addition, we discuss many of the identified host factors and their proposed roles in RNA virus replication. Altogether, host factors are key determinants of the host range of a given virus and affect virus pathology, host–virus interactions, as well as virus evolution. Studies on host factors also contribute insights into their normal cellular functions, thus promoting understanding of the basic biology of the host cell. The knowledge obtained in this fast-progressing area will likely stimulate the development of new antiviral methods as well as novel strategies that could make plus-stranded RNA viruses useful in bio- and nanotechnology.
Collapse
|
39
|
Sztuba-Solinska J, Bujarski JJ. Insights into the single-cell reproduction cycle of members of the family Bromoviridae: lessons from the use of protoplast systems. J Virol 2008; 82:10330-40. [PMID: 18684833 PMCID: PMC2573203 DOI: 10.1128/jvi.00746-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Joanna Sztuba-Solinska
- Department of Biological Sciences, Plant Molecular Biology Center, Montgomery Hall, Northern Illinois University, De Kalb, IL 60115, USA
| | | |
Collapse
|
40
|
Beckham CJ, Parker R. P bodies, stress granules, and viral life cycles. Cell Host Microbe 2008; 3:206-12. [PMID: 18407064 PMCID: PMC2396818 DOI: 10.1016/j.chom.2008.03.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/03/2008] [Accepted: 03/14/2008] [Indexed: 12/11/2022]
Abstract
Eukaryotic mRNAs are in a dynamic equilibrium between different subcellular locations. Translating mRNAs can be found in polysomes, mRNAs stalled in translation initiation accumulate in stress granules and mRNAs targeted for degradation or translation repression can accumulate in P bodies. Partitioning of mRNAs between polysomes, stress granules, and P bodies affects rates of translation and mRNA degradation. Host proteins within P bodies and stress granules can enhance or limit viral infection, and some viral RNAs and proteins accumulate in P bodies and/or stress granules. Thus, an important interplay among P bodies, stress granules, and viral life cycles is beginning to emerge.
Collapse
Affiliation(s)
- Carla J. Beckham
- Department of Cell Biology and Anatomy, The University of Arizona, Tucson, Arizona, 85721-0206, USA
| | - Roy Parker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, The University of Arizona, Tucson, Arizona, 85721-0206, USA
| |
Collapse
|
41
|
Abstract
The yeast Saccharomyces cerevisiae is invaluable for understanding fundamental cellular processes and disease states of relevance to higher eukaryotes. Plant viruses are intracellular parasites that take advantage of resources of the host cell, and a simple eukaryotic cell, such as yeast, can provide all or most of the functions for successful plant virus replication. Thus, yeast has been used as a model to unravel the interactions of plant viruses with their hosts. Indeed, genome-wide and proteomics studies using yeast as a model host with bromoviruses and tombusviruses have facilitated the identification of replication-associated factors that affect host-virus interactions, virus pathology, virus evolution, and host range. Many of the host genes that affect the replication of the two viruses, which belong to two dissimilar virus families, are distinct, suggesting that plant viruses have developed different ways to utilize the resources of host cells. In addition, a surprisingly large number of yeast genes have been shown to affect RNA-RNA recombination in tombusviruses; this opens an opportunity to study the role of the host in virus evolution. The knowledge gained about host-virus interactions likely will lead to the development of new antiviral methods and applications in biotechnology and nanotechnology, as well as new insights into cellular functions of individual genes and the basic biology of the host cell.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|
42
|
cis- and trans-acting functions of brome mosaic virus protein 1a in genomic RNA1 replication. J Virol 2007; 82:3045-53. [PMID: 18160434 DOI: 10.1128/jvi.02390-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA viruses employ a combination of mechanisms to regulate their gene expression and replication. Brome mosaic virus (BMV) is a tripartite positive-strand RNA virus used to study the requirements for virus infection. BMV genomic RNA1 encodes protein 1a, which contains a methyltransferase (MT) domain and a helicase domain that are required for replication. 1a forms a complex with the 2a RNA-dependent RNA polymerase for the replication and transcription of all BMV RNAs. RNA1 expressed with 2a from Agrobacterium-based vectors can result in RNA1 replication in Nicotiana benthamiana. A mutation in the 1a translation initiation codon significantly decreased RNA1 accumulation even when wild-type (WT) 1a and 2a were provided in trans. Therefore, efficient RNA1 replication requires 1a translation from RNA1 in cis, indicating a linkage between replication and translation. Mutation analyses showed that the full-length 1a protein was required for efficient RNA1 replication, not just the process of translation. Three RNA1s with mutations in the 1a MT domain could be partially rescued by WT 1a expressed in trans, indicating that the cis-acting function of 1a was retained. Furthermore, an RNA motif in the 5'-untranslated region of RNA1, named the B box, was required for 1a to function in cis and in trans for BMV RNA accumulation. The B box is required for the formation of the replication factory (M. Schwartz, J. Chen, M. Janda, M. Sullivan, J. den Boon, and P. Ahlquist, Mol. Cell 9:505-514, 2002). Results in this work demonstrate a linkage between BMV RNA1 translation and replication.
Collapse
|
43
|
Scheller N, Resa-Infante P, de la Luna S, Galao RP, Albrecht M, Kaestner L, Lipp P, Lengauer T, Meyerhans A, Díez J. Identification of PatL1, a human homolog to yeast P body component Pat1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1786-92. [PMID: 17936923 DOI: 10.1016/j.bbamcr.2007.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 08/23/2007] [Accepted: 08/24/2007] [Indexed: 11/29/2022]
Abstract
In yeast, the activators of mRNA decapping, Pat1, Lsm1 and Dhh1, accumulate in processing bodies (P bodies) together with other proteins of the 5'-3'-deadenylation-dependent mRNA decay pathway. The Pat1 protein is of particular interest because it functions in the opposing processes of mRNA translation and mRNA degradation, thus suggesting an important regulatory role. In contrast to other components of this mRNA decay pathway, the human homolog of the yeast Pat1 protein was unknown. Here we describe the identification of two human PAT1 genes and show that one of them, PATL1, codes for an ORF with similar features as the yeast PAT1. As expected for a protein with a fundamental role in translation control, PATL1 mRNA was ubiquitously expressed in all human tissues as were the mRNAs of LSM1 and RCK, the human homologs of yeast LSM1 and DHH1, respectively. Furthermore, fluorescence-tagged PatL1 protein accumulated in distinct foci that correspond to P bodies, as they co-localized with the P body components Lsm1, Rck/p54 and the decapping enzyme Dcp1. In addition, as for its yeast counterpart, PatL1 expression was required for P body formation. Taken together, these data emphasize the conservation of important P body components from yeast to human cells.
Collapse
|
44
|
Yeam I, Cavatorta JR, Ripoll DR, Kang BC, Jahn MM. Functional dissection of naturally occurring amino acid substitutions in eIF4E that confers recessive potyvirus resistance in plants. THE PLANT CELL 2007; 19:2913-28. [PMID: 17890375 PMCID: PMC2048695 DOI: 10.1105/tpc.107.050997] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 07/30/2007] [Accepted: 08/28/2007] [Indexed: 05/17/2023]
Abstract
Naturally existing variation in the eukaryotic translation initiation factor 4E (eIF4E) homolog encoded at the pvr1 locus in Capsicum results in recessively inherited resistance against several potyviruses. Previously reported data indicate that the physical interaction between Capsicum-eIF4E and the viral genome-linked protein (VPg) is required for the viral infection in the Capsicum-Tobacco etch virus (TEV) pathosystem. In this study, the potential structural role(s) of natural variation in the eIF4E protein encoded by recessive resistance alleles and their biological consequences have been assessed. Using high-resolution three-dimensional structural models based on the available crystallographic structures of eIF4E, we show that the amino acid substitution G107R, found in many recessive plant virus resistance genes encoding eIF4E, is predicted to result in a substantial modification in the protein binding pocket. The G107R change was shown to not only be responsible for the interruption of VPg binding in planta but also for the loss of cap binding ability in vitro, the principal function of eIF4E in the host. Overexpression of the Capsicum-eIF4E protein containing the G107R amino acid substitution in Solanum lycopersicum indicated that this polymorphism alone is sufficient for the acquisition of resistance against several TEV strains.
Collapse
Affiliation(s)
- Inhwa Yeam
- Department of Plant Breeding and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
45
|
Beckham CJ, Light HR, Nissan TA, Ahlquist P, Parker R, Noueiry A. Interactions between brome mosaic virus RNAs and cytoplasmic processing bodies. J Virol 2007; 81:9759-68. [PMID: 17609284 PMCID: PMC2045432 DOI: 10.1128/jvi.00844-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic processing bodies are sites where nontranslating mRNAs accumulate for different fates, including decapping and degradation, storage, or returning to translation. Previous work has also shown that the Lsm1-7p complex, Dhh1p, and Pat1p, which are all components of P bodies, are required for translation and subsequent recruitment to replication of the plant virus brome mosaic virus (BMV) genomic RNAs when replication is reproduced in yeast cells. To better understand the role of P bodies in BMV replication, we examined the subcellular locations of BMV RNAs in yeast cells. We observed that BMV genomic RNA2 and RNA3 accumulated in P bodies in a manner dependent on cis-acting RNA replication signals, which also directed nonviral RNAs to P bodies. Furthermore, the viral RNA-dependent RNA polymerase coimmunoprecipitates and shows partial colocalization with the P-body component Lsm1p. These observations suggest that the accumulation of BMV RNAs in P bodies may be an important step in RNA replication complex assembly for BMV, and possibly for other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Carla J Beckham
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, The University of Arizona, Tucson, AZ 85721-0206, USA
| | | | | | | | | | | |
Collapse
|
46
|
Komoda K, Mawatari N, Hagiwara-Komoda Y, Naito S, Ishikawa M. Identification of a ribonucleoprotein intermediate of tomato mosaic virus RNA replication complex formation. J Virol 2007; 81:2584-91. [PMID: 17108048 PMCID: PMC1865976 DOI: 10.1128/jvi.01921-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/05/2006] [Indexed: 01/10/2023] Open
Abstract
The replication of eukaryotic positive-strand RNA virus genomes occurs in the membrane-bound RNA replication complexes. Previously, we found that the extract of evacuolated tobacco BY-2 protoplasts (BYL) is capable of supporting the translation and subsequent replication of the genomic RNAs of plant positive-strand RNA viruses, including Tomato mosaic virus (ToMV). Here, to dissect the process that precedes the formation of ToMV RNA replication complexes, we prepared membrane-depleted BYL (mdBYL), in which the membranes were removed by centrifugation. In mdBYL, ToMV RNA was translated to produce the 130-kDa and 180-kDa replication proteins, but the synthesis of any ToMV-related RNAs did not occur. When BYL membranes were added back to the ToMV RNA-translated mdBYL after the termination of translation with puromycin, ToMV RNA was replicated. Using a replication-competent ToMV derivative that encodes the FLAG-tagged 180-kDa replication protein, it was shown by affinity purification that a complex that contained the 130-kDa and 180-kDa proteins and ToMV genomic RNA was formed after translation in mdBYL. When the complex was mixed with BYL membranes, ToMV RNA was replicated, which suggests that this ribonucleoprotein complex is an intermediate of ToMV RNA replication complex formation. We have named this ribonucleoprotein complex the "pre-membrane-targeting complex." Our data suggest that the formation of the pre-membrane-targeting complex is coupled with the translation of ToMV RNA, while posttranslationally added exogenous 180-kDa protein and replication templates can contribute to replication and can be replicated, respectively. Based on these results, we discuss the mechanisms of ToMV RNA replication complex formation.
Collapse
Affiliation(s)
- Keisuke Komoda
- Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | |
Collapse
|
47
|
Alves-Rodrigues I, Mas A, Díez J. Xenopus Xp54 and human RCK/p54 helicases functionally replace yeast Dhh1p in brome mosaic virus RNA replication. J Virol 2007; 81:4378-80. [PMID: 17301158 PMCID: PMC1866127 DOI: 10.1128/jvi.02246-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
By using a Brome mosaic virus (BMV)-Saccharomyces cerevisiae system, we previously showed that the cellular Lsm1p-7p/Pat1p/Dhh1p decapping-activator complex functions in BMV RNA translation and replication. As a first approach in investigating whether the corresponding human homologues play a similar role, we expressed human Lsm1p (hLsm1p) and RCK/p54 in yeast. Expression of RCK/p54 but not hLsm1p restored the defect in BMV RNA translation and replication observed in the dhh1Delta and lsm1Delta strains, respectively. This functional conservation, together with the common replication strategies of positive-stranded RNA viruses, suggests that RCK/p54 may also play a role in the replication of positive-stranded RNA viruses that infect humans.
Collapse
Affiliation(s)
- Isabel Alves-Rodrigues
- Departamento Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra, Dr. Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
48
|
Yi G, Gopinath K, Kao CC. Selective repression of translation by the brome mosaic virus 1a RNA replication protein. J Virol 2007; 81:1601-9. [PMID: 17108036 PMCID: PMC1797591 DOI: 10.1128/jvi.01991-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 11/05/2006] [Indexed: 12/23/2022] Open
Abstract
Differential expression of viral replication proteins is essential for successful infection. We report here that overexpression of the brome mosaic virus (BMV) 1a protein can repress viral RNA replication in a dosage-dependent manner. Using RNA replication-incompetent reporter constructs, repression of translation from BMV RNA1 and RNA2 was observed, suggesting that the effect on translation of the BMV RNA replication proteins is responsible for the decrease in RNA levels. Furthermore, repression of translation by 1a required the B box in the 5'-untranslated region (5' UTR); BMV RNA3 that lacks a B box in its 5' UTR is not subject to 1a-mediated translational inhibition. Mutations in either the methyltransferase or the helicase-like domains of 1a reduced the repression of replication and translation. These results suggest that in addition to its known functions in BMV RNA synthesis, 1a also regulates viral gene expression.
Collapse
Affiliation(s)
- Guanghui Yi
- Department of Biochemistry and Biophysics, Texas A and M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
49
|
Alves-Rodrigues I, Galão RP, Meyerhans A, Díez J. Saccharomyces cerevisiae: a useful model host to study fundamental biology of viral replication. Virus Res 2006; 120:49-56. [PMID: 16698107 PMCID: PMC7114155 DOI: 10.1016/j.virusres.2005.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 02/02/2023]
Abstract
Understanding the fundamental steps of virus life cycles including virus–host interactions is essential for the design of effective antiviral strategies. Such understanding has been deferred by the complexity of higher eukaryotic host organisms. To circumvent experimental difficulties associated with this, systems were developed to replicate viruses in the yeast Saccharomyces cerevisiae. The systems include viruses with RNA and DNA genomes that infect plants, animals and humans. By using the powerful methodologies available for yeast genetic analysis, fundamental processes occurring during virus replication have been brought to light. Here, we review the different viruses able to direct replication and gene expression in yeast and discuss their main contributions in the understanding of virus biology.
Collapse
Affiliation(s)
- Isabel Alves-Rodrigues
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|