1
|
Lopez AE, Mayoral J, Zheng H, Cianciotto NP. Legionella pneumophila IrsA, a novel, iron-regulated exoprotein that facilitates growth in low-iron conditions and modulates biofilm formation. Microbiol Spectr 2025; 13:e0231324. [PMID: 39612475 PMCID: PMC11705809 DOI: 10.1128/spectrum.02313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
To discover new factors that are involved in iron acquisition by Legionella pneumophila, we used RNA-Seq to identify the genes that are most highly induced when virulent strain 130b is cultured in a low-iron chemically defined medium. Among other things, this revealed 14915, a heretofore uncharacterized gene that is predicted to be transcriptionally regulated by Fur and to encode a novel, ~15 kDa protein. 14915 was present in all L. pneumophila strains examined and had homologs in a subset of the other Legionella species. Compatible with it containing a classic signal sequence, the 14915 protein was detected in bacterial culture supernatants in a manner dependent upon the L. pneumophila type II secretion system. Thus, we designated 14915 as IrsA for iron-regulated, secreted protein A. Based on mutant analysis, the irsA gene was not required for optimal growth of strain 130b in low-iron media. However, after discovering that the commonly used laboratory-derived strain Lp02 has a much greater requirement for iron, we uncovered a growth-enhancing role for IrsA after examining an Lp02 mutant that lacked both IrsA and the Fe2+-transporter FeoB. The irsA mutant of 130b, but not its complemented derivative, did, however, display increased biofilm formation on both plastic and agar surfaces, and compatible with this, the mutant hyper-aggregated. Thus, IrsA is a novel, iron-regulated exoprotein that modulates biofilm formation and, under some circumstances, promotes growth in low-iron conditions. For this study, we determined and deposited in the database a complete and fully assembled genome sequence for strain 130b.IMPORTANCEThe bacterium Legionella pneumophila is the principal cause of Legionnaires' disease, a potentially fatal form of pneumonia that is increasing in incidence. L. pneumophila exists in many natural and human-made water systems and can be transmitted to humans through inhalation of contaminated water droplets. L. pneumophila flourishes within its habitats by spreading planktonically, assembling into biofilms, and growing in larger host cells. Iron acquisition is a key determinant for L. pneumophila persistence in water and during infection. We previously demonstrated that L. pneumophila assimilates iron both by secreting a non-protein iron chelator (siderophore) and by importing iron through membrane transporters. In this study, we uncovered a novel, secreted protein that is highly iron-regulated, promotes L. pneumophila's growth in low-iron media, and impacts biofilm formation. We also identified uncharacterized, IrsA-related proteins in other important human and animal pathogens. Thus, our results have important implications for understanding iron assimilation, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Joshua Mayoral
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
2
|
Rehman S, Antonovic AK, McIntire IE, Zheng H, Cleaver L, Baczynska M, Adams CO, Portlock T, Richardson K, Shaw R, Oregioni A, Mastroianni G, Whittaker SBM, Kelly G, Lorenz CD, Fornili A, Cianciotto NP, Garnett JA. The Legionella collagen-like protein employs a distinct binding mechanism for the recognition of host glycosaminoglycans. Nat Commun 2024; 15:4912. [PMID: 38851738 PMCID: PMC11162425 DOI: 10.1038/s41467-024-49255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual trimer arrangement with a positively charged external surface and negatively charged solvent exposed internal cavity. Through molecular dynamics simulations, we show how the glycosaminoglycan chondroitin-4-sulphate associates with the Lcl-CTD surface via distinct binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate-binding mechanism.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Anna Katarina Antonovic
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ian E McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Maria Baczynska
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- Biological Physics & Soft Matter Research Group, Department of Physics, King's College London, London, UK
| | - Carlton O Adams
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Theo Portlock
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Katherine Richardson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rosie Shaw
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Alain Oregioni
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Giulia Mastroianni
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Sara B-M Whittaker
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Christian D Lorenz
- Biological Physics & Soft Matter Research Group, Department of Physics, King's College London, London, UK
| | - Arianna Fornili
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, UK.
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
3
|
Graham CI, MacMartin TL, de Kievit TR, Brassinga AKC. Molecular regulation of virulence in Legionella pneumophila. Mol Microbiol 2024; 121:167-195. [PMID: 37908155 DOI: 10.1111/mmi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023]
Abstract
Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Rehman S, Antonovic AK, McIntire IE, Zheng H, Cleaver L, Adams CO, Portlock T, Richardson K, Shaw R, Oregioni A, Mastroianni G, Whittaker SBM, Kelly G, Fornili A, Cianciotto NP, Garnett JA. The Legionella collagen-like protein employs a unique binding mechanism for the recognition of host glycosaminoglycans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570962. [PMID: 38106198 PMCID: PMC10723406 DOI: 10.1101/2023.12.10.570962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans (GAGs) on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual dynamic trimer arrangement with a positively charged external surface and a negatively charged solvent exposed internal cavity. Through Molecular Dynamics (MD) simulations, we show how the GAG chondroitin-4-sulphate associates with the Lcl-CTD surface via unique binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate binding mechanism.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Anna K. Antonovic
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ian E. McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Carlton O. Adams
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Theo Portlock
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Katherine Richardson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rosie Shaw
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Alain Oregioni
- The Medical Research Council Biomedical NMR Centre, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giulia Mastroianni
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Sara B-M. Whittaker
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Arianna Fornili
- School of Physical and Chemical Sciences, Queen Mary University of London, London, UK
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, UK
| |
Collapse
|
5
|
Wilkins AA, Schwarz B, Torres-Escobar A, Castore R, Landry L, Latimer B, Bohrnsen E, Bosio CM, Dragoi AM, Ivanov SS. The intracellular growth of the vacuolar pathogen Legionella pneumophila is dependent on the acyl chain composition of host membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567753. [PMID: 38045297 PMCID: PMC10690232 DOI: 10.1101/2023.11.19.567753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.
Collapse
|
6
|
Abstract
It has been widely appreciated that numerous bacterial species express chitinases for the purpose of degrading environmental chitin. However, chitinases and chitin-binding proteins are also expressed by pathogenic bacterial species during infection even though mammals do not produce chitin. Alternative molecular targets are therefore likely present within the host. Here, we will describe our current understanding of chitinase/chitin-binding proteins as virulence factors that promote bacterial colonization and infection. The targets of these chitinases in the host have been shown to include immune system components, mucins, and surface glycans. Bacterial chitinases have also been shown to interact with other microorganisms, targeting the peptidoglycan or chitin in the bacterial and fungal cell wall, respectively. This review highlights that even though the name "chitinase" implies activity toward chitin, chitinases can have a wide diversity of targets, including ones relevant to host infection. Chitinases may therefore be useful as a target of future anti-infective therapeutics.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Scheithauer L, Karagöz MS, Mayer BE, Steinert M. Protein sociology of ProA, Mip and other secreted virulence factors at the Legionella pneumophila surface. Front Cell Infect Microbiol 2023; 13:1140688. [PMID: 36936764 PMCID: PMC10017501 DOI: 10.3389/fcimb.2023.1140688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The pathogenicity of L. pneumophila, the causative agent of Legionnaires' disease, depends on an arsenal of interacting proteins. Here we describe how surface-associated and secreted virulence factors of this pathogen interact with each other or target extra- and intracellular host proteins resulting in host cell manipulation and tissue colonization. Since progress of computational methods like AlphaFold, molecular dynamics simulation, and docking allows to predict, analyze and evaluate experimental proteomic and interactomic data, we describe how the combination of these approaches generated new insights into the multifaceted "protein sociology" of the zinc metalloprotease ProA and the peptidyl-prolyl cis/trans isomerase Mip (macrophage infectivity potentiator). Both virulence factors of L. pneumophila interact with numerous proteins including bacterial flagellin (FlaA) and host collagen, and play important roles in virulence regulation, host tissue degradation and immune evasion. The recent progress in protein-ligand analyses of virulence factors suggests that machine learning will also have a beneficial impact in early stages of drug discovery.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mustafa Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Benjamin E. Mayer
- Computational Biology & Simulation, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Michael Steinert,
| |
Collapse
|
8
|
Scheithauer L, Thiem S, Ünal CM, Dellmann A, Steinert M. Zinc Metalloprotease ProA from Legionella pneumophila Inhibits the Pro-Inflammatory Host Response by Degradation of Bacterial Flagellin. Biomolecules 2022; 12:624. [PMID: 35625552 PMCID: PMC9138289 DOI: 10.3390/biom12050624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
The environmental bacterium Legionella pneumophila is an intracellular pathogen of various protozoan hosts and able to cause Legionnaires' disease, a severe pneumonia in humans. By encoding a wide selection of virulence factors, the infectious agent possesses several strategies to manipulate its host cells and evade immune detection. In the present study, we demonstrate that the L. pneumophila zinc metalloprotease ProA functions as a modulator of flagellin-mediated TLR5 stimulation and subsequent activation of the pro-inflammatory NF-κB pathway. We found ProA to be capable of directly degrading immunogenic FlaA monomers but not the polymeric form of bacterial flagella. These results indicate a role of the protease in antagonizing immune stimulation, which was further substantiated in HEK-BlueTM hTLR5 Detection assays. Addition of purified proteins, bacterial suspensions of L. pneumophila mutant strains as well as supernatants of human lung tissue explant infection to this reporter cell line demonstrated that ProA specifically decreases the TLR5 response via FlaA degradation. Conclusively, the zinc metalloprotease ProA serves as a powerful regulator of exogenous flagellin and presumably creates an important advantage for L. pneumophila proliferation in mammalian hosts by promoting immune evasion.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (L.S.); (S.T.); (C.M.Ü.)
| | - Stefanie Thiem
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (L.S.); (S.T.); (C.M.Ü.)
| | - Can M. Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (L.S.); (S.T.); (C.M.Ü.)
| | - Ansgar Dellmann
- Institut für Pathologie, Städtisches Klinikum Braunschweig, Celler Straße 38, 38114 Braunschweig, Germany;
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany; (L.S.); (S.T.); (C.M.Ü.)
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
9
|
Budowa i znaczenie II systemu sekrecji białek w ekologii i patogenezie Legionella pneumophila. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pałeczki Legionella pneumophila pasożytują w komórkach odległych filogenetycznie gospodarzy, w środowisku wodnym w pierwotniakach, a w organizmie człowieka w makrofagach alweolarnych. Zdolność tych bakterii do wewnątrzkomórkowego namnażania się w komórkach fagocytujących, wyspecjalizowanych do niszczenia mikroorganizmów, ma podstawowe znaczenie dla rozwoju nietypowego zapalenia płuc zwanego chorobą legionistów. Umiejscowione na kilku różnych loci chromosomu bakteryjnego geny II systemu sekrecji L. pneumophila kodują co najmniej 25 białek, w tym enzymy o aktywności lipolitycznej, proteolitycznej, rybonukleazy oraz białka unikalne bakterii Legionella. W środowisku naturalnym T2SS L. pneumophila odgrywa decydującą rolę w ekologii tych drobnoustrojów determinując ich zdolność do przeżycia zarówno w postaci planktonicznej, jak i w strukturach biofilmu w słodkowodnych zbiornikach o niskiej temperaturze. Białka T2SS umożliwiają L. pneumophila zakażenie różnych gatunków pierwotniaków, a substraty tego systemu określają zakres pierwotniaczego gospodarza. Namnażanie się bakterii w różnorodnych pierwotniakach przyczynia się do ich rozsiewania oraz transmisji do antropogenicznych źródeł. Białka wydzielane za pomocą II systemu sekrecji determinują również zdolność L. pneumophila do zakażania mysich makrofagów alweolarnych i szpiku kostnego, ludzkich makrofagów linii U937 i THP-1 oraz komórek nabłonkowych pęcherzyków płucnych. Enzymy wydzielane za pomocą tego systemu, takie jak: proteazy, aminopeptydazy czy fosfolipazy umożliwiają pozyskanie substancji pokarmowych oraz powodują destrukcję tkanki płucnej myszy. W organizmie człowieka białka T2SS przyczyniają się do osłabienia wrodzonej odpowiedzi immunologicznej na zakażenie L. pneumophila przez hamowanie indukcji prozapalnych cytokin (IL-6, TNF-α, IL-1 oraz IL-8).
Collapse
|
10
|
Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens. Toxins (Basel) 2021; 13:toxins13080526. [PMID: 34437397 PMCID: PMC8402458 DOI: 10.3390/toxins13080526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/28/2022] Open
Abstract
Numerous microorganisms, pathogenic for mammals, come from the environment where they encounter predators such as free-living amoebae (FLA). The selective pressure due to this interaction could have generated virulence traits that are deleterious for amoebae and represents a weapon against mammals. Toxins are one of these powerful tools that are essential for bacteria or fungi to survive. Which amoebae are used as a model to study the effects of toxins? What amoeba functions have been reported to be disrupted by toxins and bacterial secreted factors? Do bacteria and fungi effectors affect eukaryotic cells similarly? Here, we review some studies allowing to answer these questions, highlighting the necessity to extend investigations of microbial pathogenicity, from mammals to the environmental reservoir that are amoebae.
Collapse
|
11
|
Chauhan D, Shames SR. Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence 2021; 12:1122-1144. [PMID: 33843434 PMCID: PMC8043192 DOI: 10.1080/21505594.2021.1903199] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteria of the genus Legionella are natural pathogens of amoebae that can cause a severe pneumonia in humans called Legionnaires’ Disease. Human disease results from inhalation of Legionella-contaminated aerosols and subsequent bacterial replication within alveolar macrophages. Legionella pathogenicity in humans has resulted from extensive co-evolution with diverse genera of amoebae. To replicate intracellularly, Legionella generates a replication-permissive compartment called the Legionella-containing vacuole (LCV) through the concerted action of hundreds of Dot/Icm-translocated effector proteins. In this review, we present a collective overview of Legionella pathogenicity including infection mechanisms, secretion systems, and translocated effector function. We also discuss innate and adaptive immune responses to L. pneumophila, the implications of Legionella genome diversity and future avenues for the field.
Collapse
Affiliation(s)
- Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
12
|
Scheithauer L, Thiem S, Schmelz S, Dellmann A, Büssow K, Brouwer RMHJ, Ünal CM, Blankenfeldt W, Steinert M. Zinc metalloprotease ProA of Legionella pneumophila increases alveolar septal thickness in human lung tissue explants by collagen IV degradation. Cell Microbiol 2021; 23:e13313. [PMID: 33491325 DOI: 10.1111/cmi.13313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/25/2023]
Abstract
ProA is a secreted zinc metalloprotease of Legionella pneumophila causing lung damage in animal models of Legionnaires' disease. Here we demonstrate that ProA promotes infection of human lung tissue explants (HLTEs) and dissect the contribution to cell type specific replication and extracellular virulence mechanisms. For the first time, we reveal that co-incubation of HLTEs with purified ProA causes a significant increase of the alveolar septal thickness. This destruction of connective tissue fibres was further substantiated by collagen IV degradation assays. The moderate attenuation of a proA-negative mutant in A549 epithelial cells and THP-1 macrophages suggests that effects of ProA in tissue mainly result from extracellular activity. Correspondingly, ProA contributes to dissemination and serum resistance of the pathogen, which further expands the versatile substrate spectrum of this thermolysin-like protease. The crystal structure of ProA at 1.48 Å resolution showed high congruence to pseudolysin of Pseudomonas aeruginosa, but revealed deviations in flexible loops, the substrate binding pocket S1 ' and the repertoire of cofactors, by which ProA can be distinguished from respective homologues. In sum, this work specified virulence features of ProA at different organisational levels by zooming in from histopathological effects in human lung tissue to atomic details of the protease substrate determination.
Collapse
Affiliation(s)
- Lina Scheithauer
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefanie Thiem
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Schmelz
- Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Ansgar Dellmann
- Institut für Pathologie, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Konrad Büssow
- Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - René M H J Brouwer
- Herz-, Thorax-, Gefäßchirurgie, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany.,Institut für Psychologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Can M Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany.,Fen Fakültesi, Turkish-German University, Istanbul, Turkey
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Bianchi F, van den Bogaart G. Vacuolar escape of foodborne bacterial pathogens. J Cell Sci 2020; 134:134/5/jcs247221. [PMID: 32873733 DOI: 10.1242/jcs.247221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intracellular pathogens Listeria monocytogenes, Salmonella enterica, Shigella spp. and Staphylococcus aureus are major causes of foodborne illnesses. Following the ingestion of contaminated food or beverages, pathogens can invade epithelial cells, immune cells and other cell types. Pathogens survive and proliferate intracellularly via two main strategies. First, the pathogens can remain in membrane-bound vacuoles and tailor organellar trafficking to evade host-cell defenses and gain access to nutrients. Second, pathogens can rupture the vacuolar membrane and proliferate within the nutrient-rich cytosol of the host cell. Although this virulence strategy of vacuolar escape is well known for L. monocytogenes and Shigella spp., it has recently become clear that S. aureus and Salmonella spp. also gain access to the cytosol, and that this is important for their survival and growth. In this Review, we discuss the molecular mechanisms of how these intracellular pathogens rupture the vacuolar membrane by secreting a combination of proteins that lyse the membranes or that remodel the lipids of the vacuolar membrane, such as phospholipases. In addition, we also propose that oxidation of the vacuolar membrane also contributes to cytosolic pathogen escape. Understanding these escape mechanisms could aid in the identification of new therapeutic approaches to combat foodborne pathogens.
Collapse
Affiliation(s)
- Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands .,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 9625GA Nijmegen, The Netherlands
| |
Collapse
|
14
|
Portlock TJ, Tyson JY, Dantu SC, Rehman S, White RC, McIntire IE, Sewell L, Richardson K, Shaw R, Pandini A, Cianciotto NP, Garnett JA. Structure, Dynamics and Cellular Insight Into Novel Substrates of the Legionella pneumophila Type II Secretion System. Front Mol Biosci 2020; 7:112. [PMID: 32656228 PMCID: PMC7325957 DOI: 10.3389/fmolb.2020.00112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium that is able to replicate within a broad range of aquatic protozoan hosts. L. pneumophila is also an opportunistic human pathogen that can infect macrophages and epithelia in the lung and lead to Legionnaires’ disease. The type II secretion system is a key virulence factor of L. pneumophila and is used to promote bacterial growth at low temperatures, regulate biofilm formation, modulate host responses to infection, facilitate bacterial penetration of mucin gels and is necessary for intracellular growth during the initial stages of infection. The L. pneumophila type II secretion system exports at least 25 substrates out of the bacterium and several of these, including NttA to NttG, contain unique amino acid sequences that are generally not observed outside of the Legionella genus. NttA, NttC, and NttD are required for infection of several amoebal species but it is unclear what influence other novel substrates have within their host. In this study, we show that NttE is required for optimal infection of Acanthamoeba castellanii and Vermamoeba vermiformis amoeba and is essential for the typical colony morphology of L. pneumophila. In addition, we report the atomic structures of NttA, NttC, and NttE and through a combined biophysical and biochemical hypothesis driven approach we propose novel functions for these substrates during infection. This work lays the foundation for future studies into the mechanistic understanding of novel type II substrate functions and how these relate to L. pneumophila ecology and disease.
Collapse
Affiliation(s)
- Theo J Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Jessica Y Tyson
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sarath C Dantu
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Richard C White
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ian E McIntire
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lee Sewell
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Katherine Richardson
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rosie Shaw
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Alessandro Pandini
- Department of Computer Science, Brunel University London, Uxbridge, United Kingdom
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom.,Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
15
|
Christensen LM, Sule P, Cirillo SLG, Strain M, Plumlee Q, Adams LG, Cirillo JD. Legionnaires' Disease Mortality in Guinea Pigs Involves the p45 Mobile Genomic Element. J Infect Dis 2020; 220:1700-1710. [PMID: 31268152 PMCID: PMC6782102 DOI: 10.1093/infdis/jiz340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Background Legionella can cause Legionnaires’ disease, a potentially fatal form of pneumonia that occurs as sporadic epidemics. Not all strains display the same propensity to cause disease in humans. Because Legionella pneumophila serogroup 1 is responsible for >85% of infections, the majority of studies have examined this serogroup, but there are 3 commonly used laboratory strains: L pneumophila serogroup 1 Philadelphia (Phil-1)-derived strains JR32 and Lp01 and 130b-derived strain AA100. Methods We evaluated the ability of Phil-1, JR32, Lp01, and AA100 to cause disease in guinea pigs. Results We found that, although Phil-1, JR32, and AA100 cause an acute pneumonia and death by 4 days postinfection (100%), strain Lp01 does not cause mortality (0%). We also noted that Lp01 lacks a mobile element, designated p45, whose presence correlates with virulence. Transfer of p45 into Lp01 results in recovery of the ability of this strain to cause mortality, leads to more pronounced disease, and correlates with increased interferon-γ levels in the lungs and spleens before death. Conclusions These observations suggest a mechanism of Legionnaires’ disease pathogenesis due to the presence of type IVA secretion systems that cause higher mortality due to overinduction of a proinflammatory response in the host.
Collapse
Affiliation(s)
- Lanette M Christensen
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Suat L G Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Madison Strain
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| | - Quinci Plumlee
- Department of Veterinary Pathobiology, Texas A&M University, College Station
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan
| |
Collapse
|
16
|
Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, Portlock TJ, Dorgan B, Zanjani ZS, Fornili A, Cianciotto NP, Garnett JA. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog 2020; 16:e1008342. [PMID: 32365117 PMCID: PMC7224574 DOI: 10.1371/journal.ppat.1008342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Chitinases are important enzymes that contribute to the generation of carbon and nitrogen from chitin, a long chain polymer of N-acetylglucosamine that is abundant in insects, fungi, invertebrates and fish. Although mammals do not produce chitin, chitinases have been identified in bacteria that are key virulence factors in severe respiratory, gastrointestinal and urinary diseases. However, it is unclear how these enzymes are able to carry out this dual function. Legionella pneumophila is the causative agent of Legionnaires' disease, an often-fatal pneumonia and its chitinase ChiA is essential for the survival of L. pneumophila in the lung. Here we report the first atomic resolution insight into the pathogenic mechanism of a bacterial chitinase. We derive an experimental model of intact ChiA and show how its N-terminal region targets ChiA to the bacterial surface after its secretion. We provide the first evidence that L. pneumophila can bind mucins on its surface, but this is not dependent on ChiA. This demonstrates that additional peripheral mucin binding proteins are also expressed in L. pneumophila. We also show that the ChiA C-terminal chitinase domain has novel Zn2+-dependent peptidase activity against mammalian mucin-like proteins, namely MUC5AC and the C1-esterase inhibitor, and that ChiA promotes bacterial penetration of mucin gels. Our findings suggest that ChiA can facilitate passage of L. pneumophila through the alveolar mucosa, can modulate the host complement system and that ChiA may be a promising target for vaccine development.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Katherine H. Richardson
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paula Corsini
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard C. White
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rosie Shaw
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Theo J. Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Benjamin Dorgan
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Zeinab S. Zanjani
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Arianna Fornili
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
A MicroRNA Network Controls Legionella pneumophila Replication in Human Macrophages via LGALS8 and MX1. mBio 2020; 11:mBio.03155-19. [PMID: 32209695 PMCID: PMC7157531 DOI: 10.1128/mbio.03155-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cases of Legionella pneumophila pneumonia occur worldwide, with potentially fatal outcome. When causing human disease, Legionella injects a plethora of virulence factors to reprogram macrophages to circumvent immune defense and create a replication niche. By analyzing Legionella-induced changes in miRNA expression and genomewide chromatin modifications in primary human macrophages, we identified a cell-autonomous immune network restricting Legionella growth. This network comprises three miRNAs governing expression of the cytosolic RNA receptor DDX58/RIG-I, the tumor suppressor TP53, the antibacterial effector LGALS8, and MX1, which has been described as an antiviral factor. Our findings for the first time link TP53, LGALS8, DDX58, and MX1 in one miRNA-regulated network and integrate them into a functional node in the defense against L. pneumophila. Legionella pneumophila is an important cause of pneumonia. It invades alveolar macrophages and manipulates the immune response by interfering with signaling pathways and gene transcription to support its own replication. MicroRNAs (miRNAs) are critical posttranscriptional regulators of gene expression and are involved in defense against bacterial infections. Several pathogens have been shown to exploit the host miRNA machinery to their advantage. We therefore hypothesize that macrophage miRNAs exert positive or negative control over Legionella intracellular replication. We found significant regulation of 85 miRNAs in human macrophages upon L. pneumophila infection. Chromatin immunoprecipitation and sequencing revealed concordant changes of histone acetylation at the putative promoters. Interestingly, a trio of miRNAs (miR-125b, miR-221, and miR-579) was found to significantly affect intracellular L. pneumophila replication in a cooperative manner. Using proteome-analysis, we pinpointed this effect to a concerted downregulation of galectin-8 (LGALS8), DExD/H-box helicase 58 (DDX58), tumor protein P53 (TP53), and then MX dynamin-like GTPase 1 (MX1) by the three miRNAs. In summary, our results demonstrate a new miRNA-controlled immune network restricting Legionella replication in human macrophages.
Collapse
|
18
|
Mondino S, Schmidt S, Rolando M, Escoll P, Gomez-Valero L, Buchrieser C. Legionnaires’ Disease: State of the Art Knowledge of Pathogenesis Mechanisms of Legionella. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:439-466. [DOI: 10.1146/annurev-pathmechdis-012419-032742] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Legionella species are environmental gram-negative bacteria able to cause a severe form of pneumonia in humans known as Legionnaires’ disease. Since the identification of Legionella pneumophila in 1977, four decades of research on Legionella biology and Legionnaires’ disease have brought important insights into the biology of the bacteria and the molecular mechanisms that these intracellular pathogens use to cause disease in humans. Nowadays, Legionella species constitute a remarkable model of bacterial adaptation, with a genus genome shaped by their close coevolution with amoebae and an ability to exploit many hosts and signaling pathways through the secretion of a myriad of effector proteins, many of which have a eukaryotic origin. This review aims to discuss current knowledge of Legionella infection mechanisms and future research directions to be taken that might answer the many remaining open questions. This research will without a doubt be a terrific scientific journey worth taking.
Collapse
Affiliation(s)
- Sonia Mondino
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Silke Schmidt
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
- Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Monica Rolando
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Pedro Escoll
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS UMR 3525, 75015 Paris, France;, , , , ,
| |
Collapse
|
19
|
Ghosal D, Kim KW, Zheng H, Kaplan M, Truchan HK, Lopez AE, McIntire IE, Vogel JP, Cianciotto NP, Jensen GJ. In vivo structure of the Legionella type II secretion system by electron cryotomography. Nat Microbiol 2019; 4:2101-2108. [PMID: 31754273 PMCID: PMC6879910 DOI: 10.1038/s41564-019-0603-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
The type II secretion system (T2SS) is a multiprotein envelope-spanning assembly that translocates a wide range of virulence factors, enzymes and effectors through the outer membrane of many Gram-negative bacteria1-3. Here, using electron cryotomography and subtomogram averaging methods, we reveal the in vivo structure of an intact T2SS imaged within the human pathogen Legionella pneumophila. Although the T2SS has only limited sequence and component homology with the evolutionarily related type IV pilus (T4P) system4,5, we show that their overall architectures are remarkably similar. Despite similarities, there are also differences, including, for example, that the T2SS-ATPase complex is usually present but disengaged from the inner membrane, the T2SS has a much longer periplasmic vestibule and it has a short-lived flexible pseudopilus. Placing atomic models of the components into our electron cryotomography map produced a complete architectural model of the intact T2SS that provides insights into the structure and function of its components, its position within the cell envelope and the interactions between its different subcomplexes.
Collapse
Affiliation(s)
- Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ki Woo Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- School of Ecology and Environmental System, Kyungpook National University, Sangju, Korea
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hilary K Truchan
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alberto E Lopez
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ian E McIntire
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, Pasadena, CA, USA.
| |
Collapse
|
20
|
Type II Secretion Promotes Bacterial Growth within the Legionella-Containing Vacuole in Infected Amoebae. Infect Immun 2019; 87:IAI.00374-19. [PMID: 31405960 DOI: 10.1128/iai.00374-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
It was previously determined that the type II secretion system (T2SS) promotes the ability of Legionella pneumophila to grow in coculture with amoebae. Here, we discerned the stage of intracellular infection that is potentiated by comparing the wild-type and T2SS mutant legionellae for their capacity to parasitize Acanthamoeba castellanii Whereas the mutant behaved normally for entry into the host cells and subsequent evasion of degradative lysosomes, it was impaired in the ability to replicate, with that defect being first evident at approximately 9 h postentry. The replication defect was initially documented in three ways: by determining the numbers of CFU recovered from the lysates of the infected monolayers, by monitoring the levels of fluorescence associated with amoebal monolayers infected with green fluorescent protein (GFP)-expressing bacteria, and by utilizing flow cytometry to quantitate the amounts of GFP-expressing bacteria in individual amoebae. By employing confocal microscopy and newer imaging techniques, we further determined the progression in volume and shape of the bacterial vacuoles and found that the T2SS mutant grows at a decreased rate and does not attain maximally sized phagosomes. Overall, the entire infection cycle (i.e., entry to egress) was considerably slower for the T2SS mutant than it was for the wild-type strain, and the mutant's defect was maintained over multiple rounds of infection. Thus, the T2SS is absolutely required for L. pneumophila to grow to larger numbers in its intravacuolar niche within amoebae. Combining these results with those of our recent analysis of macrophage infection, T2SS is clearly a major component of L. pneumophila intracellular infection.
Collapse
|
21
|
Stenotrophomonas maltophilia Encodes a VirB/VirD4 Type IV Secretion System That Modulates Apoptosis in Human Cells and Promotes Competition against Heterologous Bacteria, Including Pseudomonas aeruginosa. Infect Immun 2019; 87:IAI.00457-19. [PMID: 31235638 DOI: 10.1128/iai.00457-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic and nosocomial pathogen. S. maltophilia is also a risk factor for lung exacerbations in cystic fibrosis patients. S. maltophilia attaches to various mammalian cells, and we recently documented that the bacterium encodes a type II secretion system which triggers detachment-induced apoptosis in lung epithelial cells. We have now confirmed that S. maltophilia also encodes a type IVA secretion system (VirB/VirD4 [VirB/D4] T4SS) that is highly conserved among S. maltophilia strains and, looking beyond the Stenotrophomonas genus, is most similar to the T4SS of Xanthomonas To define the role(s) of this T4SS, we constructed a mutant of strain K279a that is devoid of secretion activity due to loss of the VirB10 component. The mutant induced a higher level of apoptosis upon infection of human lung epithelial cells, indicating that a T4SS effector(s) has antiapoptotic activity. However, when we infected human macrophages, the mutant triggered a lower level of apoptosis, implying that the T4SS also elaborates a proapoptotic factor(s). Moreover, when we cocultured K279a with strains of Pseudomonas aeruginosa, the T4SS promoted the growth of S. maltophilia and reduced the numbers of heterologous bacteria, signaling that another effector(s) has antibacterial activity. In all cases, the effect of the T4SS required S. maltophilia contact with its target. Thus, S. maltophilia VirB/D4 T4SS appears to secrete multiple effectors capable of modulating death pathways. That a T4SS can have anti- and prokilling effects on different targets, including both human and bacterial cells, has, to our knowledge, not been seen before.
Collapse
|
22
|
Abstract
The type II secretion system (T2SS) delivers toxins and a range of hydrolytic enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular and intracellular pathogens as well as environmental species of proteobacteria is evident. This dynamic, multicomponent machinery spans the entire cell envelope and consists of a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a secretin pore embedded in the outer membrane. Despite the trans-envelope configuration of the T2S nanomachine, proteins to be secreted engage with the system first once they enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is specifically dedicated to their outer membrane translocation. The many sequence and structural similarities between the T2SS and type IV pili suggest a common origin and argue for a pilus-mediated mechanism of secretion. This minireview describes the structures, functions, and interactions of the individual T2SS components and the general architecture of the assembled T2SS machinery and briefly summarizes the transport and function of a growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have led to an increased understanding of the structure-function relationship of the secretin channel and the pseudopilus, are emphasized.
Collapse
|
23
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
24
|
Casals C, Campanero-Rhodes MA, García-Fojeda B, Solís D. The Role of Collectins and Galectins in Lung Innate Immune Defense. Front Immunol 2018; 9:1998. [PMID: 30233589 PMCID: PMC6131309 DOI: 10.3389/fimmu.2018.01998] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Different families of endogenous lectins use complementary defense strategies against pathogens. They may recognize non-self glycans typically found on pathogens and/or host glycans. The collectin and galectin families are prominent examples of these two lectin categories. Collectins are C-type lectins that contain a carbohydrate recognition domain and a collagen-like domain. Members of this group include surfactant protein A (SP-A) and D (SP-D), secreted by the alveolar epithelium to the alveolar fluid. Lung collectins bind to several microorganisms, which results in pathogen aggregation and/or killing, and enhances phagocytosis of pathogens by alveolar macrophages. Moreover, SP-A and SP-D influence macrophage responses, contributing to resolution of inflammation, and SP-A is essential for tissue-repair functions of macrophages. Galectins also function by interacting directly with pathogens or by modulating the immune system in response to the infection. Direct binding may result in enhanced or impaired infection of target cells, or can have microbicidal effects. Immunomodulatory effects of galectins include recruitment of immune cells to the site of infection, promotion of neutrophil function, and stimulation of the bactericidal activity of infected macrophages. Moreover, intracellular galectins can serve as danger receptors, promoting autophagy of the invading pathogen. This review will focus on the role of collectins and galectins in pathogen clearance and immune response activation in infectious diseases of the respiratory system.
Collapse
Affiliation(s)
- Cristina Casals
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - María A Campanero-Rhodes
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| | - Belén García-Fojeda
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Solís
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| |
Collapse
|
25
|
Best A, Price C, Ozanic M, Santic M, Jones S, Abu Kwaik Y. A Legionella pneumophila amylase is essential for intracellular replication in human macrophages and amoebae. Sci Rep 2018; 8:6340. [PMID: 29679057 PMCID: PMC5910436 DOI: 10.1038/s41598-018-24724-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/05/2018] [Indexed: 11/09/2022] Open
Abstract
Legionella pneumophila invades protozoa with an "accidental" ability to cause pneumonia upon transmission to humans. To support its nutrition during intracellular residence, L. pneumophila relies on host amino acids as the main source of carbon and energy to feed the TCA cycle. Despite the apparent lack of a requirement for glucose for L. pneumophila growth in vitro and intracellularly, the organism contains multiple amylases, which hydrolyze polysaccharides into glucose monomers. Here we describe one predicted putative amylase, LamB, which is uniquely present only in L. pneumophila and L. steigerwaltii among the ~60 species of Legionella. Our data show that LamB has a strong amylase activity, which is abolished upon substitutions of amino acids that are conserved in the catalytic pocket of amylases. Loss of LamB or expression of catalytically-inactive variants of LamB results in a severe growth defect of L. pneumophila in Acanthamoeba polyphaga and human monocytes-derived macrophages. Importantly, the lamB null mutant is severely attenuated in intra-pulmonary proliferation in the mouse model and is defective in dissemination to the liver and spleen. Our data show an essential role for LamB in intracellular replication of L. pneumophila in amoeba and human macrophages and in virulence in vivo.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA
| | - Christopher Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA
| | - Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Snake Jones
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
26
|
Type II Secretion-Dependent Aminopeptidase LapA and Acyltransferase PlaC Are Redundant for Nutrient Acquisition during Legionella pneumophila Intracellular Infection of Amoebas. mBio 2018; 9:mBio.00528-18. [PMID: 29666285 PMCID: PMC5904407 DOI: 10.1128/mbio.00528-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Legionella pneumophila genes encoding LapA, LapB, and PlaC were identified as the most highly upregulated type II secretion (T2S) genes during infection of Acanthamoeba castellanii, although these genes had been considered dispensable on the basis of the behavior of mutants lacking either lapA and lapB or plaC A plaC mutant showed even higher levels of lapA and lapB transcripts, and a lapA lapB mutant showed heightening of plaC mRNA levels, suggesting that the role of the LapA/B aminopeptidase is compensatory with respect to that of the PlaC acyltransferase. Hence, we made double mutants and found that lapA plaC mutants have an ~50-fold defect during infection of A. castellanii These data revealed, for the first time, the importance of LapA in any sort of infection; thus, we purified LapA and defined its crystal structure, activation by another T2S-dependent protease (ProA), and broad substrate specificity. When the amoebal infection medium was supplemented with amino acids, the defect of the lapA plaC mutant was reversed, implying that LapA generates amino acids for nutrition. Since the LapA and PlaC data did not fully explain the role of T2S in infection, we identified, via proteomic analysis, a novel secreted protein (NttD) that promotes infection of A. castellanii A lapA plaC nttD mutant displayed an even greater (100-fold) defect, demonstrating that the LapA, PlaC, and NttD data explain, to a significant degree, the importance of T2S. LapA-, PlaC-, and NttD-like proteins had distinct distribution patterns within and outside the Legionella genus. LapA was notable for having as its closest homologue an A. castellanii protein.IMPORTANCE Transmission of L. pneumophila to humans is facilitated by its ability to grow in Acanthamoeba species. We previously documented that type II secretion (T2S) promotes L. pneumophila infection of A. castellanii Utilizing transcriptional analysis and proteomics, double and triple mutants, and crystal structures, we defined three secreted substrates/effectors that largely clarify the role of T2S during infection of A. castellanii Particularly interesting are the unique functional overlap between an acyltransferase (PlaC) and aminopeptidase (LapA), the broad substrate specificity and eukaryotic-protein-like character of LapA, and the novelty of NttD. Linking LapA to amino acid acquisition, we defined, for the first time, the importance of secreted aminopeptidases in intracellular infection. Bioinformatic investigation, not previously applied to T2S, revealed that effectors originate from diverse sources and distribute within the Legionella genus in unique ways. The results of this study represent a major advance in understanding Legionella ecology and pathogenesis, bacterial secretion, and the evolution of intracellular parasitism.
Collapse
|
27
|
Affiliation(s)
- Ascel Samba-Louaka
- a Laboratoire Ecologie et Biologie des Interactions, Microbiologie de l'Eau, Université de Poitiers , UMR CNRS 7267 , Poitiers , France
| |
Collapse
|