1
|
Quispe-Villegas G, Alcántara-Lozano GI, Cuicapuza D, Laureano R, Ayzanoa B, Tsukayama P, Tamariz J. In vivo evaluation of phage therapy against Klebsiella pneumoniae using the Galleria mellonella model and molecular characterization of a novel Drulisvirus phage species. Microbiol Spectr 2025; 13:e0114524. [PMID: 40202337 PMCID: PMC12053906 DOI: 10.1128/spectrum.01145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae is challenging to treat with conventional antibiotic regimens, posing a threat to healthcare systems. Phage therapy presents a promising alternative treatment strategy; however, characterization of its efficacy and safety is required. Here, we describe the microbiological and molecular characterization of a novel bacteriophage with activity against MDR K. pneumoniae using a greater wax moth (Galleria mellonella) model system. A bacteriophage was isolated from hospital wastewater. Viral kinetics and phage stability were evaluated under varied pH and temperature conditions. The therapeutic efficacy of the phage was evaluated using MDR Klebsiella-infected G. mellonella larvae as an in vivo model. Phage titers and larva survival were compared in phage-treated and control groups. Genomic sequencing (Nanopore and Illumina) was used to classify the bacteriophage and identify any resistance genes or virulence factors present in its genome. Functional characterization demonstrated effective lytic activity, favorable burst size (161 PFU/cell), and an optimal MOI of 0.1. The phage demonstrated stability across a wide range of temperatures (8°C-40°C) and pH levels (4-8). Experiments using the G. mellonella model showed improved larval survival with phage treatment. The novel bacteriophage was identified as a new species within the genus Drulisvirus with no lysogeny-associated, antimicrobial resistance, or virulence genes detected. The new Drulisvirus phage identified is a promising candidate for treatment of infections caused by MDR K. pneumoniae.IMPORTANCEThe study describes a bacteriophage with potential for use in phage therapy against Klebsiella pneumoniae, one of the most clinically significant bacterial pathogens today. Microbiological and genomic characterization of the phage revealed advantageous properties for therapeutic applications, while also identifying a novel species within the Drulisvirus genus. These findings significantly contribute to our understanding of bacteriophage diversity and their utility in combating antibiotic-resistant infections. Moreover, the authors developed an in vivo preclinical model of MDR infection using Galleria mellonella larvae and successfully applied it to study the bacteriophage's therapeutic efficacy. This model offers a robust and efficient platform for preclinical testing.
Collapse
Affiliation(s)
- Gustavo Quispe-Villegas
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriela I. Alcántara-Lozano
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Diego Cuicapuza
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Genómica Microbiana, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Raúl Laureano
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Brenda Ayzanoa
- Laboratorio de Genómica Microbiana, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pablo Tsukayama
- Laboratorio de Genómica Microbiana, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jesús Tamariz
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
2
|
Erdogdu B, Ozbek T. Characterization of Pseudomonas phage MME: a novel tool for combatting multidrug-resistant Pseudomonas aeruginosa and disinfection. J Appl Microbiol 2025; 136:lxaf052. [PMID: 40042974 DOI: 10.1093/jambio/lxaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
AIM Combatting Pseudomonas aeruginosa, known for its robust biofilm formation, presents significant challenges in healthcare, food, and industry. Phages offer promising alternatives against this resilient pathogen. We aim to demonstrate their viability as alternative therapeutic and decontamination options. METHODS AND RESULTS We introduce the lytic activity and decontamination efficacy of Pseudomonas phage MME, isolated from sewage, on solid surfaces, as well as on its biological and genomic characterization. The phage showed lytic activity against both antibiotic-resistant clinical strains and reference strains. About 90% of the phage adsorbed to its host within 20 min, with an average burst size of ∼53 PFU per infected cell. The bactericidal effect on the host at the 8th hour showed a 95% killing efficiency. Additionally, phage MME effectively reduced bacterial loads on glass, plastic, and metal surfaces, simulating hospital environments. Confocal laser scanning microscopy demonstrated the phage's bactericidal activity on glass surfaces at the 8th and 12th hours, preventing biofilm formation. Bioinformatic analysis confirmed that phage MME represents a new species within the Bruynoghevirus genus. Comparative genomic analysis revealed no virulence factors within the phage MME genome. CONCLUSIONS These findings highlight the potent lytic activity of phage MME against P. aeruginosa, underscoring its potential as a valuable tool in combatting this pathogen and its suitability for diverse applications, including as a decontaminating agent.
Collapse
Affiliation(s)
- Berna Erdogdu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Davutapasa Street 34220 Esenler, Istanbul, Turkey
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, Davutapasa Street 34220 Esenler, Istanbul, Turkey
| |
Collapse
|
3
|
Zhao X, Gao Y, Gong Q, Zhang K, Li S. Elucidating the Architectural dynamics of MuB filaments in bacteriophage Mu DNA transposition. Nat Commun 2024; 15:6445. [PMID: 39085263 PMCID: PMC11292022 DOI: 10.1038/s41467-024-50722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
MuB is a non-specific DNA-binding protein and AAA+ ATPase that significantly influences the DNA transposition process of bacteriophage Mu, especially in target DNA selection for transposition. While studies have established the ATP-dependent formation of MuB filament as pivotal to this process, the high-resolution structure of a full-length MuB protomer and the underlying molecular mechanisms governing its oligomerization remain elusive. Here, we use cryo-EM to obtain a 3.4-Å resolution structure of the ATP(+)-DNA(+)-MuB helical filament, which encapsulates the DNA substrate within its axial channel. The structure categorizes MuB within the initiator clade of the AAA+ protein family and precisely locates the ATP and DNA binding sites. Further investigation into the oligomeric states of MuB show the existence of various forms of the filament. These findings lead to a mechanistic model where MuB forms opposite helical filaments along the DNA, exposing potential target sites on the bare DNA and then recruiting MuA, which stimulates MuB's ATPase activity and disrupts the previously formed helical structure. When this happens, MuB generates larger ring structures and dissociates from the DNA.
Collapse
Affiliation(s)
- Xiaolong Zhao
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingguo Gong
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Shi Z, Hong X, Li Z, Zhang M, Zhou J, Zhao Z, Qiu S, Liu G. Characterization of the novel broad-spectrum lytic phage Phage_Pae01 and its antibiofilm efficacy against Pseudomonas aeruginosa. Front Microbiol 2024; 15:1386830. [PMID: 39091310 PMCID: PMC11292732 DOI: 10.3389/fmicb.2024.1386830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is present throughout nature and is a common opportunistic pathogen in the human body. Carbapenem antibiotics are typically utilized as a last resort in the clinical treatment of multidrug-resistant infections caused by P. aeruginosa. The increase in carbapenem-resistant P. aeruginosa poses an immense challenge for the treatment of these infections. Bacteriophages have the potential to be used as antimicrobial agents for treating antibiotic-resistant bacteria. Methods and Results In this study, a new virulent P. aeruginosa phage, Phage_Pae01, was isolated from hospital sewage and shown to have broad-spectrum antibacterial activity against clinical P. aeruginosa isolates (83.6%). These clinical strains included multidrug-resistant P. aeruginosa and carbapenem-resistant P. aeruginosa. Transmission electron microscopy revealed that the phage possessed an icosahedral head of approximately 80 nm and a long tail about 110 m, indicating that it belongs to the Myoviridae family of the order Caudovirales. Biological characteristic analysis revealed that Phage_Pae01 could maintain stable activity in the temperature range of 4~ 60°C and pH range of 4 ~ 10. According to the in vitro lysis kinetics of the phage, Phage_Pae01 demonstrated strong antibacterial activity. The optimal multiplicity of infection was 0.01. The genome of Phage_Pae01 has a total length of 93,182 bp and contains 176 open reading frames (ORFs). The phage genome does not contain genes related to virulence or antibiotic resistance. In addition, Phage_Pae01 effectively prevented the formation of biofilms and eliminated established biofilms. When Phage_Pae01 was combined with gentamicin, it significantly disrupted established P. aeruginosa biofilms. Conclusion We identified a novel P. aeruginosa phage and demonstrated its effective antimicrobial properties against P. aeruginosa in both the floating and biofilm states. These findings offer a promising approach for the treatment of drug-resistant bacterial infections in clinical settings.
Collapse
Affiliation(s)
- Zhixin Shi
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- National Key Clinical Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zexuan Li
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Meijuan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhe Zhao
- College of Oceanography, Hohai University, Nanjing, China
| | - Shengfeng Qiu
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Genyan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
- National Key Clinical Department of Laboratory Medicine, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Thöneböhn S, Fischer D, Kreiling V, Kemmler A, Oberheim I, Hager F, Schmid NE, Thormann KM. Identifying components of the Shewanella phage LambdaSo lysis system. J Bacteriol 2024; 206:e0002224. [PMID: 38771038 PMCID: PMC11332162 DOI: 10.1128/jb.00022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Phage-induced lysis of Gram-negative bacterial hosts usually requires a set of phage lysis proteins, a holin, an endopeptidase, and a spanin system, to disrupt each of the three cell envelope layers. Genome annotations and previous studies identified a gene region in the Shewanella oneidensis prophage LambdaSo, which comprises potential holin- and endolysin-encoding genes but lacks an obvious spanin system. By a combination of candidate approaches, mutant screening, characterization, and microscopy, we found that LambdaSo uses a pinholin/signal-anchor-release (SAR) endolysin system to induce proton leakage and degradation of the cell wall. Between the corresponding genes, we found that two extensively nested open-reading frames encode a two-component spanin module Rz/Rz1. Unexpectedly, we identified another factor strictly required for LambdaSo-induced cell lysis, the phage protein Lcc6. Lcc6 is a transmembrane protein of 65 amino acid residues with hitherto unknown function, which acts at the level of holin in the cytoplasmic membrane to allow endolysin release. Thus, LambdaSo-mediated cell lysis requires at least four protein factors (pinholin, SAR endolysin, spanin, and Lcc6). The findings further extend the known repertoire of phage proteins involved in host lysis and phage egress. IMPORTANCE Lysis of bacteria can have multiple consequences, such as the release of host DNA to foster robust biofilm. Phage-induced lysis of Gram-negative cells requires the disruption of three layers, the outer and inner membranes and the cell wall. In most cases, the lysis systems of phages infecting Gram-negative cells comprise holins to disrupt or depolarize the membrane, thereby releasing or activating endolysins, which then degrade the cell wall. This, in turn, allows the spanins to become active and fuse outer and inner membranes, completing cell envelope disruption and allowing phage egress. Here, we show that the presence of these three components may not be sufficient to allow cell lysis, implicating that also in known phages, further factors may be required.
Collapse
Affiliation(s)
- Svenja Thöneböhn
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Dorian Fischer
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Vanessa Kreiling
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Alina Kemmler
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Isabella Oberheim
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Fabian Hager
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Nicole E. Schmid
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Kai M. Thormann
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
6
|
Yang L, Yu P, Wang J, Zhao T, Zhao Y, Pan Y, Chen L. Genomic and Transcriptomic Analyses Reveal Multiple Strategies for Vibrio parahaemolyticus to Tolerate Sub-Lethal Concentrations of Three Antibiotics. Foods 2024; 13:1674. [PMID: 38890902 PMCID: PMC11171697 DOI: 10.3390/foods13111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Vibrio parahaemolyticus can cause acute gastroenteritis, wound infections, and septicemia in humans. The overuse of antibiotics in aquaculture may lead to a high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution of V. parahaemolyticus in aquatic animals and the mechanism of its antibiotic tolerance remain to be further deciphered. Here, we investigated the molecular basis of the antibiotic tolerance of V. parahaemolyticus isolates (n = 3) originated from shellfish and crustaceans using comparative genomic and transcriptomic analyses. The genome sequences of the V. parahaemolyticus isolates were determined (5.0-5.3 Mb), and they contained 4709-5610 predicted protein-encoding genes, of which 823-1099 genes were of unknown functions. Comparative genomic analyses revealed a number of mobile genetic elements (MGEs, n = 69), antibiotic resistance-related genes (n = 7-9), and heavy metal tolerance-related genes (n = 2-4). The V. parahaemolyticus isolates were resistant to sub-lethal concentrations (sub-LCs) of ampicillin (AMP, 512 μg/mL), kanamycin (KAN, 64 μg/mL), and streptomycin (STR, 16 μg/mL) (p < 0.05). Comparative transcriptomic analyses revealed that there were significantly altered metabolic pathways elicited by the sub-LCs of the antibiotics (p < 0.05), suggesting the existence of multiple strategies for antibiotic tolerance in V. parahaemolyticus. The results of this study enriched the V. parahaemolyticus genome database and should be useful for controlling the MDR pathogen worldwide.
Collapse
Affiliation(s)
- Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juanjuan Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taixia Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Yong Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
7
|
Wang H, Zheng K, Wang M, Ma K, Ren L, Guo R, Ma L, Zhang H, Liu Y, Xiong Y, Wu M, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Liang Y. Shewanella phage encoding a putative anti-CRISPR-like gene represents a novel potential viral family. Microbiol Spectr 2024; 12:e0336723. [PMID: 38214523 PMCID: PMC10846135 DOI: 10.1128/spectrum.03367-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.
Collapse
Affiliation(s)
- Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keran Ma
- Haide College, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Lina Ma
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yao Xiong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Miaolan Wu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
| |
Collapse
|
8
|
Li P, Shen M, Ma W, Zhou X, Shen J. LysZX4-NCA, a new endolysin with broad-spectrum antibacterial activity for topical treatment. Virus Res 2024; 340:199296. [PMID: 38065302 PMCID: PMC10755502 DOI: 10.1016/j.virusres.2023.199296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/01/2024]
Abstract
The prevalence of multidrug-resistant highly virulent Klebsiella pneumoniae (MDR-hvKP) requires the development of new therapeutic agents. Herein, a novel lytic phage vB_KpnS_ZX4 against MDR-hvKP was discovered in hospital sewage. Phage vB_KpnS_ZX4 had a short latent period (5 min) and a large burst size (230 PFU/cell). It can rapidly reduce the number of bacteria in vitro and improve survival rates of bacteremic mice in vivo from 0 to 80 % with a single injection of 108 PFU. LysZX4, an endolysin derived from vB_KpnS_ZX4, exhibits potent antimicrobial activity in vitro in combination with ethylenediaminetetraacetic acid (EDTA). The antimicrobial activity of LysZX4 was further enhanced by the fusion of KWKLFKI residues from cecropin A (LysZX4-NCA). In vitro antibacterial experiments showed that LysZX4-NCA exerts broad-spectrum antibacterial activity against clinical Gram-negative bacteria, including MDR-hvKP. Moreover, in the mouse model of MDR-hvKP skin infection, treatment with LysZX4-NCA resulted in a three-log reduction in bacterial burden on the skin compared to the control group. Therefore, the novel phages vB_KpnS_ZX4 and LysZX4-NCA are effective reagents for the treatment of systemic and local MDR-hvKP infections.
Collapse
Affiliation(s)
- Ping Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Wenjie Ma
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| | - Jiayin Shen
- The Third People's Hospital of Shenzhen, Shenzhen 518112, PR China.
| |
Collapse
|
9
|
Liu Z, Tang K, Zhou Y, Liu T, Guo Y, Wu D, Wang X. Active prophages in coral-associated Halomonas capable of lateral transduction. THE ISME JOURNAL 2024; 18:wrae085. [PMID: 38739683 PMCID: PMC11131426 DOI: 10.1093/ismejo/wrae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Temperate phages can interact with bacterial hosts through lytic and lysogenic cycles via different mechanisms. Lysogeny has been identified as the major form of bacteria-phage interaction in the coral-associated microbiome. However, the lysogenic-to-lytic switch of temperate phages in ecologically important coral-associated bacteria and its ecological impact have not been extensively investigated. By studying the prophages in coral-associated Halomonas meridiana, we found that two prophages, Phm1 and Phm3, are inducible by the DNA-damaging agent mitomycin C and that Phm3 is spontaneously activated under normal cultivation conditions. Furthermore, Phm3 undergoes an atypical lytic pathway that can amplify and package adjacent host DNA, potentially resulting in lateral transduction. The induction of Phm3 triggered a process of cell lysis accompanied by the formation of outer membrane vesicles (OMVs) and Phm3 attached to OMVs. This unique cell-lysis process was controlled by a four-gene lytic module within Phm3. Further analysis of the Tara Ocean dataset revealed that Phm3 represents a new group of temperate phages that are widely distributed and transcriptionally active in the ocean. Therefore, the combination of lateral transduction mediated by temperate phages and OMV transmission offers a versatile strategy for host-phage coevolution in marine ecosystems.
Collapse
Affiliation(s)
- Ziyao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Duoting Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, No.1, Yanqihu East Road, Huairou District, Beijing 101408, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
10
|
Fei B, Li D, Liu X, You X, Guo M, Ren Y, Liu Y, Wang C, Zhu R, Li Y. Characterization and genomic analysis of a broad-spectrum lytic phage HZ2201 and its antibiofilm efficacy against Pseudomonas aeruginosa. Virus Res 2023; 335:199184. [PMID: 37532140 PMCID: PMC10407953 DOI: 10.1016/j.virusres.2023.199184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Pseudomonas aeruginosa is a clinically common conditionally pathogenic bacterium, and the abuse of antibiotics has exacerbated its drug resistance in recent years. This has resulted in extensive reports about the usage of Pseudomonas aeruginosa phage as a novel antibacterial drug. In this study, we isolated a novel phage HZ2201 with a broad lytic spectrum. The lytic rate of this phage against Pseudomonas aeruginosa reached 78.38% (29/37), including 25 multi-drug- and carbapenem-resistant Pseudomonas aeruginosa strains. Transmission electron microscopy revealed that phage HZ2201 belongs to the class Caudoviricetes. Biological characterization showed that phage HZ2201 had an latent period of 40 min, a lytic period of 20 min, and a burst size of 440 PFU/cell, with improved tolerance to temperature and pH. Considering genomic analysis, the HZ2201 genome was a circular double-stranded DNA with a size of 45,431 bp and a guanine-cytosine (G + C) content of 52.16%, and contained 3 tRNAs. 27 of the 74 open reading frames (ORFs) annotated by the Rapid Annotation using Subsystem Technology (RAST) tool could be matched to the genomes of known functions, and no genes related to virulence and antibiotic resistance were found. The phylogenetic tree suggests that phage HZ2201 is highly related to the phage ZCPS1 and PaP3, and ORF57 and ORF17 are predicted to encode a holin and an endolysin, respectively. Cell lysis by HZ2201 proceeds through the holin-endolysin system, suggesting that it is a novel phage. Additionally, we demonstrated that phage HZ2201 has a high inhibitory capacity against Pseudomonas aeruginosa biofilms. The results of our study suggest that phage HZ2201 is a novel potential antimicrobial agent for treating drug-resistant Pseudomonas aeruginosa infection.
Collapse
Affiliation(s)
- Bing Fei
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Dengzhou Li
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China; Henan Provincial Key Laboratory of Antibiotics-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China
| | - Xinwei Liu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaojuan You
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Mengyu Guo
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Yanying Ren
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Ying Liu
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Chunxia Wang
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China; Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Rui Zhu
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China; The Key Laboratory of Pathogenic Microbes &Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China; Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China; Henan Provincial Key Laboratory of Antibiotics-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China.
| | - Yongwei Li
- The Second Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
11
|
Vázquez R, Briers Y. What's in a Name? An Overview of the Proliferating Nomenclature in the Field of Phage Lysins. Cells 2023; 12:2016. [PMID: 37566095 PMCID: PMC10417350 DOI: 10.3390/cells12152016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
In the last few years, the volume of research produced on phage lysins has grown spectacularly due to the interest in using them as alternative antimicrobials. As a result, a plethora of naming customs has sprouted among the different research groups devoted to them. While the naming diversity accounts for the vitality of the topic, on too many occasions it also creates some confusion and lack of comparability between different works. This article aims at clarifying the ambiguities found among names referring to phage lysins. We do so by tackling the naming customs historically, framing their original adoption, and employing a semantic classification to facilitate their discussion. We propose a periodization of phage lysin research that begins at the discovery era, in the early 20th century, enriches with a strong molecular biology period, and grows into a current time of markedly applied research. During these different periods, names referring to the general concepts surrounding lysins have been created and adopted, as well as other more specific terms related to their structure and function or, finally, names that have been coined for the antimicrobial application and engineering of phage lysins. Thus, this article means to serve as an invitation to the global lysin community to take action and discuss a widely supported, standardized nomenclature.
Collapse
Affiliation(s)
- Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|