1
|
Chen Y, Lv W, Yue Q, Wen N, Wang Y, Lang Z, Xu W, Li S. Utilizing the Fungal Bicistronic System for Multi-Gene Expression to Generate Insect-Resistant and Herbicide-Tolerant Maize. Int J Mol Sci 2024; 25:13408. [PMID: 39769173 PMCID: PMC11677970 DOI: 10.3390/ijms252413408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Developing simple and efficient multi-gene expression systems is crucial for multi-trait improvement or bioproduction in transgenic plants. In previous research, an IGG6-based bicistronic system from the nonpathogenic fungus Glarea lozoyensis efficiently expressed multiple enzyme proteins in yeast and maize, and the heterologous enzymes successfully performed their catalytic activity to reconstruct the biosynthetic pathway in the host organism. Unlike enzyme proteins, some heterologous functional proteins (such as insecticidal proteins) are dose-dependent and they need to express sufficient levels to perform their biological functions. It remains unclear whether the IGG6-based bicistronic system can achieve high expression of the functional proteins for practical applications in crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, vip3Aa and cry1Ab, were linked via IGG6 to form a bicistron, while two glyphosate resistance genes, gr79epsps and gat, served as monocistronic selectable marker genes. Regenerated maize plants were produced through genetic transformation. RNA and immunoblot analyses revealed that the vip3Aa-IGG6-cry1Ab bicistron was transcribed as a single transcript, which was then translated into two separate proteins. Notably, the transcription and translation of cry1Ab were significantly positively correlated with those of vip3Aa. Through ELISA and leaf bioassay, we identified two transgenic maize lines, VICGG-15 and VICGG-20, that exhibited high insecticidal activity against fall armyworm (FAW; Spodoptera frugiperda) and Asian corn borer (ACB; Ostrinia furnacalis), both of which had high expression of Vip3Aa and Cry1Ab proteins. Subsequent evaluations, including silk, ear, and field bioassays, as well as glyphosate tolerance assessments, indicated that the VICGG-15 plants displayed high resistance to FAW and ACB, and could tolerate up to 3600 g acid equivalent (a.e.) glyphosate per hectare without adversely affecting phenotype or yield. Our finding established that the IGG6-based bicistronic system can achieve high expression of functional proteins in maize, and it is a potential candidate for multi-gene assembly and expression in plants.
Collapse
Affiliation(s)
- Yuxiao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.C.); (W.L.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.Y.); (N.W.); (Y.W.); (Z.L.)
| | - Wenjie Lv
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.C.); (W.L.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.Y.); (N.W.); (Y.W.); (Z.L.)
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.Y.); (N.W.); (Y.W.); (Z.L.)
| | - Ning Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.Y.); (N.W.); (Y.W.); (Z.L.)
| | - Yinxiao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.Y.); (N.W.); (Y.W.); (Z.L.)
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.Y.); (N.W.); (Y.W.); (Z.L.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Wei Xu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.C.); (W.L.)
| | - Shengyan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.Y.); (N.W.); (Y.W.); (Z.L.)
| |
Collapse
|
2
|
Kirschner GK. Making a link: a nucleic acid linker for gene stacking. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1177-1178. [PMID: 39082782 DOI: 10.1111/tpj.16940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
|
3
|
Li XL, Sun Y, Yin Y, Zhan S, Wang C. A bacterial-like Pictet-Spenglerase drives the evolution of fungi to produce β-carboline glycosides together with separate genes. Proc Natl Acad Sci U S A 2023; 120:e2303327120. [PMID: 37467272 PMCID: PMC10372676 DOI: 10.1073/pnas.2303327120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Diverse β-carboline (βC) alkaloids are produced by microbes, plants, and animals with myriad bioactivities and drug potentials. However, the biosynthetic mechanism of βCs remains largely elusive, especially regarding the hydroxyl and glucosyl modifications of βCs. Here, we report the presence of the bacterial-like Pictet-Spenglerase gene Fcs1 in the entomopathogenic Beauveria fungi that can catalyze the biosynthesis of the βC skeleton. The overexpression of Fcs1 in Beauveria bassiana led to the identification of six βC methyl glycosides, termed bassicarbosides (BCSs) A-F. We verified that the cytochrome P450 (CYP) genes adjacent to Fcs1 cannot oxidize βCs. Alternatively, the separated CYP684B2 family gene Fcs2 was identified to catalyze βC hydroxylation together with its cofactor gene Fcs3. The functional homologue of Fcs2 is only present in the Fcs1-containing fungi and highly similar to the Fcs1-connected yet nonfunctional CYP. Both evolved quicker than those from fungi without Fcs1 homologues. Finally, the paired methyl/glucosyl transferase genes were verified to mediate the production of BCSs from hydroxy-βCs. All these functionally verified genes are located on different chromosomes of Beauveria, which is in contrast to the typical content-clustered feature of fungal biosynthetic gene clusters (BGCs). We also found that the production of BCSs selectively contributed to fungal infection of different insect species. Our findings shed light on the biosynthetic mechanism of βC glycosides, including the identification of a βC hydroxylase. The results of this study also propose an evolving process of fungal BGC formation following the horizontal transfer of a bacterial gene to fungi.
Collapse
Affiliation(s)
- Xin-Lin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanlei Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Yin
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
- School of Life Science and Technology,Shanghai Tech University, Shanghai201210, China
| |
Collapse
|
4
|
Yue Q, Meng J, Qiu Y, Yin M, Zhang L, Zhou W, An Z, Liu Z, Yuan Q, Sun W, Li C, Zhao H, Molnár I, Xu Y, Shi S. A polycistronic system for multiplexed and precalibrated expression of multigene pathways in fungi. Nat Commun 2023; 14:4267. [PMID: 37460548 DOI: 10.1038/s41467-023-40027-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/09/2023] [Indexed: 07/20/2023] Open
Abstract
Synthetic biology requires efficient systems that support the well-coordinated co-expression of multiple genes. Here, we discover a 9-bp nucleotide sequence that enables efficient polycistronic gene expression in yeasts and filamentous fungi. Coupling polycistronic expression to multiplexed, markerless, CRISPR/Cas9-based genome editing, we develop a strategy termed HACKing (Highly efficient and Accessible system by CracKing genes into the genome) for the assembly of multigene pathways. HACKing allows the expression level of each enzyme to be precalibrated by linking their translation to those of host proteins with predetermined abundances under the desired fermentation conditions. We validate HACKing by rapidly constructing highly efficient Saccharomyces cerevisiae cell factories that express 13 biosynthetic genes, and produce model endogenous (1,090.41 ± 80.92 mg L-1 squalene) or heterologous (1.04 ± 0.02 mg L-1 mogrol) terpenoid products. Thus, HACKing addresses the need of synthetic biology for predictability, simplicity, scalability, and speed upon fungal pathway engineering for valuable metabolites.
Collapse
Affiliation(s)
- Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yue Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Miaomiao Yin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiping Zhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang An
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, USA
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - István Molnár
- VTT Technical Research Centre of Finland, Espoo, Finland.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
5
|
Genomic and AntiSMASH Analyses of Marine-Sponge-Derived Strain Aspergillus niger L14 Unveiling Its Vast Potential of Secondary Metabolites Biosynthesis. J Fungi (Basel) 2022; 8:jof8060591. [PMID: 35736074 PMCID: PMC9224809 DOI: 10.3390/jof8060591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Aspergillus niger is one of the most important sources of secondary metabolites (SMs), with a wide array of pharmacological effects, including anti-inflammatory, antitumor, immunomodulatory and antioxidant effects. However, the biosynthetic analysis of these bioactive components has been rarely reported owing to the lack of high-quality genome sequences and comprehensive analysis. In this study, the whole genome of one marine-sponge-derived strain A. niger L14 was sequenced and assembled as well as in-depth bioinformatic analysis. The results indicated that the sequence assembly of strain L14 generated one high-quality genome with a total size of 36.1 Mb, a G + C content of 45.3% and an N50 scaffold of 4.2 Mb. Gene annotation was extensively deployed using various BLAST databases, including non-redudant (Nr) protein sequence, nucleotide (Nt) sequence, Swiss-Prot, Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) as well as Pathogen Host Interactions (PHI) and Carbohydrate-active enzymes (CAZy) databases. AntiSMASH analysis revealed that this marine strain harbors a total of 69 SMs biosynthesis gene clusters (BGCs), including 17 PKSs, 18 NRPSs, 21 NRPS-likes, 9 terpenes, 2 indoles, 1 betalactone and 1 siderophore, suggesting its biosynthetic potential to produce a wide variety of SMs. These findings will assist in future investigations on the genetic basis of strain L14 and provide insights into its new bioactive SMs for new drug discovery.
Collapse
|
6
|
Lee S, Yu JS, Lee SR, Kim KH. Non-peptide secondary metabolites from poisonous mushrooms: overview of chemistry, bioactivity, and biosynthesis. Nat Prod Rep 2022; 39:512-559. [PMID: 34608478 DOI: 10.1039/d1np00049g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: up to June 2021A wide variety of mushrooms have traditionally been recognized as edible fungi with high nutritional value and low calories, and abundantly produce structurally diverse and bioactive secondary metabolites. However, accidental ingestion of poisonous mushrooms can result in serious illnesses and even death. Chemically, mushroom poisoning is associated with secondary metabolites produced in poisonous mushrooms, causing specific toxicity. However, many poisonous mushrooms have not been fully investigated for their secondary metabolites, and the secondary metabolites of poisonous mushrooms have not been systematically summarized for details such as chemical composition and biosynthetic mechanisms. The isolation and identification of secondary metabolites from poisonous mushrooms have great research value since these compounds could be lethal toxins that contribute to the toxicity of mushrooms or could provide lead compounds with remarkable biological activities that can promote advances in other related disciplines, such as biochemistry and pharmacology. In this review, we summarize the structures and biological activities of secondary metabolites identified from poisonous mushrooms and provide an overview of the current information on these metabolites, focusing on their chemistry, bioactivity, and biosynthesis.
Collapse
Affiliation(s)
- Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. .,Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon 21990, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. .,Department of Chemistry, Princeton University, New Jersey, 08544, USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Mo X, Gulder TAM. Biosynthetic strategies for tetramic acid formation. Nat Prod Rep 2021; 38:1555-1566. [PMID: 33710214 DOI: 10.1039/d0np00099j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Covering: up to the end of 2020Natural products bearing tetramic acid units as part of complex molecular architectures exhibit a broad range of potent biological activities. These compounds thus attract significant interest from both the biosynthetic and synthetic communities. Biosynthetically, most of the tetramic acids are derived from hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries. To date, over 30 biosynthetic gene clusters (BGCs) involved in tetramate formation have been identified, from which different biosynthetic strategies evolved in Nature to assemble this intriguing structural unit were characterized. In this Highlight we focus on the biosynthetic concepts of tetramic acid formation and discuss the molecular mechanism towards selected representatives in detail, providing a systematic overview for the development of strategies for targeted tetramate genome mining and future applications of tetramate-forming biocatalysts for chemo-enzymatic synthesis.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 266109 Qingdao, China. and Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| |
Collapse
|
8
|
Wei TY, Wu YJ, Xie QP, Tang JW, Yu ZT, Yang SB, Chen SX. CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus Glarea lozoyensis and Its Application in Manipulating gloF. ACS Synth Biol 2020; 9:1968-1977. [PMID: 32786921 DOI: 10.1021/acssynbio.9b00491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glarea lozoyensis is an important industrial fungus that produces the pneumocandin B0, which is used for the synthesis of antifungal drug caspofungin. However, because of the limitations and complications of traditional genetic tools, G. lozoyensis strain engineering has been hindered. In this study, we established an efficient CRISPR/Cas9-based gene editing tool in G. lozoyensis SIPI1208. With this method, gene mutagenesis efficiency in the target locus can be up to 80%, which enables the rapid gene knockout. According to the reports, GloF and Ap-HtyE, proline hydroxylases involved in pneumocandin and Echinocandin B biosynthesis, respectively, can catalyze the proline to generate different ratios of trans-3-hydroxy-l-proline to trans-4-hydroxy-l-proline. Heterologous expression of Ap-HtyE in G. lozoyensis decreased the ratio of pneumocandin C0 to (pneumocandin B0 + pneumocandin C0) from 33.5% to 11% without the addition of proline to the fermentation medium. Furthermore, the gloF was replaced by ap-htyE to study the production of pneumocandin C0. However, the gene replacement has been hampered by traditional gene tools since gloF and gloG, two contiguous genes indispensable in the biosynthesis of pneumocandins, are cotranscribed into one mRNA. With the CRISPR/Cas9 strategy, ap-htyE was knocked in and successfully replaced gloF, and results showed that the knock-in strain retained the ability to produce pneumocandin B0, but the production of pneumocandin C0 was abolished. Thus, this strain displayed a competitive advantage in the industrial production of pneumocandin B0. In summary, this study showed that the CRISPR/Cas9-based gene editing tool is efficient for manipulating genes in G. lozoyensis.
Collapse
Affiliation(s)
- Teng-Yun Wei
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Yuan-Jie Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Qiu-Ping Xie
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Jia-Wei Tang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Zhi-Tuo Yu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Song-Bai Yang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Shao-Xin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| |
Collapse
|
9
|
Genetic localization of the orevactaene/epipyrone biosynthetic gene cluster in Epicoccum nigrum. Bioorg Med Chem Lett 2020; 30:127242. [DOI: 10.1016/j.bmcl.2020.127242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
|
10
|
Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep 2020; 37:868-878. [PMID: 31898704 PMCID: PMC7332410 DOI: 10.1039/c9np00045c] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: up to 2019Fungi produce a remarkable diversity of secondary metabolites: small, bioactive molecules not required for growth but which are essential to their ecological interactions with other organisms. Genes that participate in the same secondary metabolic pathway typically reside next to each other in fungal genomes and form biosynthetic gene clusters (BGCs). By synthesizing state-of-the-art knowledge on the evolution of BGCs in fungi, we propose that fungal chemodiversity stems from three molecular evolutionary processes involving BGCs: functional divergence, horizontal transfer, and de novo assembly. We provide examples of how these processes have contributed to the generation of fungal chemodiversity, discuss their relative importance, and outline major, outstanding questions in the field.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
11
|
Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts. Proc Natl Acad Sci U S A 2019; 116:22219-22228. [PMID: 31611373 DOI: 10.1073/pnas.1909844116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Horizontal acquisition of bacterial genes is presently recognized as an important contribution to the adaptation and evolution of eukaryotic genomes. However, the mechanisms underlying expression and consequent selection and fixation of the prokaryotic genes in the new eukaryotic setting are largely unknown. Here we show that genes composing the pathway for the synthesis of the essential vitamin B1 (thiamine) were lost in an ancestor of a yeast lineage, the Wickerhamiella/Starmerella (W/S) clade, known to harbor an unusually large number of genes of alien origin. The thiamine pathway was subsequently reassembled, at least twice, by multiple HGT events from different bacterial donors involving both single genes and entire operons. In the W/S-clade species Starmerella bombicola we obtained direct genetic evidence that all bacterial genes of the thiamine pathway are functional. The reconstructed pathway is composed by yeast and bacterial genes operating coordinately to scavenge thiamine derivatives from the environment. The adaptation of the newly acquired operons to the eukaryotic setting involved a repertoire of mechanisms until now only sparsely documented, namely longer intergenic regions, post-horizontal gene transfer (HGT) gene fusions fostering coordinated expression, gene relocation, and possibly recombination generating mosaic genes. The results provide additional evidence that HGT occurred recurrently in this yeast lineage and was crucial for the reestablishment of lost functions and that similar mechanisms are used across a broad range of eukaryotic microbes to promote adaptation of prokaryotic genes to their new environment.
Collapse
|
12
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
13
|
Abstract
In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom; .,Current affiliation: Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London SW7 2AZ, United Kingdom; .,Institute for Integrative Biology of the Cell, 91190 Gif-sur-Yvette, France
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
14
|
Cys 2His 2 Zinc Finger Transcription Factor BcabaR1 Positively Regulates Abscisic Acid Production in Botrytis cinerea. Appl Environ Microbiol 2018; 84:AEM.00920-18. [PMID: 29959241 DOI: 10.1128/aem.00920-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023] Open
Abstract
Abscisic acid (ABA) is one of the five classical phytohormones involved in increasing the tolerance of plants for various kinds of stresses caused by abiotic or biotic factors, and it also plays important roles in regulating the activation of innate immune cells and glucose homeostasis in mammals. For these reasons, as a "stress hormone," ABA has recently received attention as a candidate drug for agriculture and biomedical applications, prompting significant development of ABA synthesis. Some plant-pathogenic fungi can synthesize natural ABA. The fungus Botrytis cinerea has been used for biotechnological production of ABA. Identification of the transcription factors (TFs) involved in regulation of ABA biosynthesis in B. cinerea would provide new clues to understand how ABA is synthesized and regulated. In this study, we defined a novel Cys2His2 TF, BcabaR1, that regulates the transcriptional levels of ABA synthase genes (bcaba1, bcaba2, bcaba3, and bcaba4) in an ABA-overproducing mutant, B. cinerea TBC-A. Electrophoretic mobility shift assays revealed that recombinant BcabaR1 can bind specifically to both a 14-nucleotide sequence motif and a 39-nucleotide sequence motif in the promoter region of bcaba1 to -4 genes in vitro A decreased transcriptional level of the bcabaR1 gene in B. cinerea led to significantly decreased ABA production and downregulated transcription of bcaba1 to -4 When bcabaR1 was overexpressed in B. cinerea, ABA production was significantly increased, with upregulated transcription of bcaba1 to -4 Thus, in this study, we found that BcabaR1 acts as a positive regulator of ABA biosynthesis in B. cinereaIMPORTANCE Abscisic acid (ABA) could make a potentially important contribution to theoretical research and applications in agriculture and medicine. Botrytis cinerea is a plant-pathogenic fungus that was found to produce ABA. There has been a view that ABA is related to the interaction between pathogenic fungi and plants. Identification of regulatory genes involved in ABA biosynthesis may facilitate an understanding of the underlying molecular mechanisms of ABA biosynthesis and the pathogenesis of B. cinerea Here, we present a positive regulator, BcabaR1, of ABA biosynthesis in B. cinerea that can affect the transcriptional level of the ABA biosynthesis gene cluster, bcaba1 to -4, by directly binding to the conserved sequence elements in the promoter of the bcaba1 to -4 genes. This TF was found to be specifically involved in regulation of ABA biosynthesis. This work provides new clues for finding other ABA biosynthesis genes and improving ABA yield in B. cinerea.
Collapse
|
15
|
Abstract
Metabolic gene clusters (MGCs) have provided some of the earliest glimpses at the biochemical machinery of yeast and filamentous fungi. MGCs encode diverse genetic mechanisms for nutrient acquisition and the synthesis/degradation of essential and adaptive metabolites. Beyond encoding the enzymes performing these discrete anabolic or catabolic processes, MGCs may encode a range of mechanisms that enable their persistence as genetic consortia; these include enzymatic mechanisms to protect their host fungi from their inherent toxicities, and integrated regulatory machinery. This modular, self-contained nature of MGCs contributes to the metabolic and ecological adaptability of fungi. The phylogenetic and ecological patterns of MGC distribution reflect the broad diversity of fungal life cycles and nutritional modes. While the origins of most gene clusters are enigmatic, MGCs are thought to be born into a genome through gene duplication, relocation, or horizontal transfer, and analyzing the death and decay of gene clusters provides clues about the mechanisms selecting for their assembly. Gene clustering may provide inherent fitness advantages through metabolic efficiency and specialization, but experimental evidence for this is currently limited. The identification and characterization of gene clusters will continue to be powerful tools for elucidating fungal metabolism as well as understanding the physiology and ecology of fungi.
Collapse
Affiliation(s)
- Jason C Slot
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
16
|
Sbaraini N, Guedes RLM, Andreis FC, Junges Â, de Morais GL, Vainstein MH, de Vasconcelos ATR, Schrank A. Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model. BMC Genomics 2016; 17:736. [PMID: 27801295 PMCID: PMC5088523 DOI: 10.1186/s12864-016-3067-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs) are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae, we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in M. anisopliae, analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1), a pseurotin-related compound (MaNRPS-PKS2), and a putative helvolic acid (MaTERP1). Results Among 73 BGCs identified in M. anisopliae, 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up-regulated BGCs were not conserved in host-specialist species from the Metarhizium genus, indicating differences in the metabolic strategies employed by generalist and specialist species to overcome and kill their host. These differences in metabolic potential may have been partially shaped by horizontal gene transfer (HGT) events, as our phylogenetic analysis provided evidence that the putative helvolic acid cluster in Metarhizium spp. originated from an HGT event. Conclusions Several unknown BGCs are described, and aspects of their organization, regulation and origin are discussed, providing further support for the impact of SM on the Metarhizium genus lifestyle and infection process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3067-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolau Sbaraini
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Lucas Muniz Guedes
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Laboratório Nacional de Computação Científica, LNCC, Petrópolis, RJ, Brazil
| | - Fábio Carrer Andreis
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ângela Junges
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Loss de Morais
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Laboratório Nacional de Computação Científica, LNCC, Petrópolis, RJ, Brazil
| | - Marilene Henning Vainstein
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Tereza Ribeiro de Vasconcelos
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil.,Laboratório Nacional de Computação Científica, LNCC, Petrópolis, RJ, Brazil
| | - Augusto Schrank
- Rede Avançada em Biologia Computacional, RABICÓ, Petrópolis, RJ, Brazil. .,Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|