1
|
Hidalgo P, Torres A, Jean Beltran PM, López-Leal G, Bertzbach LD, Dobner T, Flint SJ, Cristea IM, González RA. The protein composition of human adenovirus replication compartments. mBio 2025; 16:e0214424. [PMID: 39611842 PMCID: PMC11708036 DOI: 10.1128/mbio.02144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Human adenoviruses are double-stranded DNA viruses that replicate in the cell nucleus and induce the formation of replication compartments (RCs) that are critical in viral replication and control of virus-host interactions. RCs are specialized virus-induced subnuclear microenvironments where not only viral genome replication and expression are orchestrated but also host proteins that restrict viral replication are co-opted and subverted. The protein composition of these RCs remains largely unexplored. In this study, we isolated adenovirus RC-enriched fractions from infected cells at different times post-infection and employed a tandem mass tag-based quantitative mass spectrometry approach to identify proteins associated with RCs (data available via ProteomeXchange identifier PXD051745). These findings reveal an elaborate network of host and viral proteins potentially relevant for RC formation and function. To validate the RC-protein components identified by mass spectrometry, we employed immunofluorescence and immunoblotting techniques. Proteins previously described to colocalize in RCs in infected cells were identified in the isolated subnuclear fractions. In addition, we validated newly identified proteins associated with RCs, including the high mobility group box 1 (HMGB1), the SET nuclear proto-oncogene, the structure-specific recognition protein 1 (SSRP1), the CCCTC-binding protein (CTCF), and sirtuin 6 (SIRT6). We identified HMGB1 as a protein that binds to the viral DNA binding protein (DBP). Using shRNA knockdowns and inhibitors, we demonstrated that HMGB1 acts as a proviral factor, promoting efficient viral DNA synthesis and progeny production. Our data further suggest potential candidate targets for therapeutic intervention and provide mechanistic insights into the molecular basis of virus-host interactions.IMPORTANCEHuman adenoviruses serve as models for studying respiratory viruses and have provided critical insights into viral genome replication and gene expression, as well as the control of virus-host interactions. These processes are coordinated within virus-induced subnuclear microenvironments known as RCs. We conducted quantitative proteome analyses of RC-enriched subnuclear fractions at different times post-infection with human adenovirus species C type 5, revealing a multifaceted network of proteins that participate in the regulation of gene expression, DNA damage response, RNA metabolism, innate immunity, and other cellular antiviral defense mechanisms. Furthermore, we validated the localization of several host proteins to viral RCs using immunofluorescence microscopy and immunoblotting and identified cellular HMGB1 as a proviral factor late during infection. These findings represent the first analysis of the proteomes of isolated RCs and not only enhance our understanding of nuclear organization during infection but also shed light on the complex interplay between viral and host factors within RCs.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Amada Torres
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Gamaliel López-Leal
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
2
|
Bertzbach LD, Seddar L, von Stromberg K, Ip WH, Dobner T, Hidalgo P. The adenovirus DNA-binding protein DBP. J Virol 2024; 98:e0188523. [PMID: 38197632 PMCID: PMC10878046 DOI: 10.1128/jvi.01885-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Adenoviruses are a group of double-stranded DNA viruses that can mainly cause respiratory, gastrointestinal, and eye infections in humans. In addition, adenoviruses are employed as vector vaccines for combatting viral infections, including SARS-CoV-2, and serve as excellent gene therapy vectors. These viruses have the ability to modulate the host cell machinery to their advantage and trigger significant restructuring of the nuclei of infected cells through the activity of viral proteins. One of those, the adenovirus DNA-binding protein (DBP), is a multifunctional non-structural protein that is integral to the reorganization processes. DBP is encoded in the E2A transcriptional unit and is highly abundant in infected cells. Its activity is unequivocally linked to the formation, structure, and integrity of virus-induced replication compartments, molecular hubs for the regulation of viral processes, and control of the infected cell. DBP also plays key roles in viral DNA replication, transcription, viral gene expression, and even host range specificity. Notably, post-translational modifications of DBP, such as SUMOylation and extensive phosphorylation, regulate its biological functions. DBP was first investigated in the 1970s, pioneering research on viral DNA-binding proteins. In this literature review, we provide an overview of DBP and specifically summarize key findings related to its complex structure, diverse functions, and significant role in the context of viral replication. Finally, we address novel insights and perspectives for future research.
Collapse
Affiliation(s)
- Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Laura Seddar
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Paloma Hidalgo
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
3
|
Park HB, Baek KH. Current and future directions of USP7 interactome in cancer study. Biochim Biophys Acta Rev Cancer 2023; 1878:188992. [PMID: 37775071 DOI: 10.1016/j.bbcan.2023.188992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an essential protein quality controller for regulating protein homeostasis and autophagy. Ubiquitination is a protein modification process that involves the binding of one or more ubiquitins to substrates through a series of enzymatic processes. These include ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Conversely, deubiquitination is a reverse process that removes ubiquitin from substrates via deubiquitinating enzymes (DUBs). Dysregulation of ubiquitination-related enzymes can lead to various human diseases, including cancer, through the modulation of protein ubiquitination. The most structurally and functionally studied DUB is the ubiquitin-specific protease 7 (USP7). Both the TRAF and UBL domains of USP7 are known to bind to the [P/A/E]-X-X-S or K-X-X-X-K motif of substrates. USP7 has been shown to be involved in cancer pathogenesis by binding with numerous substrates. Recently, a novel substrate of USP7 was discovered through a systemic analysis of its binding motif. This review summarizes the currently discovered substrates and cellular functions of USP7 in cancer and suggests putative substrates of USP7 through a comprehensive systemic analysis.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Convergence, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Convergence, CHA University, Gyeonggi-Do 13488, Republic of Korea; International Ubiquitin Center(,) CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
4
|
Zhang X, Zheng R, Li Z, Ma J. Liquid-liquid Phase Separation in Viral Function. J Mol Biol 2023; 435:167955. [PMID: 36642156 DOI: 10.1016/j.jmb.2023.167955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
5
|
The adenoviral E4orf3/4 is a regulatory polypeptide with cell transforming properties in vitro. Tumour Virus Res 2023; 15:200254. [PMID: 36707050 DOI: 10.1016/j.tvr.2023.200254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
The human adenovirus species C type 5 (HAdV-C5) early region 4 (E4) encodes several distinct polypeptides, defined as E4orf1 to E4orf6/7 according to the order and arrangement of the corresponding open reading frames (ORFs). All E4 gene products operate through a complex network of interactions with key viral and cellular regulatory proteins involved in transcription, apoptosis, cell cycle control, and DNA repair. Here, we generated a set of virus mutants carrying point mutations in the individual E4 genes. The phenotypic characterizations of these mutants revealed that mutations of these ORFs had no or only moderate effects on virus replication. Even a triple mutant that fails to produce E4orf3, E4orf4, and the yet uncharacterized alternatively spliced E4orf3/4 fusion protein, was replicating to wild type levels. The E4orf3/4 protein consists of the N-terminal 33 amino acid residues from E4orf3 and the C-terminal 28 amino acid residues from E4orf4. Intriguingly, we found that, similar to E4orf3, E4orf3/4 possesses properties that support the E1A/E1B-induced transformation of primary rodent cells. These results identify and functionally characterize E4orf3/4 and conclude that E4orf3/4 is another E4 region protein that is dispensable for virus replication but promotes the E1A/E1B-induced transformation of primary rodent cells.
Collapse
|
6
|
Alemán MV, Bertzbach LD, Speiseder T, Ip WH, González RA, Dobner T. Global Transcriptome Analyses of Cellular and Viral mRNAs during HAdV-C5 Infection Highlight New Aspects of Viral mRNA Biogenesis and Cytoplasmic Viral mRNA Accumulations. Viruses 2022; 14:2428. [PMID: 36366526 PMCID: PMC9692883 DOI: 10.3390/v14112428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
It is well established that human adenoviruses such as species C, types 2 and 5 (HAdV-C2 and HAdV-C5), induce a nearly complete shutoff of host-cell protein synthesis in the infected cell, simultaneously directing very efficient production of viral proteins. Such preferential expression of viral over cellular genes is thought to be controlled by selective nucleocytoplasmic export and translation of viral mRNA. While detailed knowledge of the regulatory mechanisms responsible for the translation of viral mRNA is available, the viral or cellular mechanisms of mRNA biogenesis are not completely understood. To identify parameters that control the differential export of viral and cellular mRNAs, we performed global transcriptome analyses (RNAseq) and monitored temporal nucleocytoplasmic partitioning of viral and cellular mRNAs during HAdV-C5 infection of A549 cells. Our analyses confirmed previously reported features of the viral mRNA expression program, as a clear shift in viral early to late mRNA accumulation was observed upon transition from the early to the late phase of viral replication. The progression into the late phase of infection, however, did not result in abrogation of cellular mRNA export; rather, viral late mRNAs outnumbered viral early and most cellular mRNAs by several orders of magnitude during the late phase, revealing that viral late mRNAs are not selectively exported but outcompete cellular mRNA biogenesis.
Collapse
Affiliation(s)
- Margarita Valdés Alemán
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Thomas Speiseder
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Wing Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|