1
|
Yan C, Yu F, Li M, Yang X, Sun R, Liang X, Lao X, Zhang H, Lv W, Hu Y, Lai Y, Ding Y, Zhang F. A bibliometric analysis of HIV-1 drug-resistant minority variants from 1999 to 2024. AIDS Res Ther 2025; 22:47. [PMID: 40211381 PMCID: PMC11984210 DOI: 10.1186/s12981-025-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/29/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The rapid initiation of antiretroviral therapy has become an international trend, necessitating lifelong medication for all HIV patients. Sanger sequencing, as the gold standard for clinically detecting HIV drug resistance, often fails to detect mutations comprising less than 20% of the total viral population. With the advancement of detection technologies, HIV-1 drug-resistant minority variants have garnered increasing attention. Few studies have analyzed the hotspots and trends in this field, which bibliometrics can effectively address. METHODS Publications related to HIV-1 DRMinVs from 1999 to 2024 were searched on the Web of Science Core Collection database. Visual knowledge maps and bibliometric analyses were generated using VOSviewer and Bibliometrix. RESULTS In total, 289 publications concerning HIV-1 drug-resistant minority variants were identified from 1999 to 2024, demonstrating a steady increase in publication output over the years. Although developed countries, led by the United States, are the main contributors, 9.57% and 2.48% of the research from the top five publishing countries focus on populations in Africa and other developing countries, respectively. Most contributing institutions are universities and public health organizations, with the University of Washington having the highest publication output. The Journal of Antimicrobial Chemotherapy holds the highest prominence among journals in this domain. The main hotspots include "drug classes," "drug resistance surveillance," "mother-to-child transmission," "treatment outcomes," and "targets of HIV-1 drug resistance testing," And we found several noteworthy shifts in research trends in HIV-1 drug-resistant minority variants studies, including changes in drug resistance testing technologies, the primary study population, and drug classes. CONCLUSIONS This is the first bibliometric analysis of publications related to HIV-1 DRMinVs from 1999 to 2024. We analyzed the key research contributions across countries, institutions and journals. Based on keyword co-occurrence and cluster analysis, we identified several noteworthy shifts in research trends in HIV-1 DRMinVs studies, including changes in drug resistance testing technologies, the primary study population, and drug classes.
Collapse
Affiliation(s)
- Chang Yan
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Mengying Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xiaojie Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Rui Sun
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xuelei Liang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xiaojie Lao
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Hanxi Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- WHO Collaborating Centre for Comprehensive Management of HIV Treatment and Care, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Wenhao Lv
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Ying Hu
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Yuan Lai
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Yi Ding
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Vellas C, Doudou A, Mohamed S, Raymond S, Jeanne N, Latour J, Demmou S, Ranger N, Gonzalez D, Delobel P, Izopet J. Comparison of short-read and long-read next-generation sequencing technologies for determining HIV-1 drug resistance. J Med Virol 2024; 96:e29951. [PMID: 39387352 DOI: 10.1002/jmv.29951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Accurate HIV-1 genome sequencing is necessary to identify drug resistance mutations (DRMs) in people with HIV-1 (PWH). Next-generation-sequencing (NGS) allows the detection of minor variants and is now available in many laboratories. Our study aimed to compare two NGS approaches, a "short read" sequencing protocol using DeepChek® Whole Genome HIV-1 Assay on Illumina, and a "long read" sequencing protocol of HIV-1 pol and env single-molecule real-time sequencing (SMRT) on Pacific Biosciences (PacBio). We analyzed 16 plasma samples and 13 cellular samples from PWH. HIV-1 whole genome was amplified into five amplicons using DeepChek® Whole Genome HIV-1 Assay and sequenced on an iSeq. 100. In parallel, HIV-1 pol and env genes were separately amplified and sequenced using PacBio SMRT system with the circular consensus sequencing mode on a Sequel IIe. Concordance rates for determining DRMs with both approaches varied depending on the HIV-1 region, with higher concordance in the integrase region compared to the reverse transcriptase and protease regions. DeepChek® Whole Genome HIV-1 Assay exhibited better sensitivity in HIV-1 RNA sequencing of plasmas with lower viral loads. In cell HIV-1 DNA sequencing, the DeepChek® Whole Genome HIV-1 Assay performed better in pol and env sequencing but detected more APOBEC-induced DRMs, which can represent defective proviruses. Our findings indicate that both DeepChek® Whole Genome HIV-1 Assay and PacBio SMRT sequencing exhibit good performance for subtype determination, detection, and quantification of DRMs of the HIV-1 genome. However, some discrepancies were found in cellular samples, highlighting the challenges of interpreting HIV-1 DNA DRMs.
Collapse
Affiliation(s)
- Camille Vellas
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France
| | | | | | - Stéphanie Raymond
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France
| | - Nicolas Jeanne
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Justine Latour
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Sofia Demmou
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Noémie Ranger
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | | | - Pierre Delobel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France
- CHU de Toulouse, Service de Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse, France
| |
Collapse
|
3
|
Kemp SA, Kamelian K, Cuadros DF, Cheng MTK, Okango E, Hanekom W, Ndung'u T, Pillay D, Bonsall D, Wong EB, Tanser F, Siedner MJ, Gupta RK. HIV transmission dynamics and population-wide drug resistance in rural South Africa. Nat Commun 2024; 15:3644. [PMID: 38684655 PMCID: PMC11059351 DOI: 10.1038/s41467-024-47254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Despite expanded antiretroviral therapy (ART) in South Africa, HIV-1 transmission persists. Integrase strand transfer inhibitors (INSTI) and long-acting injectables offer potential for superior viral suppression, but pre-existing drug resistance could threaten their effectiveness. In a community-based study in rural KwaZulu-Natal, prior to widespread INSTI usage, we enroled 18,025 individuals to characterise HIV-1 drug resistance and transmission networks to inform public health strategies. HIV testing and reflex viral load quantification were performed, with deep sequencing (20% variant threshold) used to detect resistance mutations. Phylogenetic and geospatial analyses characterised transmission clusters. One-third of participants were HIV-positive, with 21.7% having detectable viral loads; 62.1% of those with detectable viral loads were ART-naïve. Resistance to older reverse transcriptase (RT)-targeting drugs was found, but INSTI resistance remained low (<1%). Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance, particularly to rilpivirine (RPV) even in ART-naïve individuals, was concerning. Twenty percent of sequenced individuals belonged to transmission clusters, with geographic analysis highlighting higher clustering in peripheral and rural areas. Our findings suggest promise for INSTI-based strategies in this setting but underscore the need for RPV resistance screening before implementing long-acting cabotegravir (CAB) + RPV. The significant clustering emphasises the importance of geographically targeted interventions to effectively curb HIV-1 transmission.
Collapse
Affiliation(s)
- Steven A Kemp
- Department of Medicine, University of Cambridge, Cambridge, UK
- Pandemic Science Institute, Big Data Institute, University of Oxford, Oxford, UK
| | - Kimia Kamelian
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Diego F Cuadros
- Digital Epidemiology Laboratory, Digital Futures, University of Cincinnati, Cincinnati, OH, USA
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elphas Okango
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
| | - Willem Hanekom
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
- University College London, London, UK
| | - Thumbi Ndung'u
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
- University College London, London, UK
| | | | - David Bonsall
- Pandemic Science Institute, Big Data Institute, University of Oxford, Oxford, UK
| | - Emily B Wong
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
| | - Frank Tanser
- University of Stellenbosch, Cape Town, South Africa
| | - Mark J Siedner
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- University of KwaZulu-Natal, Durban, South Africa
- Harvard University, Cambridge, MA, England
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Africa Health Research Institute, KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
4
|
Chaimongkol N, Dábilla N, Tohma K, Matsushima Y, Yardley AB, Levenson EA, Johnson JA, Ahorrio C, Oler AJ, Kim DY, Souza M, Sosnovtsev SV, Parra GI, Green KY. Norovirus evolves as one or more distinct clonal populations in immunocompromised hosts. mBio 2023; 14:e0217723. [PMID: 37905910 PMCID: PMC10746188 DOI: 10.1128/mbio.02177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Noroviruses are an important cause of chronic diarrhea in patients with compromised immune systems. Presently, there are no effective therapies to clear the virus, which can persist for years in the intestinal tract. The goal of our study was to develop a better understanding of the norovirus strains that are associated with these long-term infections. With the remarkable diversity of norovirus strains detected in the immunocompromised patient cohort we studied, it appears that most, if not all, noroviruses circulating in nature may have the capacity to establish a chronic infection when a person is unable to mount an effective immune response. Our work is the most comprehensive genetic data set generated to date in which near full-length genomes from noroviruses associated with chronic infection were analyzed by high-resolution next-generation sequencing. Analysis of this data set led to our discovery that certain patients in our cohort were shedding noroviruses that could be subdivided into distinct haplotypes or populations of viruses that were co-evolving independently. The ability to track haplotypes of noroviruses during chronic infection will allow us to fine-tune our understanding of how the virus adapts and maintains itself in the human host, and how selective pressures such as antiviral drugs can affect these distinct populations.
Collapse
Affiliation(s)
- Natthawan Chaimongkol
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nathânia Dábilla
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Kentaro Tohma
- Division of Viral Products, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yuki Matsushima
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Allison Behrle Yardley
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric A. Levenson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jordan A. Johnson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Courtney Ahorrio
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Y. Kim
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Menira Souza
- Laboratory of Virology and Cell Culture, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Stanislav V. Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriel I. Parra
- Division of Viral Products, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kim Y. Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Gupta R, Kemp S, Kamelian K, Cuadros D, Gupta R, Cheng M, Okango E, Hanekom W, Ndung'u T, Pillay D, Bonsall D, Wong E, Tanser F, Siedner M. HIV transmission dynamics and population-wide drug resistance in rural South Africa. RESEARCH SQUARE 2023:rs.3.rs-3640717. [PMID: 38076835 PMCID: PMC10705695 DOI: 10.21203/rs.3.rs-3640717/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Despite the scale-up of antiretroviral therapy (ART) in South Africa, HIV-1 incidence remains high. The anticipated use of potent integrase strand transfer inhibitors and long-acting injectables aims to enhance viral suppression at the population level and diminish transmission. Nevertheless, pre-existing drug resistance could impede the efficacy of long-acting injectable ART combinations, such as rilpivirine (an NNRTI) and cabotegravir (an INSTI). Consequently, a thorough understanding of transmission networks and geospatial distributions is vital for tailored interventions, including pre-exposure prophylaxis with long-acting injectables. However, empirical data on background resistance and transmission networks remain limited. In a community-based study in rural KwaZulu-Natal (2018-2019), prior to the widespread use of integrase inhibitor-based first-line ART, we performed HIV testing with reflex HIV-1 RNA viral load quantification on 18,025 participants. From this cohort, 6,096 (33.9%) tested positive for HIV via ELISA, with 1,323 (21.7%) exhibiting detectable viral loads (> 40 copies/mL). Of those with detectable viral loads, 62.1% were ART-naïve, and the majority of the treated were on an efavirenz + cytosine analogue + tenofovir regimen. Deep sequencing analysis, with a variant abundance threshold of 20%, revealed NRTI resistance mutations such as M184V in 2% of ART-naïve and 32% of treated individuals. Tenofovir resistance mutations K65R and K70E were found in 12% and 5% of ART-experienced individuals, respectively, and in less than 1% of ART-naïve individuals. Integrase inhibitor resistance mutations were notably infrequent (< 1%). Prevalence of pre-treatment drug resistance to NNRTIs was 10%, predominantly consisting of the K103N mutation. Among those with viraemic ART, NNRTI resistance was 50%, with rilpivirine-associated mutations observed in 9% of treated and 6% of untreated individuals. Cluster analysis revealed that 20% (205/1,050) of those sequenced were part of a cluster. We identified 171 groups with at least two linked participants; three quarters of clusters had only two individuals, and a quarter had 3-6 individuals. Integrating phylogenetic with geospatial analyses, we revealed a complex transmission network with significant clustering in specific regions, notably peripheral and rural areas. These findings derived from population scale genomic analyses are encouraging in terms of the limited resistance to DTG, but indicate that transitioning to long-acting cabotegravir + rilpivirine for transmission reduction should be accompanied by prior screening for rilpivirine resistance. Whole HIV-1 genome sequencing allowed identification of significant proportions of clusters with multiple individuals, and geospatial analyses suggesting decentralised networks can inform targeting public health interventions to effectively curb HIV-1 transmission.
Collapse
|
6
|
Abdullahi A, Kida IM, Maina UA, Ibrahim AH, Mshelia J, Wisso H, Adamu A, Onyemata JE, Edun M, Yusuph H, Aliyu SH, Charurat M, Abimiku A, Abeler-Dorner L, Fraser C, Bonsall D, Kemp SA, Gupta RK. Limited emergence of resistance to integrase strand transfer inhibitors (INSTIs) in ART-experienced participants failing dolutegravir-based antiretroviral therapy: a cross-sectional analysis of a Northeast Nigerian cohort. J Antimicrob Chemother 2023; 78:2000-2007. [PMID: 37367727 PMCID: PMC10393879 DOI: 10.1093/jac/dkad195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Due to the high prevalence of resistance to NNRTI-based ART since 2018, consolidated recommendations from the WHO have indicated dolutegravir as the preferred drug of choice for HIV treatment globally. There is a paucity of resistance outcome data from HIV-1 non-B subtypes circulating across West Africa. AIMS We characterized the mutational profiles of persons living with HIV from a cross-sectional cohort in North-East Nigeria failing a dolutegravir-based ART regimen. METHODS WGS of plasma samples collected from 61 HIV-1-infected participants following virological failure of dolutegravir-based ART were sequenced using the Illumina platform. Sequencing was successfully completed for samples from 55 participants. Following quality control, 33 full genomes were analysed from participants with a median age of 40 years and median time on ART of 9 years. HIV-1 subtyping was performed using SNAPPy. RESULTS Most participants had mutational profiles reflective of exposure to previous first- and second-line ART regimens comprised NRTIs and NNRTIs. More than half of participants had one or more drug resistance-associated mutations (DRMs) affecting susceptibility to NRTIs (17/33; 52%) and NNRTIs (24/33; 73%). Almost a quarter of participants (8/33; 24.4%) had one or more DRMs affecting tenofovir susceptibility. Only one participant, infected with HIV-1 subtype G, had evidence of DRMs affecting dolutegravir susceptibility-this was characterized by the T66A, G118R, E138K and R263K mutations. CONCLUSIONS This study found a low prevalence of resistance to dolutegravir; the data are therefore supportive of the continual rollout of dolutegravir as the primary first-line regimen for ART-naive participants and the preferred switch to second-line ART across the region. However, population-level, longer-term data collection on dolutegravir outcomes are required to further guide implementation and policy action across the region.
Collapse
Affiliation(s)
- Adam Abdullahi
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Ibrahim Musa Kida
- Department of Infectious Disease and Clinical Immunology, University of Maiduguri, Borno, Nigeria
| | - Umar Abdullahi Maina
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Maiduguri, Borno, Nigeria
| | | | - James Mshelia
- Department of Infectious Disease and Clinical Immunology, University of Maiduguri, Borno, Nigeria
| | - Haruna Wisso
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Abdullahi Adamu
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Maiduguri, Borno, Nigeria
| | | | - Martin Edun
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Haruna Yusuph
- Department of Infectious Disease and Clinical Immunology, University of Maiduguri, Borno, Nigeria
| | - Sani H Aliyu
- Department of Microbiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Man Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | | | - Lucie Abeler-Dorner
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - Christophe Fraser
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - David Bonsall
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - Steven A Kemp
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - Ravindra K Gupta
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
7
|
Novitsky V, Nyandiko W, Vreeman R, DeLong AK, Howison M, Manne A, Aluoch J, Chory A, Sang F, Ashimosi C, Jepkemboi E, Orido M, Hogan JW, Kantor R. Added Value of Next Generation Sequencing in Characterizing the Evolution of HIV-1 Drug Resistance in Kenyan Youth. Viruses 2023; 15:1416. [PMID: 37515104 PMCID: PMC10383797 DOI: 10.3390/v15071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Drug resistance remains a global challenge in children and adolescents living with HIV (CALWH). Characterizing resistance evolution, specifically using next generation sequencing (NGS) can potentially inform care, but remains understudied, particularly in antiretroviral therapy (ART)-experienced CALWH in resource-limited settings. We conducted reverse-transcriptase NGS and investigated short-and long-term resistance evolution and its predicted impact in a well-characterized cohort of Kenyan CALWH failing 1st-line ART and followed for up to ~8 years. Drug resistance mutation (DRM) evolution types were determined by NGS frequency changes over time, defined as evolving (up-trending and crossing the 20% NGS threshold), reverting (down-trending and crossing the 20% threshold) or other. Exploratory analyses assessed potential impacts of minority resistance variants on evolution. Evolution was detected in 93% of 42 participants, including 91% of 22 with short-term follow-up, 100% of 7 with long-term follow-up without regimen change, and 95% of 19 with long-term follow-up with regimen change. Evolving DRMs were identified in 60% and minority resistance variants evolved in 17%, with exploratory analysis suggesting greater rate of evolution of minority resistance variants under drug selection pressure and higher predicted drug resistance scores in the presence of minority DRMs. Despite high-level pre-existing resistance, NGS-based longitudinal follow-up of this small but unique cohort of Kenyan CALWH demonstrated continued DRM evolution, at times including low-level DRMs detected only by NGS, with predicted impact on care. NGS can inform better understanding of DRM evolution and dynamics and possibly improve care. The clinical significance of these findings should be further evaluated.
Collapse
Affiliation(s)
- Vlad Novitsky
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Winstone Nyandiko
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
- College of Health Sciences, Moi University, Eldoret 30100, Kenya
| | - Rachel Vreeman
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
- Department of Global Health and Health System Design, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Arnhold Institute for Global Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allison K DeLong
- School of Public Health, Brown University, Providence, RI 02912, USA
| | - Mark Howison
- Research Improving People's Lives, Providence, RI 02903, USA
| | - Akarsh Manne
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Josephine Aluoch
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Ashley Chory
- Department of Global Health and Health System Design, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Festus Sang
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Celestine Ashimosi
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Eslyne Jepkemboi
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Millicent Orido
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
| | - Joseph W Hogan
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret 30100, Kenya
- School of Public Health, Brown University, Providence, RI 02912, USA
| | - Rami Kantor
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Kemp SA, Cheng MTK, Hamilton WL, Kamelian K, Singh S, Rakshit P, Agrawal A, Illingworth CJR, Gupta RK. Transmission of B.1.617.2 Delta variant between vaccinated healthcare workers. Sci Rep 2022; 12:10492. [PMID: 35729228 PMCID: PMC9212198 DOI: 10.1038/s41598-022-14411-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/07/2022] [Indexed: 01/01/2023] Open
Abstract
Breakthrough infections with SARS-CoV-2 Delta variant have been reported in doubly-vaccinated recipients and as re-infections. Studies of viral spread within hospital settings have highlighted the potential for transmission between doubly-vaccinated patients and health care workers and have highlighted the benefits of high-grade respiratory protection for health care workers. However the extent to which vaccination is preventative of viral spread in health care settings is less well studied. Here, we analysed data from 118 vaccinated health care workers (HCW) across two hospitals in India, constructing two probable transmission networks involving six HCWs in Hospital A and eight HCWs in Hospital B from epidemiological and virus genome sequence data, using a suite of computational approaches. A maximum likelihood reconstruction of transmission involving known cases of infection suggests a high probability that doubly vaccinated HCWs transmitted SARS-CoV-2 between each other and highlights potential cases of virus transmission between individuals who had received two doses of vaccine. Our findings show firstly that vaccination may reduce rates of transmission, supporting the need for ongoing infection control measures even in highly vaccinated populations, and secondly we have described a novel approach to identifying transmissions that is scalable and rapid, without the need for an infection control infrastructure.
Collapse
Affiliation(s)
- Steven A Kemp
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mark T K Cheng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
| | | | - Kimia Kamelian
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sujit Singh
- National Centre for Disease Control, Delhi, India
| | | | - Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Christopher J R Illingworth
- Garscube Campus, MRC - University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, UK.
- MRC Biostatistics Unit, University of Cambridge, East Forvie Building, Forvie Site, Robinson Way, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Africa Health Research Institute, Durban, South Africa.
- Jeffrey Cheah Biomedical Centre, Cambridge, CB5 8UB, UK.
| |
Collapse
|