1
|
Sebastiampillai S, Nitz M. Selective inhibition of NikA mediated Ni(II) import in E. coli by the Indium(III)-EDTA complex. Metallomics 2025; 17:mfaf008. [PMID: 40037903 DOI: 10.1093/mtomcs/mfaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Nickel is a required nutrient for bacteria to produce [NiFe]-hydrogenase and urease enzymes. [NiFe]-hydrogenase catalyzes the reversible conversion of hydrogen into protons and electrons and urease catalyzes the hydrolysis of urea into carbon dioxide and ammonia-both key in bacterial pathogenesis. As such, nickel trafficking and homeostasis are interesting targets for potential antibacterial strategies. In E. coli, NikA binds a Ni(II)-(L-His)2 chelate in the periplasm and delivers this complex to the NikBCDE transporter. Blocking Ni(II) uptake by NikA would prevent the biosynthesis of active [NiFe]-hydrogenase. Fe(III)-EDTA is a potent ligand for NikA, however due to the potential for reduction of Fe(III) to Fe(II), it has limited utility. Using Fe(III)-EDTA as a starting point for inhibitor design, similar stable complexes of Bismuth(III), Lutetium(III) and Indium(III) were investigated. The In(III)-EDTA complex is a potent inhibitor of cellular [NiFe]-hydrogenase activity (IC50 of 600 μM ± 100 μM) while being nontoxic to bacterial growth. The mechanism of In(III)-EDTA hydrogenase inhibition was confirmed by the inhibition of Ni(II)-dependent processing of HycE (hydrogenase-3), which could be rescued with the addition of exogenous nickel. To elucidate the binding affinity of In(III)-EDTA to NikA, isothermal titration calorimetry (ITC) was carried out, revealing stoichiometric 1:1 binding with a Kd of 17.3 µM ± 3.0 µM. Indium concentrations determined by inductively coupled plasma mass spectrometry in E. coli cells in the presence or absence of NikA showed no discernable difference, further supporting the competitive inhibition of nickel uptake by blocking NikA.
Collapse
Affiliation(s)
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
2
|
Garg S, Mishra V, Vega LF, Sharma RS, Dumée LF. Hydrogen Biosensing: Prospects, Parallels, and Challenges. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shafali Garg
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi110007, India
| | - Vandana Mishra
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi110007, India
- Centre for Inter-disciplinary Studies of Mountain & Hill Environment (CISMHE), University of Delhi, Delhi110007, India
- Delhi School of Climate Change and Sustainability, Institute of Eminence, University of Delhi, Delhi110007, India
| | - Lourdes F. Vega
- Khalifa University, Department of Chemical Engineering, Abu Dhabi127788, United Arab Emirates
- Khalifa University, Research, and Innovation Center on CO2 and Hydrogen, Abu Dhabi127788, United Arab Emirates
| | - Radhey Shyam Sharma
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi110007, India
- Centre for Inter-disciplinary Studies of Mountain & Hill Environment (CISMHE), University of Delhi, Delhi110007, India
- Delhi School of Climate Change and Sustainability, Institute of Eminence, University of Delhi, Delhi110007, India
| | - Ludovic F. Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi127788, United Arab Emirates
- Khalifa University, Research, and Innovation Center on CO2 and Hydrogen, Abu Dhabi127788, United Arab Emirates
- Khalifa University, Center for Membrane and Advanced Water Technology, Abu Dhabi127788, United Arab Emirates
| |
Collapse
|
3
|
Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes 2023; 15:2226916. [PMID: 37365731 PMCID: PMC10305517 DOI: 10.1080/19490976.2023.2226916] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
A diverse array of commensal microorganisms inhabits the human intestinal tract. The most abundant and most studied members of this microbial community are undoubtedly bacteria. Their important role in gut physiology, defense against pathogens, and immune system education has been well documented over the last decades. However, the gut microbiome is not restricted to bacteria. It encompasses the entire breadth of microbial life: viruses, archaea, fungi, protists, and parasitic worms can also be found in the gut. While less studied than bacteria, their divergent but important roles during health and disease have become increasingly more appreciated. This review focuses on these understudied members of the gut microbiome. We will detail the composition and development of these microbial communities and will specifically highlight their functional interactions with enteric pathogens, such as species of the family Enterobacteriaceae. The interactions can be direct through physical interactions, or indirect through secreted metabolites or modulation of the immune response. We will present general concepts and specific examples of how non-bacterial gut communities modulate bacterial pathogenesis and present an outlook for future gut microbiome research that includes these communities.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Benoit SL, Maier RJ. Copper toxicity towards Campylobacter jejuni is enhanced by the nickel chelator dimethylglyoxime. Metallomics 2021; 14:6486457. [PMID: 34963007 DOI: 10.1093/mtomcs/mfab076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022]
Abstract
The nickel (Ni)-chelator dimethylglyoxime (DMG) was found to be bacteriostatic towards Campylobacter jejuni. Supplementation of nickel to DMG-containing media restored bacterial growth, whereas supplementation of cobalt or zinc had no effect on the growth inhibition. Unexpectedly, the combination of millimolar levels of DMG with micromolar levels of copper (Cu) was bactericidal, an effect not seen in select Gram-negative pathogenic bacteria. Both the cytoplasmic Ni-binding chaperone SlyD and the twin arginine translocation (Tat)-dependent periplasmic copper oxidase CueO were found to play a central role in the Cu-DMG hypersensitivity phenotype. Ni-replete SlyD is needed for Tat-dependent CueO translocation to the periplasm, whereas Ni-depleted (DMG-treated) SlyD is unable to interact with the CueO Tat signal peptide, leading to mislocalization of CueO and increased copper sensitivity. In support of this model, C. jejuni ΔslyD and ΔcueO mutants were more sensitive to copper than the wild-type (WT); CueO was less abundant in the periplasmic fraction of ΔslyD or DMG-grown WT cells, compared to WT cells grown on plain medium; SlyD binds the CueO signal sequence peptide, with DMG inhibiting and nickel enhancing the binding, respectively. Injection of Cu-DMG into Galleria mellonella before C. jejuni inoculation significantly increased the insect survival rate compared to the control group. In chickens, oral administration of DMG or Cu-DMG decreased and even abolished C. jejuni colonization in some cases, compared to both water-only and Cu-only control groups. The latter finding is important, since campylobacteriosis is the leading bacterial foodborne infection, and chicken meat constitutes the major foodborne source.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology.,Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia, 30602
| | - Robert J Maier
- Department of Microbiology.,Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
5
|
Benoit SL, Agudelo S, Maier RJ. A two-hybrid system reveals previously uncharacterized protein-protein interactions within the Helicobacter pylori NIF iron-sulfur maturation system. Sci Rep 2021; 11:10794. [PMID: 34031459 PMCID: PMC8144621 DOI: 10.1038/s41598-021-90003-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
Iron-sulfur (Fe-S) proteins play essential roles in all living organisms. The gastric pathogen Helicobacter pylori relies exclusively on the NIF system for biosynthesis and delivery of Fe-S clusters. Previously characterized components include two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein), and a dispensable Fe-S carrier, Nfu. Among 38 proteins previously predicted to coordinate Fe-S clusters, two proteins, HP0207 (a member of the Nbp35/ApbC ATPase family) and HP0277 (previously annotated as FdxA, a member of the YfhL ferredoxin-like family) were further studied, using a bacterial two-hybrid system approach to identify protein-protein interactions. ApbC was found to interact with 30 proteins, including itself, NifS, NifU, Nfu and FdxA, and alteration of the conserved ATPase motif in ApbC resulted in a significant (50%) decrease in the number of protein interactions, suggesting the ATpase activity is needed for some ApbC-target protein interactions. FdxA was shown to interact with 21 proteins, including itself, NifS, ApbC and Nfu, however no interactions between NifU and FdxA were detected. By use of cross-linking studies, a 51-kDa ApbC-Nfu heterodimer complex was identified. Attempts to generate apbC chromosomal deletion mutants in H. pylori were unsuccessful, therefore indirectly suggesting the hp0207 gene is essential. In contrast, mutants in the fdxA gene were obtained, albeit only in one parental strain (26695). Taken together, these results suggest both ApbC and FdxA are important players in the H. pylori NIF maturation system.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, The University of Georgia, 30602, Athens, Georgia.,Center for Metalloenzyme Studies, The University of Georgia, 30602, Athens, Georgia
| | - Stephanie Agudelo
- Department of Microbiology, The University of Georgia, 30602, Athens, Georgia
| | - Robert J Maier
- Department of Microbiology, The University of Georgia, 30602, Athens, Georgia. .,Center for Metalloenzyme Studies, The University of Georgia, 30602, Athens, Georgia.
| |
Collapse
|
6
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Kreuzer M, Hardt WD. How Food Affects Colonization Resistance Against Enteropathogenic Bacteria. Annu Rev Microbiol 2020; 74:787-813. [DOI: 10.1146/annurev-micro-020420-013457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Food has a major impact on all aspects of health. Recent data suggest that food composition can also affect susceptibility to infections by enteropathogenic bacteria. Here, we discuss how food may alter the microbiota as well as mucosal defenses and how this can affect infection. Salmonella Typhimurium diarrhea serves as a paradigm, and complementary evidence comes from other pathogens. We discuss the effects of food composition on colonization resistance, host defenses, and the infection process as well as the merits and limitations of mouse models and experimental foods, which are available to decipher the underlying mechanisms.
Collapse
Affiliation(s)
- Markus Kreuzer
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
8
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
9
|
Semenec L, Vergara IA, Laloo AE, Mathews ER, Bond PL, Franks AE. Enhanced Growth of Pilin-Deficient Geobacter sulfurreducens Mutants in Carbon Poor and Electron Donor Limiting Conditions. MICROBIAL ECOLOGY 2019; 78:618-630. [PMID: 30759269 DOI: 10.1007/s00248-019-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
Geobacter sulfurreducens pili enable extracellular electron transfer and play a role in secretion of c-type cytochromes such as OmcZ. PilA-deficient mutants of G. sulfurreducens have previously been shown to accumulate cytochromes within their membranes. This cytochrome retaining phenotype allowed for enhanced growth of PilA-deficient mutants in electron donor and carbon-limited conditions where formate and fumarate are provided as the sole electron donor and acceptor with no supplementary carbon source. Conversely, wild-type G. sulfurreducens, which has normal secretion of cytochromes, has comparative limited growth in these conditions. This growth is further impeded for OmcZ-deficient and OmcS-deficient mutants. A PilB-deficient mutant which prevents pilin production but allows for secretion of OmcZ had moderate growth in these conditions, indicating a role for cytochrome localization to enabling survival in the electron donor and carbon-limited conditions. To determine which pathways enhanced growth using formate, Sequential Window Acquisition of all Theoretical Mass Spectra mass spectrometry (SWATH-MS) proteomics of formate adapted PilA-deficient mutants and acetate grown wild type was performed. PilA-deficient mutants had an overall decrease in tricarboxylic acid (TCA) cycle enzymes and significant upregulation of electron transport chain associated proteins including many c-type cytochromes and [NiFe]-hydrogenases. Whole genome sequencing of the mutants shows strong convergent evolution and emergence of genetic subpopulations during adaptation to growth on formate. The results described here suggest a role for membrane constrained c-type cytochromes to the enhancement of survival and growth in electron donor and carbon-limited conditions.
Collapse
Affiliation(s)
- Lucie Semenec
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Ismael A Vergara
- Bioinformatics and Cancer Genomics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Andrew E Laloo
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth R Mathews
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
- Centre for Future Landscapes, La Trobe University, Melbourne, Australia.
| |
Collapse
|
10
|
Nickel chelation therapy as an approach to combat multi-drug resistant enteric pathogens. Sci Rep 2019; 9:13851. [PMID: 31554822 PMCID: PMC6761267 DOI: 10.1038/s41598-019-50027-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022] Open
Abstract
The nickel (Ni)-specific chelator dimethylglyoxime (DMG) has been used for many years to detect, quantitate or decrease Ni levels in various environments. Addition of DMG at millimolar levels has a bacteriostatic effect on some enteric pathogens, including multidrug resistant (MDR) strains of Salmonella Typhimurium and Klebsiella pneumoniae. DMG inhibited activity of two Ni-containing enzymes, Salmonella hydrogenase and Klebsiella urease. Oral delivery of nontoxic levels of DMG to mice previously inoculated with S. Typhimurium led to a 50% survival rate, while 100% of infected mice in the no-DMG control group succumbed to salmonellosis. Pathogen colonization numbers from livers and spleens of mice were 10- fold reduced by DMG treatment of the Salmonella-infected mice. Using Nuclear Magnetic Resonance, we were able to detect DMG in the livers of DMG-(orally) treated mice. Inoculation of Galleria mellonella (wax moth) larvae with DMG prior to injection of either MDR K. pneumoniae or MDR S. Typhimurium led to 40% and 60% survival, respectively, compared to 100% mortality of larvae infected with either pathogen, but without prior DMG administration. Our results suggest that DMG-mediated Ni-chelation could provide a novel approach to combat enteric pathogens, including recalcitrant multi-drug resistant strains.
Collapse
|
11
|
Abstract
Hydrogenases are metal-containing biocatalysts that reversibly convert protons and electrons to hydrogen gas. This reaction can contribute in different ways to the generation of the proton motive force (PMF) of a cell. One means of PMF generation involves reduction of protons on the inside of the cytoplasmic membrane, releasing H2 gas, which being without charge is freely diffusible across the cytoplasmic membrane, where it can be re-oxidized to release protons. A second route of PMF generation couples transfer of electrons derived from H2 oxidation to quinone reduction and concomitant proton uptake at the membrane-bound heme cofactor. This redox-loop mechanism, as originally formulated by Mitchell, requires a second, catalytically distinct, enzyme complex to re-oxidize quinol and release the protons outside the cell. A third way of generating PMF is also by electron transfer to quinones but on the outside of the membrane while directly drawing protons through the entire membrane. The cofactor-less membrane subunits involved are proposed to operate by a conformational mechanism (redox-linked proton pump). Finally, PMF can be generated through an electron bifurcation mechanism, whereby an exergonic reaction is tightly coupled with an endergonic reaction. In all cases the protons can be channelled back inside through a F1F0-ATPase to convert the 'energy' stored in the PMF into the universal cellular energy currency, ATP. New and exciting discoveries employing these mechanisms have recently been made on the bioenergetics of hydrogenases, which will be discussed here and placed in the context of their contribution to energy conservation.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|
12
|
Li MF, Sun L. Edwardsiella tarda Sip2: A Serum-Induced Protein That Is Essential to Serum Survival, Acid Resistance, Intracellular Replication, and Host Infection. Front Microbiol 2018; 9:1084. [PMID: 29887847 PMCID: PMC5980991 DOI: 10.3389/fmicb.2018.01084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Edwardsiella tarda is a broad-host pathogen that can infect mammals, reptiles, and fish. E. tarda exhibits a remarkable ability to survive in host serum and replicate in host phagocytes, but the underlining mechanism is unclear. In this study, in order to identify E. tarda proteins involved in serum resistance, iTRAQ proteomic analysis was performed to examine the whole-cell protein profiles of TX01, a pathogenic E. tarda isolate, in response to serum treatment. Of the differentially expressed proteins identified, one (named Sip2) possesses a conserved hydrogenase domain and is homologous to the putative hydrogenase accessory protein HypB. When Sip2 was expressed in Escherichia coli, it significantly enhanced the survival of the host cells in serum. Compared to TX01, the sip2 knockout, TX01Δsip2, was dramatically reduced in the ability of hydrogenase activity, serum resistance, intracellular replication, dissemination in fish tissues, and causing mortality in infected fish. The lost virulence capacities of TX01Δsip2 were restored by complementation with the sip2 gene. Furthermore, TX01Δsip2 was significantly reduced in the capacity to grow under low pHs and iron-depleted conditions, and was unable to maintain its internal pH in acidic environment. Taken together, these results indicate that Sip2 is a novel serum-induced protein that is essential to serum resistance, cellular and tissue infection, and coping with acidic stress via its ability to modulate intracellular pH.
Collapse
Affiliation(s)
- Mo-fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Beaton SE, Evans RM, Finney AJ, Lamont CM, Armstrong FA, Sargent F, Carr SB. The structure of hydrogenase-2 from Escherichia coli: implications for H 2-driven proton pumping. Biochem J 2018; 475:1353-1370. [PMID: 29555844 PMCID: PMC5902676 DOI: 10.1042/bcj20180053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 01/19/2023]
Abstract
Under anaerobic conditions, Escherichia coli is able to metabolize molecular hydrogen via the action of several [NiFe]-hydrogenase enzymes. Hydrogenase-2, which is typically present in cells at low levels during anaerobic respiration, is a periplasmic-facing membrane-bound complex that functions as a proton pump to convert energy from hydrogen (H2) oxidation into a proton gradient; consequently, its structure is of great interest. Empirically, the complex consists of a tightly bound core catalytic module, comprising large (HybC) and small (HybO) subunits, which is attached to an Fe-S protein (HybA) and an integral membrane protein (HybB). To date, efforts to gain a more detailed picture have been thwarted by low native expression levels of Hydrogenase-2 and the labile interaction between HybOC and HybA/HybB subunits. In the present paper, we describe a new overexpression system that has facilitated the determination of high-resolution crystal structures of HybOC and, hence, a prediction of the quaternary structure of the HybOCAB complex.
Collapse
Affiliation(s)
- Stephen E Beaton
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| | - Rhiannon M Evans
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| | - Alexander J Finney
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ciaran M Lamont
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Fraser A Armstrong
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| | - Frank Sargent
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, U.K.
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
14
|
First insights into the pleiotropic role of vrf (yedF), a newly characterized gene of Salmonella Typhimurium. Sci Rep 2017; 7:15291. [PMID: 29127378 PMCID: PMC5681696 DOI: 10.1038/s41598-017-15369-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/26/2017] [Indexed: 11/25/2022] Open
Abstract
Salmonella possesses virulence determinants that allow replication under extreme conditions and invasion of host cells, causing disease. Here, we examined four putative genes predicted to encode membrane proteins (ydiY, ybdJ, STM1441 and ynaJ) and a putative transcriptional factor (yedF). These genes were identified in a previous study of a S. Typhimurium clinical isolate and its multidrug-resistant counterpart. For STM1441 and yedF a reduced ability to interact with HeLa cells was observed in the knock-out mutants, but an increase in this ability was absent when these genes were overexpressed, except for yedF which phenotype was rescued when yedF was restored. In the absence of yedF, decreased expression was seen for: i) virulence-related genes involved in motility, chemotaxis, attachment and survival inside the host cell; ii) global regulators of the invasion process (hilA, hilC and hilD); and iii) factors involved in LPS biosynthesis. In contrast, an increased expression was observed for anaerobic metabolism genes. We propose yedF is involved in the regulation of Salmonella pathogenesis and contributes to the activation of the virulence machinery. Moreover, we propose that, when oxygen is available, yedF contributes sustained repression of the anaerobic pathway. Therefore, we recommend this gene be named vrf, for virulence-related factor.
Collapse
|
15
|
Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, et alSelber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, Wasfi M, Zha CY, Gamberi C. Human Gut Microbiota: Toward an Ecology of Disease. Front Microbiol 2017; 8:1265. [PMID: 28769880 PMCID: PMC5511848 DOI: 10.3389/fmicb.2017.01265] [Show More Authors] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.
Collapse
Affiliation(s)
| | - Belise Rukundo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hayfa Akoubi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hend Al-Bizri
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Adelekan F Aliu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lilit Avetisyan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Irmak Bahar
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alexandra Baird
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fatema Begum
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Helene Bramwell
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alicia Briggs
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Richard Bui
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Talia Chevassus
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jin H Choi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Karyne Coulombe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Meghan Davies
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tamara Di Maulo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Paola K Duncan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Sara El-Nounou
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tanya Fotakis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Metodi Georgiev
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tazkia Hassan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Iman Huseen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tania Iozzo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Safina Islam
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Dilan B Jaunky
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Cedric Kamani
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Filip Konieczny
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Karina Legros
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Jun Li
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Yara Maalouf
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jessica Mantha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Thi T T Nguyen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Ian Niu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Matthew Oueis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Nehal Patel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Emily Pecsi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jackie Peters
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | | | | | - Surya Sakr
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lisa Serravalle
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fily Sidibe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Dominique Soho
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | - Olga Voitovich
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Pamela Vrabel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Lu Wang
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Maryse Wasfi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Cong Y Zha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Chiara Gamberi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
16
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
17
|
Behnsen J, Perez-Lopez A, Nuccio SP, Raffatellu M. Exploiting host immunity: the Salmonella paradigm. Trends Immunol 2015; 36:112-20. [PMID: 25582038 DOI: 10.1016/j.it.2014.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/08/2023]
Abstract
Pathogens have evolved clever strategies to evade and in some cases exploit the attacks of an activated immune system. Salmonella enterica is one such pathogen, exploiting multiple aspects of host defense to promote its replication in the host. Here we review recent findings on the mechanisms by which Salmonella establishes systemic and chronic infection, including strategies involving manipulation of innate immune signaling and inflammatory forms of cell death, as well as immune evasion by establishing residency in M2 macrophages. We also examine recent evidence showing that the oxidative environment and the high levels of antimicrobial proteins produced in response to localized Salmonella gastrointestinal infection enable the pathogen to successfully outcompete the resident gut microbiota.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Araceli Perez-Lopez
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Sean-Paul Nuccio
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA; Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697-4025, USA.
| |
Collapse
|
18
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|
19
|
Host hydrogen rather than that produced by the pathogen is important for Salmonella enterica serovar Typhimurium virulence. Infect Immun 2014; 83:311-6. [PMID: 25368112 DOI: 10.1128/iai.02611-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium utilizes molecular hydrogen as a substrate in various respiratory pathways, via H2-uptake enzymes termed Hya, Hyb, and Hyd. A different hydrogenase, the hydrogen-evolving Hyc enzyme, removes excess reductant during fermentative growth. Virulence phenotypes conferred by mutations in hyc genes, either alone or in combination with mutations in the H2-uptake enzyme genes, are addressed. Anaerobically grown ΔhycB or ΔhycC single-deletion strains were more sensitive to acid than the wild-type strain, but the Δhyc strains were like the virulent parent strain with respect to both mouse morbidity and mortality and in organ burden numbers. Even fecal-recovery numbers for both mutant strains at several time points prior to the animals succumbing to salmonellosis were like those seen with the parent. Neither hydrogen uptake nor evolution of the gas was detected in a hydrogenase quadruple-mutant strain containing deletions in the hya, hyb, hyd, and hyc genes. As previously described, a strain lacking all H2-uptake ability was severely attenuated in its virulence characteristics, and the quadruple-mutant strain had the same (greatly attenuated) phenotype. While H2 levels were greatly reduced in ceca of mice treated with antibiotics, both the ΔhycB and ΔhycC strains were still like the parent in their ability to cause typhoid salmonellosis. It seems that the level of H2 produced by the pathogen (through formate hydrogen lyase [FHL] and Hyc) is insignificant in terms of providing respiratory reductant to facilitate either organ colonization or contributions to gut growth leading to pathogenesis.
Collapse
|
20
|
Maier L, Barthel M, Stecher B, Maier RJ, Gunn JS, Hardt WD. Salmonella Typhimurium strain ATCC14028 requires H2-hydrogenases for growth in the gut, but not at systemic sites. PLoS One 2014; 9:e110187. [PMID: 25303479 PMCID: PMC4193879 DOI: 10.1371/journal.pone.0110187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/11/2014] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization.
Collapse
Affiliation(s)
- Lisa Maier
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Bärbel Stecher
- Max von Pettenkofer-Institut, München, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - John S. Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Biomedical Research Tower, The Ohio State University, Columbus, Ohio, United States of America
| | | |
Collapse
|
21
|
How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase. Biochem J 2014; 458:449-58. [PMID: 24428762 PMCID: PMC3940037 DOI: 10.1042/bj20131520] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hydro-genase was observed to comprise associated large and small subunits. The structure indicated that His229 from the large subunit was close to the proximal [4Fe–3S] cluster in the small subunit. In addition, His229 was observed to lie close to a buried glutamic acid (Glu73), which is conserved in oxygen-tolerant hydrogenases. His229 and Glu73 of the Hyd-5 large subunit were found to be important in both hydrogen oxidation activity and the oxygen-tolerance mechanism. Substitution of His229 or Glu73 with alanine led to a loss in the ability of Hyd-5 to oxidize hydrogen in air. Furthermore, the H229A variant was found to have lost the overpotential requirement for activity that is always observed with oxygen-tolerant [NiFe]-hydrogenases. It is possible that His229 has a role in stabilizing the super-oxidized form of the proximal cluster in the presence of oxygen, and it is proposed that Glu73could play a supporting role in fine-tuning the chemistry of His229 to enable this function. A hydrogenase consists of two subunits: a large and a small subunit. In the present study, amino acids from the large subunit were found to influence a cofactor in the small subunit, such that they help to confer oxygen-tolerance to the enzyme.
Collapse
|
22
|
Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol 2014; 29:16-22. [PMID: 24727150 DOI: 10.1016/j.coi.2014.03.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/13/2014] [Indexed: 12/20/2022]
Abstract
Commensal bacterial communities residing within the intestinal lumen of mammals have evolved to flourish in this microenvironment. To preserve this niche, commensal bacteria act with the host to prevent colonization by invasive pathogens that induce inflammation and disrupt the intestinal niche commensal bacteria occupy. Thus, it is mutually beneficial to the host and commensal bacteria to inhibit a pathogen's ability to establish an infection. Commensal bacteria express factors that support colonization, maximize nutrient uptake, and produce metabolites that confer a survival advantage over pathogens. Further, commensal bacteria stimulate the host's immune defenses and drive tonic expression of anti-microbial factors. In combination, these mechanisms preserve the niche for commensal bacteria and assist the host in preventing infection.
Collapse
|
23
|
Greening C, Cook GM. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol 2014; 18:30-8. [PMID: 24607643 DOI: 10.1016/j.mib.2014.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
Abstract
Hydrogenases are ubiquitous in ecosystems and widespread in microorganisms. In bacteria, hydrogen metabolism is a facultative trait that is tightly regulated in response to both external factors (e.g. gas concentrations) and internal factors (e.g. redox state). Here we consider how environmental and pathogenic bacteria regulate [NiFe]-hydrogenases to adapt to chemical changes and meet physiological needs. We introduce this concept by exploring how Ralstonia eutropha switches between heterotrophic and lithotrophic growth modes by sensing hydrogen and electron availability. The regulation and integration of hydrogen metabolism in the virulence of Salmonella enterica and Helicobacter pylori, persistence of mycobacteria and streptomycetes, and differentiation of filamentous cyanobacteria are subsequently discussed. We also consider how these findings are extendable to other systems.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
24
|
Brankatschk K, Kamber T, Pothier JF, Duffy B, Smits THM. Transcriptional profile of Salmonella enterica subsp. enterica serovar Weltevreden during alfalfa sprout colonization. Microb Biotechnol 2013; 7:528-44. [PMID: 24308841 PMCID: PMC4265072 DOI: 10.1111/1751-7915.12104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022] Open
Abstract
Sprouted seeds represent a great risk for infection by human enteric pathogens because of favourable growth conditions for pathogens during their germination. The aim of this study was to identify mechanisms of interactions of Salmonella enterica subsp. enterica Weltevreden with alfalfa sprouts. RNA-seq analysis of S. Weltevreden grown with sprouts in comparison with M9-glucose medium showed that among a total of 4158 annotated coding sequences, 177 genes (4.3%) and 345 genes (8.3%) were transcribed at higher levels with sprouts and in minimal medium respectively. Genes that were higher transcribed with sprouts are coding for proteins involved in mechanisms known to be important for attachment, motility and biofilm formation. Besides gene expression required for phenotypic adaption, genes involved in sulphate acquisition were higher transcribed, suggesting that the surface on alfalfa sprouts may be poor in sulphate. Genes encoding structural and effector proteins of Salmonella pathogenicity island 2, involved in survival within macrophages during infection of animal tissue, were higher transcribed with sprouts possibly as a response to environmental conditions. This study provides insight on additional mechanisms that may be important for pathogen interactions with sprouts.
Collapse
Affiliation(s)
- Kerstin Brankatschk
- Plant Protection Division, Agroscope Changins-Wädenswil ACW, Schloss 1, Wädenswil, CH-8820, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Lamichhane-Khadka R, Benoit SL, Maier SE, Maier RJ. A link between gut community metabolism and pathogenesis: molecular hydrogen-stimulated glucarate catabolism aids Salmonella virulence. Open Biol 2013; 3:130146. [PMID: 24307595 PMCID: PMC3877842 DOI: 10.1098/rsob.130146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glucarate, an oxidized product of glucose, is a major serum organic acid in humans. Still, its role as a carbon source for a pathogen colonizing hosts has not been studied. We detected high-level expression of a potential glucarate permease encoding gene gudT when Salmonella enterica serovar Typhimurium are exposed to hydrogen gas (H2), a gaseous by-product of gut commensal metabolism. A gudT strain of Salmonella is deficient in glucarate-dependent growth, however, it can still use other monosaccharides, such as glucose or galactose. Complementation of the gudT mutant with a plasmid harbouring gudT restored glucarate-dependent growth to wild-type (WT) levels. The gudT mutant exhibits attenuated virulence: the mean time of death for mice inoculated with WT strain was 2 days earlier than for mice inoculated with the gudT strain. At 4 days postinoculation, liver and spleen homogenates from mice inoculated with a gudT strain contained significantly fewer viable Salmonella than homogenates from animals inoculated with the parent. The parent strain grew well H2-dependently in a minimal medium with amino acids and glucarate provided as the sole carbon sources, whereas the gudT strain achieved approximately 30% of the parent strain's yield. Glucarate-mediated growth of a mutant strain unable to produce H2 was stimulated by H2 addition, presumably owing to the positive transcriptional response to H2. Gut microbiota-produced molecular hydrogen apparently signals Salmonella to catabolize an alternative carbon source available in the host. Our results link a gut microbiome-produced diffusible metabolite to augmenting bacterial pathogenesis.
Collapse
|
26
|
RNA sequencing reveals differences between the global transcriptomes of Salmonella enterica serovar enteritidis strains with high and low pathogenicities. Appl Environ Microbiol 2013; 80:896-906. [PMID: 24271167 DOI: 10.1128/aem.02740-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis.
Collapse
|
27
|
McNorton MM, Maier RJ. Roles of H2 uptake hydrogenases in Shigella flexneri acid tolerance. MICROBIOLOGY-SGM 2012; 158:2204-2212. [PMID: 22628482 DOI: 10.1099/mic.0.058248-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hydrogenases play many roles in bacterial physiology, and use of H(2) by the uptake-type enzymes of animal pathogens is of particular interest. Hydrogenases have never been studied in the pathogen Shigella, so targeted mutant strains were individually generated in the two Shigella flexneri H(2)-uptake enzymes (Hya and Hyb) and in the H(2)-evolving enzyme (Hyc) to address their roles. Under anaerobic fermentative conditions, a Hya mutant strain (hya) was unable to oxidize H(2), while a Hyb mutant strain oxidized H(2) like the wild-type. A hyc strain oxidized more exogenously added hydrogen than the parent. Fluorescence ratio imaging with dye JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide) showed that the parent strain generated a membrane potential 15 times greater than hya. The hya mutant was also by far the most acid-sensitive strain, being even more acid-sensitive than a mutant strain in the known acid-combating glutamate-dependent acid-resistance pathway (GDAR pathway). In severe acid-challenge experiments, the addition of glutamate to hya restored survivability, and this ability was attributed in part to the GDAR system (removes intracellular protons) by mutant strain (e.g. hya/gadBC double mutant) analyses. However, mutant strain phenotypes indicated that a larger portion of the glutamate-rescued acid tolerance was independent of GadBC. The acid tolerance of the hya strains was aided by adding chloride ions to the growth medium. The whole-cell Hya enzyme became more active upon acid exposure (20 min), based on assays of hyc. Indeed, the very high rates of Shigella H(2) oxidation by Hya in acid can supply each cell with 2.4×10(8) protons min(-1). Electrons generated from Hya-mediated H(2) oxidation at the inner membrane likely counteract cytoplasmic positive charge stress, while abundant proton pools deposited periplasmically likely repel proton influx during severe acid stress.
Collapse
Affiliation(s)
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Hydrogen-stimulated carbon acquisition and conservation in Salmonella enterica serovar Typhimurium. J Bacteriol 2011; 193:5824-32. [PMID: 21856852 DOI: 10.1128/jb.05456-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Salmonella enterica serovar Typhimurium can utilize molecular hydrogen for growth and amino acid transport during anaerobic growth. Via microarray we identified H(2) gas-affected gene expression changes in Salmonella. The addition of H(2) caused altered expression of 597 genes, of which 176 genes were upregulated and 421 were downregulated. The significantly H(2)-upregulated genes include those that encode proteins involved in the transport of iron, manganese, amino acids, nucleosides, and sugars. Genes encoding isocitrate lyase (aceA) and malate synthase (aceB), both involved in the carbon conserving glyoxylate pathway, and genes encoding the enzymes of the d-glucarate and d-glycerate pathways (gudT, gudD, garR, garL, garK) are significantly upregulated by H(2). Cells grown with H(2) showed markedly increased AceA enzyme activity compared to cells without H(2). Mutant strains with deletion of either aceA or aceB had reduced H(2)-dependent growth rates. Genes encoding the glutamine-specific transporters (glnH, glnP, glnQ) were upregulated by H(2), and cells grown with H(2) showed increased [(14)C]glutamine uptake. Similarly, the mannose uptake system genes (manX, manY) were upregulated by H(2,) and cells grown with H(2) showed about 2.0-fold-increased [(14)C]d-mannose uptake compared to the cells grown without H(2). Hydrogen stimulates the expression of genes involved in nutrient and carbon acquisition and carbon-conserving pathways, linking carbon and energy metabolism to sustain H(2)-dependent growth.
Collapse
|