1
|
Cao L, Fu F, Chen J, Shi H, Zhang X, Liu J, Shi D, Huang Y, Tong D, Feng L. Nucleocytoplasmic Shuttling of Porcine Parvovirus NS1 Protein Mediated by the CRM1 Nuclear Export Pathway and the Importin α/β Nuclear Import Pathway. J Virol 2022; 96:e0148121. [PMID: 34643426 PMCID: PMC8754214 DOI: 10.1128/jvi.01481-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Porcine parvovirus (PPV) NS1, the major nonstructural protein of this virus, plays an important role in PPV replication. We show, for the first time, that NS1 dynamically shuttles between the nucleus and cytoplasm, although its subcellular localization is predominantly nuclear. NS1 contains two nuclear export signals (NESs) at amino acids 283 to 291 (designated NES2) and amino acids 602 to 608 (designated NES1). NES1 and NES2 are both functional and transferable NESs, and their nuclear export activity is blocked by leptomycin B (LMB), suggesting that the export of NS1 from the nucleus is dependent upon the chromosome region maintenance 1 (CRM1) pathway. Deletion and site-directed mutational analyses showed that NS1 contains a bipartite nuclear localization signal (NLS) at amino acids 256 to 274. Coimmunoprecipitation assays showed that NS1 interacts with importins α5 and α7 through its NLS. The overexpression of CRM1 and importins α5 and α7 significantly promoted PPV replication, whereas the inhibition of CRM1- and importin α/β-mediated transport by specific inhibitors (LMB, importazole, and ivermectin) clearly blocked PPV replication. The mutant viruses with deletions of the NESs or NLS motif of NS1 by using reverse genetics could not be rescued, suggesting that the NESs and NLS are essential for PPV replication. Collectively, these findings suggest that NS1 shuttles between the nucleus and cytoplasm, mediated by its functional NESs and NLS, via the CRM1-dependent nuclear export pathway and the importin α/β-mediated nuclear import pathway, and PPV proliferation was inhibited by blocking NS1 nuclear import or export. IMPORTANCE PPV replicates in the nucleus, and the nuclear envelope is a barrier to its entry into and egress from the nucleus. PPV NS1 is a nucleus-targeting protein that is important for viral DNA replication. Because the NS1 molecule is large (>50 kDa), it cannot pass through the nuclear pore complex by diffusion alone and requires specific transport receptors to permit its nucleocytoplasmic shuttling. In this study, the two functional NESs in the NS1 protein were identified, and their dependence on the CRM1 pathway for nuclear export was demonstrated. The nuclear import of NS1 utilizes importins α5 and α7 in the importin α/β nuclear import pathway.
Collapse
Affiliation(s)
- Liyan Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Fang Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Singh SP, Raja S, Mahalingam S. Viral protein X unlocks the nuclear pore complex through a human Nup153-dependent pathway to promote nuclear translocation of the lentiviral genome. Mol Biol Cell 2020; 31:304-317. [PMID: 31913756 PMCID: PMC7183765 DOI: 10.1091/mbc.e19-08-0438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Simian immunodeficiency virus (SIV) and human immunodeficiency virus 2 (HIV-2) display unique ability to infect nondividing target cells. Viral protein X (Vpx) of HIV-2/SIV is known to be involved in the nuclear import of viral genome in nondividing cells, but the mechanism remains poorly understood. In the present investigation for the first time we provide evidence that Vpx of SIVsmPBj1.9 physically interacts with human nucleoporin 153 (Nup153), which is known to provide a docking site for protein-cargo complexes at the nuclear pore complex (NPC). Results from superresolution-structured illumination microscopy studies reveal that Vpx interaction with NPC-associated Nup153 is critical for its efficient nuclear translocation. Virion-associated MAPK/ERK-2-mediated phosphorylation of Vpx plays a critical role in its interaction with human Nup153 and this interaction was found to be evolutionarily conserved in various SIV isolates and HIV-2. Interestingly, MAPK/ERK-2 packaging defective SIV failed to promote the efficient nuclear import of viral genome and suggests that MAPK/ERK-2-mediated Vpx phosphorylation is important for its interaction with Nup153, which is critical for lentiviruses to establish infection in nondividing target cells. Together, our data elucidate the mechanism by which Vpx orchestrates the challenging task of nuclear translocation of HIV-2/SIV genome in nondividing target cells.
Collapse
Affiliation(s)
- Satya Prakash Singh
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036, India.,National Cancer Tissue Biobank, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India
| |
Collapse
|
4
|
Lentiviral Vpx induces alteration of mammalian cell nuclear envelope integrity. Biochem Biophys Res Commun 2019; 511:192-198. [PMID: 30777327 DOI: 10.1016/j.bbrc.2019.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 11/23/2022]
Abstract
Vpx, a virion-associated protein of Human Immunodeficiency Virus 2 (HIV-2) and Simian Immunodeficiency Virus (SIV) counteracts host restriction factor SAMDH1 for efficient viral DNA synthesis in the cytoplasm and mediates subsequent nuclear translocation of the viral genome. Vpx was found to be indispensable in the viral infection of terminally differentiated target cells and macaques infected with virions carrying truncated Vpx showed delayed pathogenesis, suggesting multiple roles of Vpx at different steps in the virus life cycle. The current study demonstrates a novel function of SIVsmPBj1.9 Vpx on the integrity of the nuclear envelope in HeLa cells. Results from the Super-Resolution Structured Illumination Microscopy (SR-SIM) analysis showed that Vpx puncta alter HeLa cell nuclear envelope assembly. Furthermore, three-dimensional (3D) SIM analysis of such regions suggests that Vpx is primed in a specific way to disrupt the nuclear envelope integrity. The nuclear incursion of cytoplasmic proteins through Vpx mediated ruptured nuclear envelope regions suggest that these events might play a critical role in the nuclear entry of otherwise cytoplasmically sequestered molecules and theirby may be assisting Vpx functions including the transport of viral genome into the nucleus, which is critical for the establishment of virus infection and pathogenesis.
Collapse
|
5
|
Tropism, intracerebral distribution, and transduction efficiency of HIV- and SIV-based lentiviral vectors after injection into the mouse brain: a qualitative and quantitative in vivo study. Histochem Cell Biol 2017; 148:313-329. [PMID: 28397143 PMCID: PMC5539277 DOI: 10.1007/s00418-017-1569-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2017] [Indexed: 01/04/2023]
Abstract
Lentiviruses are suitable to transfer potential therapeutic genes into non-replicating cells such as neurons, but systematic in vivo studies on transduction of neural cells within the complete brain are missing. We analysed the distribution of transduced cells with respect to brain structure, virus tropism, numbers of transduced neurons per brain, and influence of the Vpx or Vpr accessory proteins after injection of vectors based on SIVsmmPBj, HIV-2, and HIV-1 lentiviruses into the right striatum of the mouse brain. Transduced cells were found ipsilaterally around the injection canal, in corpus striatum and along corpus callosum, irrespective of the vector type. All vectors except HIV-2SEW transduced also single cells in the olfactory bulb, hippocampus, and cerebellum. Vector HIV-2SEW was the most neuron specific. However, vectors PBjSEW and HIV-1SEW transduced more neurons per brain (means 41,299 and 32,309) than HIV-2SEW (16,102). In the presence of Vpx/Vpr proteins, HIV-2SEW(Vpx) and HIV-1SEW(Vpr) showed higher overall transduction efficiencies (30,696 and 27,947 neurons per brain) than PBjSEW(Vpx) (6636). The distances of transduced cells from the injection canal did not differ among the viruses but correlated positively with the numbers of transduced neurons. The presence of Vpx/Vpr did not increase the numbers of transduced neurons. Parental virus type and the vector equipment seem to influence cellular tropism and transduction efficiency. Thus, precision of injection and choice of virus pseudotype are not sufficient when targeted lentiviral vector transduction of a defined brain cell population is required.
Collapse
|
6
|
Wang YP, Du WJ, Huang LP, Wei YW, Wu HL, Feng L, Liu CM. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme. Front Microbiol 2016; 7:124. [PMID: 26913023 PMCID: PMC4753316 DOI: 10.3389/fmicb.2016.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354–370 and that K354, R355, and K367 are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression system.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Wen-Juan Du
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Li-Ping Huang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Yan-Wu Wei
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Hong-Li Wu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Chang-Ming Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| |
Collapse
|
7
|
Schaller T, Bauby H, Hué S, Malim MH, Goujon C. New insights into an X-traordinary viral protein. Front Microbiol 2014; 5:126. [PMID: 24782834 PMCID: PMC3986551 DOI: 10.3389/fmicb.2014.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 11/13/2022] Open
Abstract
Vpx is a protein encoded by members of the HIV-2/SIVsmm and SIVrcm/SIVmnd-2 lineages of primate lentiviruses, and is packaged into viral particles. Vpx plays a critical role during the early steps of the viral life cycle and has been shown to counteract SAMHD1, a restriction factor in myeloid and resting T cells. However, it is becoming evident that Vpx is a multifunctional protein in that SAMHD1 antagonism is likely not its sole role. This review summarizes the current knowledge on this X-traordinary protein.
Collapse
Affiliation(s)
- Torsten Schaller
- Department of Infectious Diseases, King's College London London, UK
| | - Hélène Bauby
- Department of Infectious Diseases, King's College London London, UK
| | - Stéphane Hué
- Department of Infection, Division of Infection and Immunity, Centre for Medical Molecular Virology, University College London London, UK
| | - Michael H Malim
- Department of Infectious Diseases, King's College London London, UK
| | - Caroline Goujon
- Department of Infectious Diseases, King's College London London, UK
| |
Collapse
|
8
|
Belshan M, Kimata JT, Brown C, Cheng X, McCulley A, Larsen A, Thippeshappa R, Hodara V, Giavedoni L, Hirsch V, Ratner L. Vpx is critical for SIVmne infection of pigtail macaques. Retrovirology 2012; 9:32. [PMID: 22531456 PMCID: PMC3353869 DOI: 10.1186/1742-4690-9-32] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 04/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral protein X (Vpx) of SIV has been reported to be important for establishing infection in vivo. Vpx has several different activities in vitro, promoting preintegration complex import into the nucleus in quiescent lymphocytes and overcoming a block in reverse transcription in macrophages. Vpx interacts with the DDB1-CUL4-DCAF1 E3 ligase complex, which may or may not be required for the ascribed functions. The goal of the current study was to determine whether these activities of Vpx are important in vivo. RESULTS An infectious, pathogenic clone of SIVmne was used to examine correlations between Vpx functions in vitro and in vivo. Three previously described HIV-2 Vpx mutants that were shown to be important for nuclear import of the preintegration complex in quiescent lymphocytes were constructed in SIVmne: A vpx-deleted virus, a truncation of Vpx at amino acid 102 that deletes the C-terminal proline-rich domain (X(102)), and a mutant with tyrosines 66, 69, and 71 changed to alanine (X(y-a)). All mutant viruses replicated similarly to wild type SIVmne027 in primary pigtail macaque PBMCs, and were only slightly retarded in CEMx174 cells. However, all the vpx mutant viruses were defective for replication in both human and pigtail monocyte-derived macrophages. PCR assays demonstrated that the efficiency of reverse transcription and the levels of viral integration in macrophages were substantially reduced for the vpx mutant viruses. In vitro, the X(y-a) mutant, but not the X(102) mutant lost interaction with DCAF1. The wild type SIVmne027 and the three vpx mutant SIVs were inoculated by the intra-rectal route into pigtail macaques. Peak levels of plasma viremia of the vpx mutant SIVs were variable, but consistently lower than that observed in macaques infected with wild type SIVmne. In situ hybridization for SIV demonstrated that compared to wild type SIVmne infected macaques five of the six animals inoculated with the vpx mutant SIVs had only low levels of SIV-expressing cells in the rectum, most intestinal epithelial tissues, spleen, and mesenteric and peripheral nodes. CONCLUSIONS This work demonstrates that the activities of Vpx to overcome restrictions in culture in vitro are also likely to be important for establishment of infection in vivo and suggest that both the nuclear localization and DCAF1-interaction functions of Vpx are critical in vivo.
Collapse
Affiliation(s)
- Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Knox C, Luke GA, Blatch GL, Pesce ER. Heat shock protein 40 (Hsp40) plays a key role in the virus life cycle. Virus Res 2011; 160:15-24. [DOI: 10.1016/j.virusres.2011.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 01/04/2023]
|
10
|
Belanger KD, Griffith AL, Baker HL, Hansen JN, Kovacs LAS, Seconi JS, Strine AC. The karyopherin Kap95 and the C-termini of Rfa1, Rfa2, and Rfa3 are necessary for efficient nuclear import of functional RPA complex proteins in Saccharomyces cerevisiae. DNA Cell Biol 2011; 30:641-51. [PMID: 21332387 DOI: 10.1089/dna.2010.1071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.
Collapse
|
11
|
Restriction of HIV-1 replication in monocytes is abolished by Vpx of SIVsmmPBj. PLoS One 2009; 4:e7098. [PMID: 19768115 PMCID: PMC2741571 DOI: 10.1371/journal.pone.0007098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/25/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human primary monocytes are refractory to infection with the human immunodeficiency virus 1 (HIV-1) or transduction with HIV-1-derived vectors. In contrast, efficient single round transduction of monocytes is mediated by vectors derived from simian immunodeficiency virus of sooty mangabeys (SIVsmmPBj), depending on the presence of the viral accessory protein Vpx. METHODS AND FINDINGS Here we analyzed whether Vpx of SIVsmmPBj is sufficient for transduction of primary monocytes by HIV-1-derived vectors. To enable incorporation of PBj Vpx into HIV-1 vector particles, a HA-Vpr/Vpx fusion protein was generated. Supplementation of HIV-1 vector particles with this fusion protein was not sufficient to facilitate transduction of human monocytes. However, monocyte transduction with HIV-1-derived vectors was significantly enhanced after delivery of Vpx proteins by virus-like particles (VLPs) derived from SIVsmmPBj. Moreover, pre-incubation with Vpx-containing VLPs restored replication capacity of infectious HIV-1 in human monocytes. In monocytes of non-human primates, single-round transduction with HIV-1 vectors was enabled. CONCLUSION Vpx enhances transduction of primary human and even non-human monocytes with HIV-1-derived vectors, only if delivered in the background of SIVsmmPBj-derived virus-like particles. Thus, for accurate Vpx function the presence of SIVsmmPBj capsid proteins might be required. Vpx is essential to overcome a block of early infection steps in primary monocytes.
Collapse
|
12
|
Favre N, Camps M, Arod C, Chabert C, Rommel C, Pasquali C. Chemokine receptor CCR2 undergoes transportin1-dependent nuclear translocation. Proteomics 2008; 8:4560-76. [PMID: 18846510 DOI: 10.1002/pmic.200800211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemokines (CCs) are small chemoattractant cytokines involved in a wide variety of biological and pathological processes. Released by cells in the milieu, and extracellular matrix and activating signalling cascades upon binding to specific G protein-coupled receptors (GPCRs), they trigger many cellular events. In various pathologies, CCs are directly responsible for excessive recruitment of leukocytes to inflammatory sites and recent studies using chemokine receptor (CCR) antagonists permitted these molecules to reach the market for medical use. While interaction of CCs with their receptors has been extensively documented, downstream GPCR signalling cascades triggered by CC are less well understood. Given the pivotal role of chemokine receptor 2 (CCR2) in monocyte recruitment, activation and differentiation and its implication in several autoimmune-inflammatory pathologies, we searched for potential new CCR2-interacting proteins by engineering a modified CCR2 that we used as bait. Herein, we show the direct interaction of CCR2 with transportin1 (TRN1), which we demonstrate is followed by CCR2 receptor internalization. Further characterization of this novel interaction revealed that TRN1-binding to CCR2 increased upon time in agonist treated cells and promotes its nuclear translocation in a TRN1-dependent manner. Finally, we provide evidence that following translocation, the receptor localizes at the outer edge of the nuclear envelope where it is finally released from TRN1.
Collapse
|
13
|
Hsp40 facilitates nuclear import of the human immunodeficiency virus type 2 Vpx-mediated preintegration complex. J Virol 2007; 82:1229-37. [PMID: 18032501 DOI: 10.1128/jvi.00540-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) Vpx is required for nuclear translocation of the viral preintegration complex (PIC) in quiescent cells. In order to decipher the mechanism of action of Vpx, a cDNA library was screened with the yeast two-hybrid assay, resulting in the identification of heat shock protein 40, Hsp40/DnaJB6, as a Vpx-interactive protein. Interaction with Vpx was confirmed by glutathione S-transferase (GST) pull-down and coimmunoprecipitation assays. Overexpression of Hsp40/DnaJB6 enhanced Vpx nuclear import, whereas overexpression of a nuclear localization mutant of Hsp40/DnaJB6 (H31Q) or down-regulation of Hsp40/DnaJB6 by small interfering RNA (siRNA) reduced the nuclear import of Vpx. Hsp40/DnaJB6 competed with the Pr55(Gag) precursor protein for the binding of Vpx and incorporation into virus-like particles. Overexpression of Hsp40/DnaJB6 promoted viral PIC nuclear import, whereas siRNA down-regulation of Hsp40/DnaJB6 inhibited PIC nuclear import. These results demonstrate a role for Hsp40/DnaJB6 in the regulation of HIV-2 PIC nuclear transport.
Collapse
|
14
|
Chan EY, Qian WJ, Diamond DL, Liu T, Gritsenko MA, Monroe ME, Camp DG, Smith RD, Katze MG. Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J Virol 2007; 81:7571-83. [PMID: 17494070 PMCID: PMC1933372 DOI: 10.1128/jvi.00288-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/01/2007] [Indexed: 12/18/2022] Open
Abstract
Relatively little is known at the functional genomic level about the global host response to human immunodeficiency virus type 1 (HIV-1) infection. Microarray analyses by several laboratories, including our own, have revealed that HIV-1 infection causes significant changes in host mRNA abundance and regulation of several cellular biological pathways. However, it remains unclear what consequences these changes bring about at the protein level. Here we report the expression levels of approximately 3,200 proteins in the CD4(+) CEMx174 cell line after infection with the LAI strain of human immunodeficiency virus type 1 (HIV-1); the proteins were assessed using liquid chromatography-mass spectrometry coupled with stable isotope labeling and the accurate mass and time tag approach. Furthermore, we found that 687 (21%) proteins changed in abundance at the peak of virus production at 36 h postinfection. Pathway analysis revealed that the differential expression of proteins was concentrated in select biological pathways, exemplified by ubiquitin-conjugating enzymes in ubiquitination, carrier proteins in nucleocytoplasmic transport, cyclin-dependent kinase in cell cycle progression, and pyruvate dehydrogenase of the citrate cycle pathways. Moreover, we observed changes in the abundance of proteins with known interactions with HIV-1 viral proteins. Our proteomic analysis captured changes in the host protein milieu at the time of robust virus production, depicting changes in cellular processes that may contribute to virus replication. Continuing analyses are expected to focus on blocking virus replication by targeting these pathways and their effector proteins.
Collapse
Affiliation(s)
- Eric Y Chan
- Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Singhal PK, Rajendra Kumar P, Subba Rao MRK, Mahalingam S. Nuclear export of simian immunodeficiency virus Vpx protein. J Virol 2006; 80:12271-82. [PMID: 16987982 PMCID: PMC1676268 DOI: 10.1128/jvi.00563-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Lentiviruses, human immunodeficiency viruses (HIVs), and simian immunodeficiency viruses (SIVs) are distinguished from oncoretroviruses by their ability to infect nondividing cells such as macrophages. Retroviruses must gain access to the host cell nucleus for replication and propagation. HIV and SIV preintegration complexes (PIC) enter nuclei after traversing the central aqueous channel of the limiting nuclear pore complex without membrane breakdown. Among the nucleophilic proteins, namely, matrix, integrase, Vpx, and Vpr, present in HIV type 2/SIV PIC, Vpx is implicated in nuclear targeting and is also available for incorporation into budding virions at the plasma membrane. The mechanisms of these two opposite functions are not known. We demonstrate that Vpx is a nucleocytoplasmic shuttling protein and contains two novel noncanonical nuclear import signals and a leptomycin B-sensitive nuclear export signal. In addition, Vpx interacts with the cellular tyrosine kinase Fyn through its C-terminal proline-rich motif. Furthermore, our data indicate that Fyn kinase phosphorylates Vpx and regulates its export from nucleus. Replacement of conserved tryptophan residues within domain 41 to 63 and tyrosine residues at positions 66, 69, and 71 in Vpx impairs its nuclear export, virion incorporation, and SIV replication in macrophages. Nuclear export is essential to ensure the availability of Vpx in the cytoplasm for incorporation into virions, leading to efficient viral replication within nondividing cells.
Collapse
Affiliation(s)
- Prabhat K Singhal
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics (CDFD), ECIL Road, Nacharam, Hyderabad 500 076, India
| | | | | | | |
Collapse
|